#import "custom.typ": mgrid, veq, vapprox, proof #show math.equation: set text(14pt) // Create a simplhe thheorem environment #let theorem(body) = block( width: 100%, fill: rgb(248, 248, 248), stroke: (paint: rgb(100, 100, 100), thickness: 0.8pt), radius: 3pt, inset: (x: 1em, y: 0.8em), outset: (bottom: 0.8em), )[ #text(weight: "bold", style: "italic")[Theorem.] #h(0.5em) #body ] #set document(title: "Theory of Differential Equations", author: "Aayush Bajaj") // Title page with background crest #align(center)[ #v(2em) #block(text(weight: "bold", size: 24pt)[Theory of Differential Equations]) #v(2em) #text(weight: "bold", size: 20pt)[Aayush Bajaj] #v(1em) #text(size: 16pt)[Version 1.0] #v(1em) #text(size: 16pt)[#datetime.today().display()] #v(4em) #image("crest.svg", width: 90%) ] #pagebreak() #set page(numbering: "1") #outline(title: "Table of Contents") #pagebreak() #set heading(numbering:"1.") #set math.equation(numbering: "(1)") = Definitions #let def-box(term, content) = { block( width: 100%, fill: rgb(248, 248, 248), stroke: (paint: rgb(120, 120, 120), thickness: 0.8pt), radius: 3pt, inset: (x: 0.8em, y: 0.6em), outset: (bottom: 0.8em), )[ #text(weight: "bold")[#term] #h(0.5em) #text[=] #h(0.5em) #content ] } // Define a function for stability types with a different style #let stability-box(type, content) = { block( width: 100%, fill: rgb(240, 240, 240), stroke: (paint: rgb(100, 100, 100), thickness: 0.8pt, dash: "dashed"), radius: 3pt, inset: (x: 0.8em, y: 0.6em), outset: (bottom: 0.8em), )[ #text(style: "italic", weight: "bold")[#type] #h(0.5em) #text[=] #h(0.5em) #content ] } // Basic definitions #def-box("order", [the power the differential is raised to.]) #def-box("linear", [the dependent variable and it's derivatives are all not non-linear.]) // Example equations showing linearity $ mgrid(gutter: #1em, underbrace((dif^2 y) / (dif t)) & underbrace(cos(x) (dif y)/(dif x)) & underbrace((dif y) / (dif t) (dif ^3 y) / (dif t^3)) & underbrace(y^' = e^y) & underbrace(y (dif y)/(dif x)) \ "linear" & "linear" & "non-linear" & "non-linear" & "non-linear" \ ) $ // More definitions #def-box("autonomous", [independent variable does not appear in the equation]) #def-box("non-autonomous", [independent variable _does_ appear in the equation]) #def-box("ansatz", [our initial guess for the form of a solution, i.e. $y_p = A cos (t) + B sin (t)$]) #def-box("indicial equation", [a quadratic equation that pops out during the application of the Frobenius method]) #def-box("analytic", [a function is analytic at a point if it can be expressed as a convergent power series in a neighborhood of that point]) #def-box("ordinary point", [when $p(x)$ and $q(x)$ are analytic at that point]) #def-box("regular singular point", [if $P(x) = (x-x_0)p(x)$ and $Q(x) = (x-x_0)^2 q(x)$ are both analytic at $x_0$.]) #def-box("irregular singular point", [not regular.]) // Convergence definitions #def-box("mean convergence", [a sequence of functions $f_n$ converges in mean to $f$ on $[a,b]$ if $lim_(n->infinity) integral^b_a |f_n(x) - f(x)|^2 dif x = 0$]) #def-box("pointwise convergence", [a sequence of functions $f_n$ converges pointwise to $f$ on $[a,b]$ if $lim_(n->infinity) f_n(x) = f(x)$ for every $x in [a,b]$]) #def-box("uniform convergence", [a sequence of functions $f_n$ converges uniformly to $f$ on $[a,b]$ if $lim_(n->infinity) sup_(x in [a,b]) |f_n(x) - f(x)| = 0$]) // Equilibrium and stability section with special styling #pagebreak() #block(width: 100%, outset: (top: 0.8em, bottom: 0.6em))[ #align(center)[#text(weight: "bold", size: 1.1em)[Equilibrium Points and Stability]] ] #def-box("equilibrium point", [a point where the derivative of the dependent variable with respect to the independent variable is zero]) // Stability types with different styling #stability-box("stable node", [trajectories approach the equilibrium point from all directions and eigenvalues are real and negative]) #stability-box("unstable bicritical node (\"star\")", [trajectories move away from the equilibrium point in all