YEAR 9 MATHEMATICS TOPIC TEST 4 FORMULAE & INDICES

PEN Education

2024

C	Contents	
1	Introduction	1
2	Problems	2
3	Homework	16
4	Marking	16
• •	Educatio	n

1 Introduction

Today we are going to spend an hour doing an in-class topic test. It is well known how much you all *despise* such **tests**, but according to the <u>literature</u>, testing yourself is the most effective way to learn!

You should acknowledge that you have now just completed all of the theory surrounding formula rearrangements, substitutions within such formulae as well as indice arithmetic, index laws and scientific notation / significant figures. And if you have been attempting your homework you should be able to independently answer questions about these topics in a quiet and timed environment.

Before we begin, here are the **buzz words** from the assessed topics, if you do not understand any word here ASK NOW!

$$f_{Orm_{Ul_a}}$$
 $subject$ $pronumeral$ $substitution$ $expression$ $c_{Onstruction}$ $equation$ rea_{Trange}

indices power root $e^{xponent}$ reciprocal sig fig b_{ase} $b_{collect}$

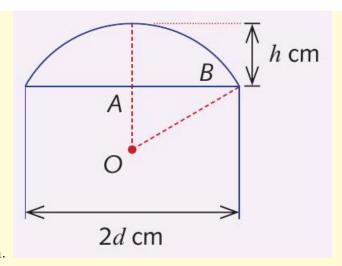
3

2 Problems

index

2.1 F	formulae
	peratures can be measured in either degrees Fahrenheit or degrees Celsius. To convert one scale to the other, the following formula is used: $F = \frac{9}{5}C + 32$.
(a)	Rearrange the formula to make C the subject.
(b)	On a particular day in Melbourne, the temperature was 28°C. What is this temperature measured in Fahrenheit?
(c)	In Boston, USA, the minimum overnight temperature was 4°F. What is this temperature measured in Celsius?
(1)	
(d)	What number represents the same temperature in °C and °F?
(a)	An approximate conversion formula word frequently when converting over temporal
(e)	An approximate conversion formula, used frequently when converting oven temperatures, is $F = 2C + 30$. Use this to convert these temperatures:
	i. an oven temperature of 180°C
	ii. an oven temperature of 530°F

2. Gareth the gardener has a large rectangular vegetable patch and he wishes to put in a path around it using concrete pavers that measure $50 \text{ cm} \times 50 \text{ cm}$. The path is to be 1 paver wide. Let n be the number of pavers required. If the vegetable patch measures x metres by y metres, find a formula for n in terms of x and y .	2
3. If $s = \frac{n}{2}(2a + (n-1)d)$:	3
(a) find the value of s when $n = 10, a = 6$ and $d = 3$	
(b) find the value of a when $s = 350, n = 20$ and $d = 4$	
(c) find the value of d when $s = 460, n = 10$ and $a = 10$	
4. The formula for the geometric mean m of two positive numbers a and b is $m = \sqrt{ab}$.	2
(a) Find m if $a = 16$ and $b = 25$.	
(b) Find a if $m = 7$ and $b = 16$.	
1. (12.4.	
5. If $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$:	2
(a) find x if $b = 4$, $a = 1$ and $c = -24$	


(b)	find c if $a = 1, x = 6$ and $b = 2$
· /	······································
of th	llar is in the shape of a cylinder with a hemispherical top. If r metres is the radius the base and h metres is the total height, the volume V cubic metres is given by the rula $V = \frac{1}{3}\pi r^2(3h-r)$.
(a)	Rearrange the formula to make h the subject.
` '	Find the height of the pillar, correct to the nearest centimetre, if the radius of the pillar is $0.5~\mathrm{m}$ and the volume is $10~\mathrm{m}^3$.
	range each of these formulas to make the pronumeral in brackets the subject. (All of pronumerals represent positive numbers.)
(a)	$A = \ell \times w \tag{\ell}$
(b)	$V = \pi r^2 h \tag{r}$
(c)	$\frac{1}{x} + \frac{1}{y} = \frac{2}{z} \tag{z}$

