\begin{problembox} \subsection{Problems:} \begin{questions} \question[1] David weighs \(5 \mathrm{~kg}\) less than Christos. If Christos weighs \(w \mathrm{~kg}\), express David's weight in terms of \(w\). \begin{solutionordottedlines}[1in] David's weight = \(w - 5\) kg. \end{solutionordottedlines} \question[1] When John's age is doubled, the number is 5 more than Kayla's age. If John is \(x\) years old, what is Kayla's age in terms of \(x\) ? \begin{solutionordottedlines}[1in] Kayla's age = \(2x - 5\) years. \end{solutionordottedlines} \question[2] The length of a rectangle is \(10 \mathrm{~m}\) greater than the width of the rectangle. \begin{parts} \part If \(w \mathrm{~m}\) is the width of the rectangle, express the length of the rectangle in terms of \(w\). \begin{solutionordottedlines}[1in] Length of the rectangle = \(w + 10\) m. \end{solutionordottedlines} \part If the length of the rectangle is \(\ell \mathrm{m}\), express the width of the rectangle in terms of \(\ell\). \begin{solutionordottedlines}[1in] Width of the rectangle = \(\ell - 10\) m. \end{solutionordottedlines} \end{parts} \question[6] Solve these equations: \begin{parts}\begin{multicols}{2} \part \(a+7=5\) \begin{solutionordottedlines}[1in] \(a = 5 - 7\) \(a = -2\) \end{solutionordottedlines} \part \(-3 m=18\) \begin{solutionordottedlines}[1in] \(m = \frac{18}{-3}\) \(m = -6\) \end{solutionordottedlines} \part \(6 a+21=-1\) \begin{solutionordottedlines}[1in] \(6a = -1 - 21\) \(6a = -22\) \(a = \frac{-22}{6}\) \(a = -\frac{11}{3}\) \end{solutionordottedlines} \part \(7 b-27=-16\) \begin{solutionordottedlines}[1in] \(7b = -16 + 27\) \(7b = 11\) \(b = \frac{11}{7}\) \end{solutionordottedlines} \part \(18-7 x=3 x-15\) \begin{solutionordottedlines}[1in] \(18 + 15 = 3x + 7x\) \(33 = 10x\) \(x = \frac{33}{10}\) \(x = 3.3\) \end{solutionordottedlines} \part \(-5 p+8=6-7 p\) \begin{solutionordottedlines}[1in] \(-5p + 7p = 6 - 8\) \(2p = -2\) \(p = \frac{-2}{2}\) \(p = -1\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[8] Now solve these: \begin{parts}\begin{multicols}{2} \part \(5(x+3)=18\) \begin{solutionordottedlines}[1in] \(5x + 15 = 18\) \(5x = 18 - 15\) \(5x = 3\) \(x = \frac{3}{5}\) \end{solutionordottedlines} \part \(5(x-2)=15\) \begin{solutionordottedlines}[1in] \(5x - 10 = 15\) \(5x = 15 + 10\) \(5x = 25\) \(x = \frac{25}{5}\) \(x = 5\) \end{solutionordottedlines} \part \(12(x-1)=96\) \begin{solutionordottedlines}[1in] \(12x - 12 = 96\) \(12x = 96 + 12\) \(12x = 108\) \(x = \frac{108}{12}\) \(x = 9\) \end{solutionordottedlines} \part \(7(3-x)=20\) \begin{solutionordottedlines}[1in] \(21 - 7x = 20\) \(-7x = 20 - 21\) \(-7x = -1\) \(x = \frac{-1}{-7}\) \(x = \frac{1}{7}\) \end{solutionordottedlines} \part \(6(11-x)=17\) \begin{solutionordottedlines}[1in] \(66 - 6x = 17\) \(-6x = 17 - 66\) \(-6x = -49\) \(x = \frac{-49}{-6}\) \(x = \frac{49}{6}\) \end{solutionordottedlines} \part \(6(a+1)-4(a+2)=24\) \begin{solutionordottedlines}[1in] \(6a + 6 - 4a - 8 = 24\) \(2a - 2 = 24\) \(2a = 24 + 2\) \(2a = 26\) \(a = \frac{26}{2}\) \(a = 13\) \end{solutionordottedlines} \part \(15(3 a-1)=2(6 a+7)\) \begin{solutionordottedlines}[1in] \(45a - 15 = 12a + 14\) \(45a - 12a = 14 + 15\) \(33a = 29\) \(a = \frac{29}{33}\) \(a = \frac{29}{33}\) \end{solutionordottedlines} \part \(-4(5 m+6)=-3(4-5 m)\) \begin{solutionordottedlines}[1in] \(-20m - 24 = -12 + 15m\) \(-20m - 15m = -12 + 24\) \(-35m = 12\) \(m = \frac{12}{-35}\) \(m = -\frac{12}{35}\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[4] The length of a rectangular lawn is \(15 \mathrm{~m}\) more than four times its width. \begin{parts} \part If \(x \mathrm{~m}\) is the width of the lawn, express the length of the lawn in terms of \(x\). \begin{solutionordottedlines}[1in] Length of the lawn = \(4x + 15\) m. \end{solutionordottedlines} \part If the perimeter of the lawn is \(265 \mathrm{~m}\), find the length and width of the lawn. \begin{solutionordottedlines}[1in] Perimeter = \(2(\text{length}) + 2(\text{width})\) \(265 = 2(4x + 15) + 2x\) \(265 = 8x + 30 + 2x\) \(265 = 10x + 30\) \(10x = 265 - 30\) \(10x = 235\) \(x = \frac{235}{10}\) \(x = 23.5\) m (width) Length = \(4(23.5) + 15\) Length = \(94 + 15\) Length = \(109\) m. \end{solutionordottedlines} \end{parts} \question[4] Solve for the pronumeral: \begin{parts} \part \[\frac{x}{3}-2=-7\] \begin{solutionordottedlines}[1in] \(\frac{x}{3} = -7 + 2\) \(\frac{x}{3} = -5\) \(x = -5 \times 3\) \(x = -15\) \end{solutionordottedlines} \part \[-2(z-1)=5(z+6)\] \begin{solutionordottedlines}[1in] \(-2z + 2 = 5z + 30\) \(-2z - 5z = 30 - 2\) \(-7z = 28\) \(z = \frac{28}{-7}\) \(z = -4\) \end{solutionordottedlines} \part \[\frac{3 s-2}{5}+1=6 s\] \begin{solutionordottedlines}[1in] \(\frac{3s - 2}{5} = 6s - 1\) \(3s - 2 = 30s - 5\) \(-2 + 5 = 30s - 3s\) \(3 = 27s\) \(s = \frac{3}{27}\) \(s = \frac{1}{9}\) \end{solutionordottedlines} \part \[\frac{x+2}{5}+\frac{x-1}{2}=\frac{x+1}{3}\] \begin{solutionordottedlines}[1in] Multiply through by the common denominator, \(30\): \(6(x + 2) + 15(x - 1) = 10(x + 1)\) \(6x + 12 + 15x - 15 = 10x + 10\) \(6x + 15x - 10x = 10 - 12 + 15\) \(11x = 13\) \(x = \frac{13}{11}\) \end{solutionordottedlines} \end{parts} \question[3] A person has a number of 10 -cent and 20 -cent coins. If their total value is \(\$ 18\), how many are there of each coin if there are: \begin{parts} \part equal numbers of each coin? \begin{solutionordottedlines}[1in] Let the number of each coin be \(n\). \(0.10n + 0.20n = 18\) \(0.30n = 18\) \(n = \frac{18}{0.30}\) \(n = 60\) There are 60 of each coin. \end{solutionordottedlines} \part twice as many 10 -cent coins as there are 20 -cent coins? \begin{solutionordottedlines}[1in] Let the number of 20-cent coins be \(n\), then there are \(2n\) 10-cent coins. \(0.20n + 0.10(2n) = 18\) \(0.20n + 0.20n = 18\) \(0.40n = 18\) \(n = \frac{18}{0.40}\) \(n = 45\) There are 45 20-cent coins and 90 10-cent coins. \end{solutionordottedlines} \part twice as many 20 -cent coins as there are 10 -cent coins? \begin{solutionordottedlines}[1in] Let the number of 10-cent coins be \(n\), then there are \(2n\) 20-cent coins. \(0.10n + 0.20(2n) = 18\) \(0.10n + 0.40n = 18\) \(0.50n = 18\) \(n = \frac{18}{0.50}\) \(n = 36\) There are 36 10-cent coins and 72 20-cent coins. \end{solutionordottedlines} \end{parts} \question[3] The distance between two towns \(A\) and \(B\) is \(450 \mathrm{~km}\). Find \(x\) if: \begin{parts} \part the trip takes \(x\) hours at an average speed of \(90 \mathrm{~km} / \mathrm{h}\) \begin{solutionordottedlines}[1in] \(450 = 90x\) \(x = \frac{450}{90}\) \(x = 5\) hours. \end{solutionordottedlines} \part the trip takes \(5 \frac{1}{4}\) hours at an average speed of \(x \mathrm{~km} / \mathrm{h}\) \begin{solutionordottedlines}[1in] \(450 = x \times 5.25\) \(x = \frac{450}{5.25}\) \(x = 85.71\) km/h (approximately). \end{solutionordottedlines} \part the trip takes 5 hours, travelling \(x\) hours at \(110 \mathrm{~km} / \mathrm{h}\) and the remaining time at \(60 \mathrm{~km} / \mathrm{h}\) \begin{solutionordottedlines}[1in] \(450 = 110x + 60(5 - x)\) \(450 = 110x + 300 - 60x\) \(450 = 50x + 300\) \(50x = 450 - 300\) \(50x = 150\) \(x = \frac{150}{50}\) \(x = 3\) hours at \(110\) km/h and \(2\) hours at \(60\) km/h. \end{solutionordottedlines} \end{parts} \question[3] A room has a length \(8 \mathrm{~m}\) shorter than its width and a perimeter of \(80 \mathrm{~m}\). Find the length and width of the room. \begin{solutionordottedlines}[1in] Let the width be \(w\) and the length be \(w - 8\). Perimeter = \(2(\text{length}) + 2(\text{width})\) \(80 = 2(w - 8) + 2w\) \(80 = 2w - 16 + 2w\) \(80 = 4w - 16\) \(4w = 80 + 16\) \(4w = 96\) \(w = \frac{96}{4}\) \(w = 24\) m (width) Length = \(24 - 8\) Length = \(16\) m. \end{solutionordottedlines} \question[4] Solve these equations for \(x\). \begin{parts}\begin{multicols}{2} \part \[\frac{m x+n}{a}=b\] \begin{solutionordottedlines}[1in] \(mx + n = ab\) \(mx = ab - n\) \(x = \frac{ab - n}{m}\) \end{solutionordottedlines} \part \[m(x-n)=p\] \begin{solutionordottedlines}[1in] \(mx - mn = p\) \(mx = p + mn\) \(x = \frac{p + mn}{m}\) \end{solutionordottedlines} \part \[a(b x-c)=d\] \begin{solutionordottedlines}[1in] \(abx - ac = d\) \(abx = d + ac\) \(x = \frac{d + ac}{ab}\) \end{solutionordottedlines} \part \[\frac{m(x+n)}{a}=b\] \begin{solutionordottedlines}[1in] \(m(x + n) = ab\) \(mx + mn = ab\) \(mx = ab - mn\) \(x = \frac{ab - mn}{m}\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[6] Copy each statement and insert the correct symbol, \(\geq\) or \(\leq\). \begin{parts}\begin{multicols}{2} \part \(11 \geq 5\) \part \(-8 \geq -12\) \part \(-14 \leq -16\) \part \(-8 \leq -7\) \part \(-11 \leq 5\) \part \(-10 \geq -100\) \end{multicols}\end{parts} \question[12] Graph each set on the number line. \begin{parts} \part \[\{x: x>2\}\] \begin{solutionorbox}[1in] \ineqLine{0}{5}{2}{5}{0} \end{solutionorbox} \part \[\{x: x<3\}\] \begin{solutionorbox}[1in] \ineqLine{5}{-5}{3}{-5}{0} \end{solutionorbox} \part \[\left\{x: x<-1 \frac{1}{2}\right\}\] \begin{solutionorbox}[1in] \ineqLine{0}{-5}{-1}{-5}{0} \end{solutionorbox} \part \[\{x: x \geq 4\}\] \begin{solutionorbox}[1in] \ineqLine{0}{8}{4}{8}{1} \end{solutionorbox} \part \[\left\{x: x \geq \frac{1}{3}\right\}\] \begin{solutionorbox}[1in] \ineqLine{0}{5}{0.33}{5}{1} \end{solutionorbox} \part \[\left\{x: x \leq 2 \frac{1}{4}\right\}\] \begin{solutionorbox}[1in] \ineqLine{3}{-5}{2}{-4}{1} \end{solutionorbox} \end{parts} \question[4] Use \textit{correct} set notation to describe each interval. \begin{parts} \part \ineqLine{-3}{4}{-1}{3}{0} \begin{solutionordottedlines}[1cm] $x>-1$ \end{solutionordottedlines} \part \ineqLine[1.5]{-3}{4}{1.5}{-2.5}{1} \begin{solutionordottedlines}[1cm] $x\leq 1.5$ \end{solutionordottedlines} \end{parts} \question[12] Solve these inequalities. \begin{parts}\begin{multicols}{2} \part \[x+7 \geq 17\] \begin{solutionordottedlines}[1in] Subtract 7 from both sides: \\ \(x \geq 17 - 7\) \\ \(x \geq 10\) \end{solutionordottedlines} \part \[x-7 \leq-4\] \begin{solutionordottedlines}[1in] Add 7 to both sides: \\ \(x \leq -4 + 7\) \\ \(x \leq 3\) \end{solutionordottedlines} \part \[-2 x \geq 16\] \begin{solutionordottedlines}[1in] Divide both sides by -2 (and reverse the inequality): \\ \(x \leq \frac{16}{-2}\) \\ \(x \leq -8\) \end{solutionordottedlines} \part \[\frac{x}{5}-\frac{1}{2} \geq 2\] \begin{solutionordottedlines}[1in] Add \(\frac{1}{2}\) to both sides: \\ \(\frac{x}{5} \geq 2 + \frac{1}{2}\) \\ \(\frac{x}{5} \geq \frac{5}{2}\) \\ Multiply both sides by 5: \\ \(x \geq \frac{5}{2} \times 5\) \\ \(x \geq \frac{25}{2}\) \\ \(x \geq 12.5\) \end{solutionordottedlines} \part \[6(x-3) \leq 15\] \begin{solutionordottedlines}[1in] Divide both sides by 6: \\ \(x - 3 \leq \frac{15}{6}\) \\ \(x - 3 \leq 2.5\) \\ Add 3 to both sides: \\ \(x \leq 2.5 + 3\) \\ \(x \leq 5.5\) \end{solutionordottedlines} \part \[7-4 x \leq-12\] \begin{solutionordottedlines}[1in] Subtract 7 from both sides: \\ \(-4x \leq -12 - 7\) \\ \(-4x \leq -19\) \\ Divide both sides by -4 (and reverse the inequality): \\ \(x \geq \frac{-19}{-4}\) \\ \(x \geq 4.75\) \end{solutionordottedlines} \part \[11-3 x>18\] \begin{solutionordottedlines}[1in] Subtract 11 from both sides: \\ \(-3x > 18 - 11\) \\ \(-3x > 7\) \\ Divide both sides by -3 (and reverse the inequality): \\ \(x < \frac{7}{-3}\) \\ \(x < -\frac{7}{3}\) \\ \(x < -2.\overline{3}\) \end{solutionordottedlines} \part \[6(1-x) \leq 2.4(15-12 x)\] \begin{solutionordottedlines}[1in] Expand both sides: \\ \(6 - 6x \leq 36 - 28.8x\) \\ Add \(6x\) to both sides and subtract 36: \\ \(6 \leq -22.8x + 36\) \\ \(-30 \leq -22.8x\) \\ Divide both sides by -22.8 (and reverse the inequality): \\ \(x \geq \frac{30}{22.8}\) \\ \(x \geq \frac{5}{3.8}\) \\ \(x \geq 1.\overline{315789473684210526}\) \end{solutionordottedlines} \part \[\frac{x-3}{3} \leq \frac{3+x}{2}\] \begin{solutionordottedlines}[1in] Cross multiply to compare: \\ \(2(x - 3) \leq 3(3 + x)\) \\ \(2x - 6 \leq 9 + 3x\) \\ Subtract \(2x\) and add 6 to both sides: \\ \(-6 \leq 9 + x\) \\ \(-15 \leq x\) \\ \(x \geq -15\) \end{solutionordottedlines} \part \[\frac{2 x+3}{2}-\frac{x-4}{3}>2\] \begin{solutionordottedlines}[1in] Find a common denominator and combine: \\ \(\frac{3(2x + 3) - 2(x - 4)}{6} > 2\) \\ \(\frac{6x + 9 - 2x + 8}{6} > 2\) \\ \(\frac{4x + 17}{6} > 2\) \\ Multiply both sides by 6: \\ \(4x + 17 > 12\) \\ Subtract 17 from both sides: \\ \(4x > -5\) \\ Divide both sides by 4: \\ \(x > -\frac{5}{4}\) \\ \(x > -1.25\) \end{solutionordottedlines} \part \[\frac{4-x}{2}+\frac{3-x}{4}<1\] \begin{solutionordottedlines}[1in] Find a common denominator and combine: \\ \(\frac{2(4 - x) + (3 - x)}{4} < 1\) \\ \(\frac{8 - 2x + 3 - x}{4} < 1\) \\ \(\frac{11 - 3x}{4} < 1\) \\ Multiply both sides by 4: \\ \(11 - 3x < 4\) \\ Subtract 11 from both sides: \\ \(-3x < -7\) \\ Divide both sides by -3 (and reverse the inequality): \\ \(x > \frac{7}{3}\) \\ \(x > 2.