\begin{problembox} \begin{questions} \Question[4] Simplify, expressing the answer with positive indices. \begin{parts} \part \(\frac{4 m^{2} n^{5} p^{-6}}{16 m^{-2} n^{5} p^{3}}\) \begin{solutionordottedlines}[2cm] \(=\frac{4}{16} \cdot m^{2-(-2)} \cdot n^{5-5} \cdot p^{-6-3}\) \\ \(=\frac{1}{4} \cdot m^{4} \cdot p^{-9}\) \\ \(=\frac{m^{4}}{4p^{9}}\) \end{solutionordottedlines} \part \(\left(2^{2} y^{3}\right)^{-5}\) \begin{solutionordottedlines}[2cm] \(=(2^{2 \cdot -5}) \cdot (y^{3 \cdot -5})\) \\ \(=2^{-10} \cdot y^{-15}\) \\ \(=\frac{1}{2^{10} y^{15}}\) \end{solutionordottedlines} \part \(\left(5^{-2} x^{3}\right)^{-5}\) \begin{solutionordottedlines}[2cm] \(=(5^{-2 \cdot -5}) \cdot (x^{3 \cdot -5})\) \\ \(=5^{10} \cdot x^{-15}\) \\ \(=\frac{5^{10}}{x^{15}}\) \end{solutionordottedlines} \part \(\left(3^{-3} a^{2} b^{-1}\right)^{-4}\) \begin{solutionordottedlines}[2cm] \(=(3^{-3 \cdot -4}) \cdot (a^{2 \cdot -4}) \cdot (b^{-1 \cdot -4})\) \\ \(=3^{12} \cdot a^{-8} \cdot b^{4}\) \\ \(=\frac{3^{12} b^{4}}{a^{8}}\) \end{solutionordottedlines} \end{parts} \Question[3] Simplify, expressing the answer with positive indices. \begin{parts} \part \(4 a^{2} \times 5 a^{-3}\) \begin{solutionordottedlines}[2cm] \(=4 \cdot 5 \cdot a^{2-3}\) \\ \(=20 a^{-1}\) \\ \(=\frac{20}{a}\) \end{solutionordottedlines} \part \(14 a^{-4} \div 7 a^{-5}\) \begin{solutionordottedlines}[2cm] \(=\frac{14}{7} \cdot a^{-4-(-5)}\) \\ \(=2 a^{1}\) \\ \(=2a\) \end{solutionordottedlines} \part \(\frac{2 m^{3} n^{4}}{(5 m)^{2}} \times \frac{10 m}{3 n^{-4}}\) \begin{solutionordottedlines}[2cm] \(=\frac{2 m^{3} n^{4}}{25 m^{2}} \cdot \frac{10 m}{3 n^{-4}}\) \\ \(=\frac{2}{25} \cdot \frac{10}{3} \cdot m^{3-2+1} \cdot n^{4+4}\) \\ \(=\frac{20}{75} \cdot m^{2} \cdot n^{8}\) \\ \(=\frac{4}{15} m^{2} n^{8}\) \end{solutionordottedlines} \end{parts} \Question[3] Evaluate: \begin{parts} \part \(49^{\frac{1}{2}}\) \begin{solutionordottedlines}[2cm] \(=\sqrt{49}\) \\ \(=7\) \end{solutionordottedlines} \part \(125^{\frac{2}{3}}\) \begin{solutionordottedlines}[2cm] \(=\sqrt[3]{125^{2}}\) \\ \(=\sqrt[3]{15625}\) \\ \(=25\) \end{solutionordottedlines} \part \(\left(\frac{1}{8}\right)^{-\frac{2}{3}}\) \begin{solutionordottedlines}[2cm] \(=(8^{\frac{2}{3}})\) \\ \(=\sqrt[3]{8^{2}}\) \\ \(=\sqrt[3]{64}\) \\ \(=4\) \end{solutionordottedlines} \end{parts} \Question[4] Simplify, expressing the answer with positive indices. \begin{parts} \part \(3 b^{\frac{2}{3}} \times 4 b\) \begin{solutionordottedlines}[2cm] \(=3 \cdot 4 \cdot b^{\frac{2}{3}+1}\) \\ \(=12 b^{\frac{5}{3}}\) \end{solutionordottedlines} \part \(p^{\frac{2}{3}} \div p^{\frac{1}{2}}\) \begin{solutionordottedlines}[2cm] \(=p^{\frac{2}{3}-\frac{1}{2}}\) \\ \(=p^{\frac{4}{6}-\frac{3}{6}}\) \\ \(=p^{\frac{1}{6}}\) \end{solutionordottedlines} \part \(\left(2 x^{-\frac{1}{3}}\right)^{-2}\) \begin{solutionordottedlines}[2cm] \(=2^{-2} \cdot x^{\frac{2}{3}}\) \\ \(=\frac{1}{4} x^{\frac{2}{3}}\) \end{solutionordottedlines} \part \(\left(8 p^{-2} q^{3}\right)^{\frac{1}{2}}\) \begin{solutionordottedlines}[2cm] \(=8^{\frac{1}{2}} \cdot p^{-1} \cdot q^{\frac{3}{2}}\) \\ \(=2 \cdot \frac{q^{\frac{3}{2}}}{p}\) \end{solutionordottedlines} \end{parts} \Question[3] Write in scientific notation. \begin{parts} \part 164000000 \begin{solutionordottedlines}[2cm] \(=1.64 \times 10^{8}\) \end{solutionordottedlines} \part 0.0047 \begin{solutionordottedlines}[2cm] \(=4.7 \times 10^{-3}\) \end{solutionordottedlines} \part 0.0035 \begin{solutionordottedlines}[2cm] \(=3.5 \times 10^{-3}\) \end{solutionordottedlines} \end{parts} \Question[3] Write in decimal form. \begin{parts} \part \(6.8 \times 10^{4}\) \begin{solutionordottedlines}[2cm] \(=68000\) \end{solutionordottedlines} \part \(9.4 \times 10^{-2}\) \begin{solutionordottedlines}[2cm] \(=0.094\) \end{solutionordottedlines} \part \(3.2 \times 10^{-4}\) \begin{solutionordottedlines}[2cm] \(=0.00032\) \end{solutionordottedlines} \end{parts} \Question[2] Simplify, writing each answer in scientific notation. \begin{parts} \part \(\left(3.1 \times 10^{4}\right) \times\left(2 \times 10^{-2}\right)\) \begin{solutionordottedlines}[2cm] \(=3.1 \cdot 2 \times 10^{4-2}\) \\ \(=6.2 \times 10^{2}\) \end{solutionordottedlines} \part \(\frac{\left(3 \times 10^{4}\right)^{3}}{9 \times 10^{-2}}\) \begin{solutionordottedlines}[2cm] \(=\frac{3^{3} \times 10^{12}}{9 \times 10^{-2}}\) \\ \(=\frac{27}{9} \times 10^{12+2}\) \\ \(=3 \times 10^{14}\) \end{solutionordottedlines} \end{parts} \Question[6] Write in scientific notation correct to the number of significant figures indicated in the brackets. \begin{multicols}{2}\begin{parts} \part 18.62\hfill{}(2) \begin{solutionordottedlines}[2cm] \(=1.9 \times 10^{1}\) \end{solutionordottedlines} \part 18.62\hfill{}(3) \begin{solutionordottedlines}[2cm] \(=1.86 \times 10^{1}\) \end{solutionordottedlines} \part 18.62\hfill{}(1) \begin{solutionordottedlines}[2cm] \(=2 \times 10^{1}\) \end{solutionordottedlines} \part 0.004276\hfill{}(2) \begin{solutionordottedlines}[2cm] \(=4.3 \times 10^{-3}\) \end{solutionordottedlines} \part 5973.4\hfill{}(2) \begin{solutionordottedlines}[2cm] \(=6.0 \times 10^{3}\) \end{solutionordottedlines} \part 0.473952\hfill{}(3) \begin{solutionordottedlines}[2cm] \(=4.74 \times 10^{-1}\) \end{solutionordottedlines} \end{parts}\end{multicols} \end{questions} \end{problembox}