8.	f a stone is dropped off a cliff, the number of metres it has fallen after a certain number of seconds is found by multiplying the square of the number of seconds by 4.9.	2
	(a) Find the formula for the distance d metres fallen by the stone in t seconds.	
	(b) Find the distance fallen in 1.5 seconds.	
9.	$f t = \sqrt{\frac{M}{M-m}} :$	3
	(a) express the formula with m as the subject	
	(b) express the formula with M as the subject	
	(c) find the value of M if $m=3$ and $t=\sqrt{2}$.	
10.	The total surface area S cm ² of a cylinder is given in terms of its radius r cm and height r cm by the formula $S = 2\pi r(r+h)$.	2
	(a) Express this formula with h as the subject.	
	(b) What is the height of such a cylinder if the radius is 7 cm and the total surface area is 500 cm ² ? Calculate your answer in centimetres, correct to 2 decimal places.	

11.	The sum S of the squares of the first n whole numbers is given by the formula $S = \frac{n(n+1)(2n+1)}{6}$. Find the sum of the squares of:	2
	(a) the first 20 whole numbers	
	(b) all the numbers from 5 to 21 inclusive	
10	$\sum_{i=1}^{n} f_{i} = \sum_{i=1}^{n} f_{i} = \sum_{i$	
12.	For the formula $D = \sqrt{\frac{f+x}{f-x}}$, make x the subject.	2
13.	Cans in a supermarket are displayed in a triangular stack with one can at the top, two cans in the second row from the top, three cans in the third row from the top, and so on. What is the number of cans in the display if the number of rows is:	2
	(a) n	
	/1 \ or	
	(b) 35	
1 /	December of this fermula to make the propurated in hypotrate the subject	2
14.	Rearrange this formula to make the pronumeral in brackets the subject.	2
	$v^2 = u^2 + 2as(u)$	
15.	For the formula $I = \frac{180n - 360}{n}$:	2
	(a) find I when $n = 6$	
		4

(b) make n the subject of the formula and find n when $I = 108$	
16. Find the formula connecting x and y for each of these statements making y the subject.	4
(a) y is four more than twice the square of x .	
(b) x and y are complementary angles.	
(c) A car travelled x km in y hours at a speed of 100 km/h.	
(d) A car travelled 100 km in y hours at a speed of x km/h.	
2.1.1 Challenge Problems	
17. A builder wishes to place a circular cap of a given height above an existing window. To do	10

this he needs to know the location of the centre of the circle (the cap is not necessarily a semicircle) and the radius of the circle. O is the centre of the required circle, the radius of the required circle is r cm, the width of the window is 2d cm and the height of the circular

(a) Express each of these in terms of r, d and h.

cap is h cm.

i.	AB																							
		 	 	 	 	 ٠.	 	•	 	٠.	 	٠.		 	 		 •	 		 •	 	 	 	
		 	 	 ٠.	 	 	 		 					 	 			 		 •	 	 		
ii.	OA																							

(b)	Show	that	t r =	$\frac{h^2+d}{2h}$	² .								

(c) If the window is 120 cm wide and the cap is 40 cm high, find:

i. the radius of the circle

ii. how far below the top of the window the centre of the circle must be placed

(d) If the builder used a circle of radius 50 cm and this produced a cap of height 20 cm, what was the width of the window?