\overline{3}\) \end{solutionordottedlines} \part \[\frac{3-2 x}{2} \geq \frac{7-10 x}{5}\] \begin{solutionordottedlines}[1in] Cross multiply to compare: \\ \(5(3 - 2x) \geq 2(7 - 10x)\) \\ \(15 - 10x \geq 14 - 20x\) \\ Add \(10x\) to both sides: \\ \(15 \geq 14 - 10x + 10x\) \\ \(15 \geq 14\) \\ The inequality is always true, so \(x\) can be any real number. \end{solutionordottedlines} \end{multicols}\end{parts} \question[4] At 2 p.m., two aeroplanes leave airports \(2880 \mathrm{~km}\) apart and fly towards one another. The average speed of one plane is twice that of the other. If they pass each other at 5 p.m., what is the average speed of each plane? \begin{solutionordottedlines}[1in] Let the speed of the slower plane be \(v\) km/h. \\ Then the speed of the faster plane is \(2v\) km/h. \\ They meet after 3 hours, so the total distance covered is: \\ \(3v + 3(2v) = 2880\) \\ \(3v + 6v = 2880\) \\ \(9v = 2880\) \\ \(v = 320\) km/h \\ The speed of the slower plane is 320 km/h, \\ and the speed of the faster plane is \(2 \times 320 = 640\) km/h. \end{solutionordottedlines} \question[3] When a mathematics teacher was asked her age she replied, 'One-fifth of my age three years ago, when added to half my age last year, gives my age 11 years ago.' How old is she? \begin{solutionordottedlines}[1in] Let her current age be \(x\) years. \\ One-fifth of her age three years ago: \(\frac{x - 3}{5}\) \\ Half her age last year: \(\frac{x - 1}{2}\) \\ Her age 11 years ago: \(x - 11\) \\ The equation is: \\ \(\frac{x - 3}{5} + \frac{x - 1}{2} = x - 11\) \\ Multiply through by 10 (LCM of 5 and 2): \\ \(2(x - 3) + 5(x - 1) = 10(x - 11)\) \\ \(2x - 6 + 5x - 5 = 10x - 110\) \\ \(7x - 11 = 10x - 110\) \\ Subtract \(7x\) from both sides: \\ \(-11 = 3x - 110\) \\ Add 110 to both sides: \\ \(99 = 3x\) \\ Divide by 3: \\ \(x = 33\) \\ The teacher is 33 years old. \end{solutionordottedlines} \question[3] \(3 \$ 420\) is divided between \(A, B\) and \(C . B\) receives \(\$ 20\) less than \(A\), and \(C\) receives half as much as \(A\) and \(B\) together. How much does each receive? \begin{solutionordottedlines}[1in] Let \(A\) receive \(x\) dollars. \\ Then \(B\) receives \(x - 20\) dollars. \\ \(C\) receives \(\frac{1}{2}(x + (x - 20))\) dollars. \\ The total amount is: \\ \(x + (x - 20) + \frac{1}{2}(x + (x - 20)) = 3420\) \\ \(2x - 20 + x + (x - 20) = 3420\) \\ \(4x - 40 = 3420\) \\ Add 40 to both sides: \\ \(4x = 3460\) \\ Divide by 4: \\ \(x = 865\) \\ So, \(A\) receives \$865, \(B\) receives \(865 - 20 = \$845\), \\ and \(C\) receives \(\frac{1}{2}(865 + 845) = \$855\). \end{solutionordottedlines} \question[3] In a printing works, 75000 leaflets are run off by two printing presses in \(18 \frac{3}{4}\) hours. One press delivers 200 more leaflets per hour than the other. Find the number of leaflets produced per hour by each of the machines. \begin{solutionordottedlines}[1in] Let the number of leaflets the slower press prints per hour be \(x\). \\ Then the faster press