\begin{problembox} \subsection{Problems:} \begin{questions} \question[1] David weighs \(5 \mathrm{~kg}\) less than Christos. If Christos weighs \(w \mathrm{~kg}\), express David's weight in terms of \(w\). \begin{solutionordottedlines}[1in] David's weight = \(w - 5\) kg. \end{solutionordottedlines} \question[1] When John's age is doubled, the number is 5 more than Kayla's age. If John is \(x\) years old, what is Kayla's age in terms of \(x\) ? \begin{solutionordottedlines}[1in] Kayla's age = \(2x - 5\) years. \end{solutionordottedlines} \question[2] The length of a rectangle is \(10 \mathrm{~m}\) greater than the width of the rectangle. \begin{parts} \part If \(w \mathrm{~m}\) is the width of the rectangle, express the length of the rectangle in terms of \(w\). \begin{solutionordottedlines}[1in] Length of the rectangle = \(w + 10\) m. \end{solutionordottedlines} \part If the length of the rectangle is \(\ell \mathrm{m}\), express the width of the rectangle in terms of \(\ell\). \begin{solutionordottedlines}[1in] Width of the rectangle = \(\ell - 10\) m. \end{solutionordottedlines} \end{parts} \question[6] Solve these equations: \begin{parts}\begin{multicols}{2} \part \(a+7=5\) \begin{solutionordottedlines}[1in] \(a = 5 - 7\) \(a = -2\) \end{solutionordottedlines} \part \(-3 m=18\) \begin{solutionordottedlines}[1in] \(m = \frac{18}{-3}\) \(m = -6\) \end{solutionordottedlines} \part \(6 a+21=-1\) \begin{solutionordottedlines}[1in] \(6a = -1 - 21\) \(6a = -22\) \(a = \frac{-22}{6}\) \(a = -\frac{11}{3}\) \end{solutionordottedlines} \part \(7 b-27=-16\) \begin{solutionordottedlines}[1in] \(7b = -16 + 27\) \(7b = 11\) \(b = \frac{11}{7}\) \end{solutionordottedlines} \part \(18-7 x=3 x-15\) \begin{solutionordottedlines}[1in] \(18 + 15 = 3x + 7x\) \(33 = 10x\) \(x = \frac{33}{10}\) \(x = 3.3\) \end{solutionordottedlines} \part \(-5 p+8=6-7 p\) \begin{solutionordottedlines}[1in] \(-5p + 7p = 6 - 8\) \(2p = -2\) \(p = \frac{-2}{2}\) \(p = -1\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[8] Now solve these: \begin{parts}\begin{multicols}{2} \part \(5(x+3)=18\) \begin{solutionordottedlines}[1in] \(5x + 15 = 18\) \(5x = 18 - 15\) \(5x = 3\) \(x = \frac{3}{5}\) \end{solutionordottedlines} \part \(5(x-2)=15\) \begin{solutionordottedlines}[1in] \(5x - 10 = 15\) \(5x = 15 + 10\) \(5x = 25\) \(x = \frac{25}{5}\) \(x = 5\) \end{solutionordottedlines} \part \(12(x-1)=96\) \begin{solutionordottedlines}[1in] \(12x - 12 = 96\) \(12x = 96 + 12\) \(12x = 108\) \(x = \frac{108}{12}\) \(x = 9\) \end{solutionordottedlines} \part \(7(3-x)=20\) \begin{solutionordottedlines}[1in] \(21 - 7x = 20\) \(-7x = 20 - 21\) \(-7x = -1\) \(x = \frac{-1}{-7}\) \(x = \frac{1}{7}\) \end{solutionordottedlines} \part \(6(11-x)=17\) \begin{solutionordottedlines}[1in] \(66 - 6x = 17\) \(-6x = 17 - 66\) \(-6x = -49\) \(x = \frac{-49}{-6}\) \(x = \frac{49}{6}\) \end{solutionordottedlines} \part \(6(a+1)-4(a+2)=24\) \begin{solutionordottedlines}[1in] \(6a + 6 - 4a - 8 = 24\) \(2a - 2 = 24\) \(2a = 24 + 2\) \(2a = 26\) \(a = \frac{26}{2}\) \(a = 13\) \end{solutionordottedlines} \part \(15(3 a-1)=2(6 a+7)\) \begin{solutionordottedlines}[1in] \(45a - 15 = 12a + 14\) \(45a - 12a = 14 + 15\) \(33a = 29\) \(a = \frac{29}{33}\) \(a = \frac{29}{33}\) \end{solutionordottedlines} \part \(-4(5 m+6)=-3(4-5 m)\) \begin{solutionordottedlines}[1in] \(-20m - 24 = -12 + 15m\) \(-20m - 15m = -12 + 24\) \(-35m = 12\) \(m = \frac{12}{-35}\) \(m = -\frac{12}{35}\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[4] The length of a rectangular lawn is \(15 \mathrm{~m}\) more than four times its width. \begin{parts} \part If \(x \mathrm{~m}\) is the width of the lawn, express the length of the lawn in terms of \(x\). \begin{solutionordottedlines}[1in] Length of the lawn = \(4x + 15\) m. \end{solutionordottedlines} \part If the perimeter of the lawn is \(265 \mathrm{~m}\), find the length and width of the lawn. \begin{solutionordottedlines}[1in] Perimeter = \(2(\text{length}) + 2(\text{width})\) \(265 = 2(4x + 15) + 2x\) \(265 = 8x + 30 + 2x\) \(265 = 10x + 30\) \(10x = 265 - 30\) \(10x = 235\) \(x = \frac{235}{10}\) \(x = 23.5\) m (width) Length = \(4(23.5) + 15\) Length = \(94 + 15\) Length = \(109\) m. \end{solutionordottedlines} \end{parts} \question[4] Solve for the pronumeral: \begin{parts} \part \[\frac{x}{3}-2=-7\] \begin{solutionordottedlines}[1in] \(\frac{x}{3} = -7 + 2\) \(\frac{x}{3} = -5\) \(x = -5 \times 3\) \(x = -15\) \end{solutionordottedlines} \part \[-2(z-1)=5(z+6)\] \begin{solutionordottedlines}[1in] \(-2z + 2 = 5z + 30\) \(-2z - 5z = 30 - 2\) \(-7z = 28\) \(z = \frac{28}{-7}\) \(z = -4\) \end{solutionordottedlines} \part \[\frac{3 s-2}{5}+1=6 s\] \begin{solutionordottedlines}[1in] \(\frac{3s - 2}{5} = 6s - 1\) \(3s - 2 = 30s - 5\) \(-2 + 5 = 30s - 3s\) \(3 = 27s\) \(s = \frac{3}{27}\) \(s = \frac{1}{9}\) \end{solutionordottedlines} \part \[\frac{x+2}{5}+\frac{x-1}{2}=\frac{x+1}{3}\] \begin{solutionordottedlines}[1in] Multiply through by the common denominator, \(30\): \(6(x + 2) + 15(x - 1) = 10(x + 1)\) \(6x + 12 + 15x - 15 = 10x + 10\) \(6x + 15x - 10x = 10 - 12 + 15\) \(11x = 13\) \(x = \frac{13}{11}\) \end{solutionordottedlines} \end{parts} \question[3] A person has a number of 10 -cent and 20 -cent coins. If their total value is \(\$ 18\), how many are there of each coin if there are: \begin{parts} \part equal numbers of each coin? \begin{solutionordottedlines}[1in] Let the number of each coin be \(n\). \(0.10n + 0.20n = 18\) \(0.30n = 18\) \(n = \frac{18}{0.30}\) \(n = 60\) There are 60 of each coin. \end{solutionordottedlines} \part twice as many 10 -cent coins as there are 20 -cent coins? \begin{solutionordottedlines}[1in] Let the number of 20-cent coins be \(n\), then there are \(2n\) 10-cent coins. \(0.20n + 0.10(2n) = 18\) \(0.20n + 0.20n = 18\) \(0.40n = 18\) \(n = \frac{18}{0.40}\) \(n = 45\) There are 45 20-cent coins and 90 10-cent coins. \end{solutionordottedlines} \part twice as many 20 -cent coins as there are 10 -cent coins? \begin{solutionordottedlines}[1in] Let the number of 10-cent coins be \(n\), then there are \(2n\) 20-cent coins. \(0.10n + 0.20(2n) = 18\) \(0.10n + 0.40n = 18\) \(0.50n = 18\) \(n = \frac{18}{0.50}\) \(n = 36\) There are 36 10-cent coins and 72 20-cent coins. \end{solutionordottedlines} \end{parts} \question[3] The distance between two towns \(A\) and \(B\) is \(450 \mathrm{~km}\). Find \(x\) if: \begin{parts} \part the trip takes \(x\) hours at an average speed of \(90 \mathrm{~km} / \mathrm{h}\) \begin{solutionordottedlines}[1in] \(450 = 90x\) \(x = \frac{450}{90}\) \(x = 5\) hours. \end{solutionordottedlines} \part the trip takes \(5 \frac{1}{4}\) hours at an average speed of \(x \mathrm{~km} / \mathrm{h}\) \begin{solutionordottedlines}[1in] \(450 = x \times 5.25\) \(x = \frac{450}{5.25}\) \(x = 85.71\) km/h (approximately). \end{solutionordottedlines} \part the trip takes 5 hours, travelling \(x\) hours at \(110 \mathrm{~km} / \mathrm{h}\) and the remaining time at \(60 \mathrm{~km} / \mathrm{h}\) \begin{solutionordottedlines}[1in] \(450 = 110x + 60(5 - x)\) \(450 = 110x + 300 - 60x\) \(450 = 50x + 300\) \(50x = 450 - 300\) \(50x = 150\) \(x = \frac{150}{50}\) \(x = 3\) hours at \(110\) km/h and \(2\) hours at \(60\) km/h. \end{solutionordottedlines} \end{parts} \question[3] A room has a length \(8 \mathrm{~m}\) shorter than its width and a perimeter of \(80 \mathrm{~m}\). Find the length and width of the room. \begin{solutionordottedlines}[1in] Let the width be \(w\) and the length be \(w - 8\). Perimeter = \(2(\text{length}) + 2(\text{width})\) \(80 = 2(w - 8) + 2w\) \(80 = 2w - 16 + 2w\) \(80 = 4w - 16\) \(4w = 80 + 16\) \(4w = 96\) \(w = \frac{96}{4}\) \(w = 24\) m (width) Length = \(24 - 8\) Length = \(16\) m. \end{solutionordottedlines} \question[4] Solve these equations for \(x\). \begin{parts}\begin{multicols}{2} \part \[\frac{m x+n}{a}=b\] \begin{solutionordottedlines}[1in] \(mx + n = ab\) \(mx = ab - n\) \(x = \frac{ab - n}{m}\) \end{solutionordottedlines} \part \[m(x-n)=p\] \begin{solutionordottedlines}[1in] \(mx - mn = p\) \(mx = p + mn\) \(x = \frac{p + mn}{m}\) \end{solutionordottedlines} \part \[a(b x-c)=d\] \begin{solutionordottedlines}[1in] \(abx - ac = d\) \(abx = d + ac\) \(x = \frac{d + ac}{ab}\) \end{solutionordottedlines} \part \[\frac{m(x+n)}{a}=b\] \begin{solutionordottedlines}[1in] \(m(x + n) = ab\) \(mx + mn = ab\) \(mx = ab - mn\) \(x = \frac{ab - mn}{m}\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[6] Copy each statement and insert the correct symbol, \(\geq\) or \(\leq\). \begin{parts}\begin{multicols}{2} \part \(11 \geq 5\) \part \(-8 \geq -12\) \part \(-14 \leq -16\) \part \(-8 \leq -7\) \part \(-11 \leq 5\) \part \(-10 \geq -100\) \end{multicols}\end{parts} \question[12] Graph each set on the number line. \begin{parts} \part \[\{x: x>2\}\] \begin{solutionorbox}[1in] A number line with an open circle at 2 and an arrow pointing to the right. \end{solutionorbox} \part \[\{x: x<3\}\] \begin{solutionorbox}[1in] A number line with an open circle at 3 and an arrow pointing to the left. \end{solutionorbox} \part \[\left\{x: x<-1 \frac{1}{2}\right\}\]