18. A group of n people attend a club meeting. Before the meeting begins, they all shake hands with each other. Write a formula to find H , the number of handshakes exchanged.	4
2.2 Indices	
1. Evaluate:	2
(a) 2^6	
(b) 10^6	
2. Express 120^2 as a product of powers of prime numbers.	1
3. Simplify and evaluate where possible.	8

7

(a)	$a^6 \times a^7$	(e)	$\frac{18p^{10}}{9p}$
(1.)	0.36		
(b)	$2x^3 \times 5x^6$	(f)	$(a^4)^3$
(c)	$a^7 \div a^4$	(g)	$(2a^7)^3$
(d)	$\frac{12b^7}{6b^2}$	(h)	046
(u)	$6b^2$	(11)	
4. Simp	olify and evaluate where possible.		
(a)	$4a^2$	$b^3 \times 5$	ab^4
(b)		$\frac{20a^4b^2}{5a^2b}$? -
		$5a^2b$	
(c)			4
	$\frac{2}{1}$	$\frac{4m^9n}{8m^6n}$	$\frac{4}{2}$

(d)	$\left(3a^3b\right)^4$
(e)	$\left(5a^2b\right)^2 \times 4a^4b^3$
(f)	$\frac{8m^4n^2}{7m^3n} \div \frac{3m^3n^5}{14m^9n^{16}}$
(g)	$\frac{\left(2x^2y\right)^3}{5x^6y^2} \times \left(\frac{x^3}{2y^2}\right)^3$
5. Eval	uate:

(a)	6^{-2} (d) $\left(\frac{4}{5}\right)^{-2}$	
(b)	8^{-3} (e) $\left(\frac{2}{3}\right)^{-4}$	
(12)		
(c)	2^{-7} (f) $\left(16^{\frac{1}{4}}\right)^{-3}$	
	plify, expressing the answer with positive indices. $\frac{4m^2n^5p^{-6}}{16m^{-2}n^5p^3}$	4
(b)	$(2^2y^3)^{-5}$	
(c)	$(5^{-2}x^3)^{-5}$	
(d)	$(3^{-3}a^2b^{-1})^{-4}$	
7. Simp	plify, expressing the answer with positive indices.	3

12

(a) $4a^2 \times 5a^{-3}$

(b)	$14a^{-4} \div 7a^{-5}$	
(c)	$\frac{2m^3n^4}{(5m)^2} \times \frac{10m}{3n^{-4}}$	
. Eval	uate	
(a)	$49^{\frac{1}{2}}$	
(b)	$125^{\frac{2}{3}}$	
()		
	2	
(c)	$\left(\frac{1}{8}\right)^{-\frac{2}{3}}$	
. Sim	plify, expressing the answer with positive indices.	
(a)	$3b^{\frac{2}{3}} \times 4b$	
()		
(b)	$p^{rac{2}{3}} \div p^{rac{1}{2}}$	

		$(-1)^{-2}$	
	(c)	$\left(2x^{-\frac{1}{3}}\right)^{-2}$	
	(d)	$(8p^{-2}q^3)^{\frac{1}{2}}$	
10.	Writ	te in scientific notation.	3
		164000000	
	, ,		
	(b)	0.0047	
	(c)	0.0035	
11.	Writ	te in decimal form.	3
		6.8×10^4	
	()		
	(b)	9.4×10^{-2}	

(c)	3.2×10^{-4}			
12. Sim	plify, writing each answer in scientific no	otatio	1.	2
	$(3.1 \times 10^4) \times (2 \times 10^{-2})$			
	(0. 464)3			
(b)	$\frac{(3\times10^4)^3}{9\times10^{-2}}$			
	te in scientific notation correct to the release.	numbe	er of significant figures indicated i	n the 6
(a)	18.62 (2)	(d)	0.004276	(2)
(1.)	10.60	(.)	F079 4	(0)
(D)	$18.62 \tag{3}$	(e)	5973.4	(2)
(c)	$18.62 \tag{1}$	(f)	0.473952	(3)
,		. ,		

3 Homework

This week homework is a little different. The only thing that will be marked from you is a reattempt of every single question that you got incorrect on the class quiz. Tutors should have handed out extra lined paper.

4 Marking

Marker's use only.

SECTION	1	2	HW	Total
MARKS	$\overline{0}$	104	$\overline{0}$	104