prints \(x + 200\) leaflets per hour. \\ Total time is \(18 \frac{3}{4}\) hours or \(18.75\) hours. \\ The equation is: \\ \(18.75x + 18.75(x + 200) = 75000\) \\ \(18.75x + 18.75x + 3750 = 75000\) \\ \(37.5x + 3750 = 75000\) \\ Subtract 3750 from both sides: \\ \(37.5x = 71250\) \\ Divide by 37.5: \\ \(x = 1900\) \\ The slower press prints 1900 leaflets per hour, \\ and the faster press prints \(1900 + 200 = 2100\) leaflets per hour. \end{solutionordottedlines} \question[4] A salesman makes a trip to visit a client. The traffic he encounters keeps his average speed to \(40 \mathrm{~km} / \mathrm{h}\). On the return trip, he takes a route \(6 \mathrm{~km}\) longer, but he averages \(50 \mathrm{~km} / \mathrm{h}\). If he takes the same time each way, how long was the total journey? \begin{solutionordottedlines}[1in] Let the distance of the initial trip be \(d\) km. \\ Time for the initial trip: \(\frac{d}{40}\) hours. \\ Time for the return trip: \(\frac{d + 6}{50}\) hours. \\ Since the times are equal: \\ \(\frac{d}{40} = \frac{d + 6}{50}\) \\ Cross multiply: \\ \(50d = 40(d + 6)\) \\ \(50d = 40d + 240\) \\ Subtract \(40d\) from both sides: \\ \(10d = 240\) \\ Divide by 10: \\ \(d = 24\) km \\ Total distance for both trips: \(24 + (24 + 6) = 54\) km \\ Total time for both trips: \(\frac{24}{40} + \frac{30}{50} = 1.2\) hours \end{solutionordottedlines} \question[4] Solve these inequalities: \begin{parts} \part \[\frac{5-2 x}{3}-\frac{5+2 x}{4} \geq-1\] \begin{solutionordottedlines}[1in] Find a common denominator and combine: \\ \(\frac{4(5 - 2x) - 3(5 + 2x)}{12} \geq -1\) \\ \(\frac{20 - 8x - 15 - 6x}{12} \geq -1\) \\ \(\frac{5 - 14x}{12} \geq -1\) \\ Multiply both sides by 12: \\ \(5 - 14x \geq -12\) \\ Add 14x to both sides: \\ \(5 + 14x \geq -12 + 14x\) \\ Subtract 5 from both sides: \\ \(14x \geq -17\) \\ Divide by 14: \\ \(x \geq -\frac{17}{14}\) \\ \(x \geq -1.\overline{214285714285714285}\) \end{solutionordottedlines} \part \[\frac{2 x-1}{7} \geq \frac{2 x+3}{4}\] \begin{solutionordottedlines}[1in] Cross multiply to compare: \\ \(4(2x - 1) \geq 7(2x + 3)\) \\ \(8x - 4 \geq 14x + 21\) \\ Subtract \(8x\) from both sides: \\ \(-4 \geq 6x + 21\) \\ Subtract 21 from both sides: \\ \(-25 \geq 6x\) \\ Divide by 6 (and reverse the inequality): \\ \(-\frac{25}{6} \leq x\) \\ \(x \geq -\frac{25}{6}\) \\ \(x \geq -4.\overline{1}\) \end{solutionordottedlines} \part \[\frac{6 x+1}{3}>\frac{3 x-1}{2}+3\] \begin{solutionordottedlines}[1in] Find a common denominator and combine: \\ \(\frac{2(6x + 1) - 3(3x - 1)}{6} > 3\) \\ \(\frac{12x + 2 - 9x + 3}{6} > 3\) \\ \(\frac{3x + 5}{6} > 3\) \\ Multiply both sides by 6: \\ \(3x + 5 > 18\) \\ Subtract 5 from both sides: \\ \(3x > 13\) \\ Divide by 3: \\ \(x > \frac{13}{3}\) \\ \(x > 4.\overline{3}\) \end{solutionordottedlines} \part \[\frac{6-3 x}{2} \geq \frac{3 x-6}{5}\] \begin{solutionordottedlines}[1in] Cross multiply to compare: \\ \(5(6 - 3x) \geq 2(3x - 6)\) \\ \(30 - 15x \geq 6x - 12\) \\ Add \(15x\) to both sides: \\ \(30 \geq 21x - 12\) \\ Add 12 to both sides: \\ \(42 \geq 21x\) \\ Divide by 21: \\ \(2 \geq x\) \\ \(x \leq 2\) \end{solutionordottedlines} \end{parts} \end{questions} \end{problembox}