directions and eigenvalues are real and positive]) #stability-box("stable centre", [trajectories orbit around the equilibrium point with eigenvalues that are purely imaginary]) #stability-box("unstable saddle point", [trajectories approach the equilibrium point in one direction and move away in another, with eigenvalues having opposite signs]) #stability-box("unstable focus", [trajectories spiral away from the equilibrium point with eigenvalues having positive real parts and non-zero imaginary parts]) #pagebreak() #set text( size: 14pt ) = Solving Methods == First Order === standard form $ (dif y) / (dif x) = f(x, y) $ === separable $ (dif y)/(dif x) = f(x) g(y) arrow.r.double.long integral (dif y)/g(y) = integral f(x) dif x $ === reduction to separable $ (dif y) / (dif x) = f ( y/x) $ with substitution: $y(x) = x v(x)$ === linear standard form $ (dif y) / (dif x) + p(x) y = q(x) $ ==== integrating factor note, the coefficient of $y'(x)$ must be 1. $ phi.alt(x) = exp(integral p(x) dif x) $ multiplying the @linear-standard-form[Linear Standard Form] with $phi.alt(x)$ yields: $ (dif)/(dif x)(phi.alt y) = phi.alt(x) q(x) arrow.r.double.long y = phi.alt^(-1) integral phi.alt q(x) dif x $ === exact A first-order ODE is exact if it can be written in the form: $ M(x,y) dif x + N(x,y) dif y = 0 $ where $(partial M)/(partial y) = (partial N)/(partial x)$. The solution is then given by: $F(x,y) = C$ where $F(x,y)$ satisfies $(partial F)/(partial x) = M(x,y)$ and $(partial F)/(partial y) = N(x,y)$ #pagebreak() == Second Order === standard form $ y^('') + p(x)y^' + q(x)y = r(x) $ === reducible to first order $ (dif^2 y)/(dif x^2) + f(y, (dif y)/(dif x)) = 0 $ is reducible to the first-order ODE $ p (dif p)/(dif y) + f(y, p) = 0 $ with substitution $p = (dif y)/(dif x)$ === constant coefficients when $p(x)$ and $q(x)$ are constants: $ y^('') + a_1 y^' + a_0 y = 0 $ ==== homogenous solve the characteristic equation: $ lambda^2 + a_1 lambda + a_0 = 0 $ cases: - $lambda_1, lambda_2$ are real and distinct - $lambda_1, lambda_2$ are real and coincide (same) - $lambda_1, lambda_2$ are complex conjugates in each case, the solution of $y(x)$ becomes: - $y(x) = C exp(lambda_1 x) + D exp(lambda_2 x)$ - $y(x) = C exp(lambda_1 x) + D x exp(lambda_1 x)$ - $ y(x) &= C exp(alpha x)cos(beta x) + D exp(alpha x)sin(beta x) \ &= exp(alpha x)(A cos(beta x) + B sin(beta x)) "by DeMoivre's Theorem" $ ==== inhomogenous $arrow.r$ method of undetermined coefficients $ y(x) = y_h(x) + y_p(x) $ guesses for $y_p(x)$: - for $r(x) = P_n(x)$ (polynomial of degree $n$), try $y_p(x) = Q_n(x)$ - for $r(x) = e^(alpha x)$, try $y_p(x) = A e^(alpha x)$ - for $r(x) = sin(beta x)$ or $r(x) = cos(beta x)$, try $y_p(x) = A sin(beta x) + B cos(beta x)$ - for products of the above forms, try products of the corresponding forms - #rect[if $y_p(x)$ is already a solution of the homogeneous equation, multiply by $x$ or $x^k$ until linearly independent] === variation of parameters This method works for any 2nd order inhomogenous ODE if the complementary solution is known. #theorem[ The general solution of the 2nd order inhomogenous ODE: $ y^('') + b_1 (x) y^' + b_0 (x) y = f(x) $ is given by $y(x) = u_1(x) y_1(x) + u_2(x) y_2(x)$ where $y_1$ and $y_2$ are linearly independent solutions of the homogenous ODE such that the Wronskian $W(x) eq.not 0$ and $ u_1(x) = -integral (y_2(x)f(x))/(W(x)) dif x $ and $ u_2(x) = integral (y_1(x)f(x))/(W(x)) dif x $ ] === power series method note, that we embark on this approach because the @second-order-standard-form[second order standard form] is not solveable in general with _elementary functions_! pick ansatz of the form $ y = sum^infinity_(n=0) a_n z^n $ and take derivatives as required. for example: $ (dif y)/(dif z) = sum^infinity_(n=1) n a_n z^(n-1) (dif^2 y)/(dif z^2) = sum^infinity_(n=2) n(n-1) a_n z^(n-2) $ and substitute them into the ODE. Then solve by rearranging indices as necessary to obtain a recurrence relation. Apply the initial conditions and then guess the closed-form solution of the recurrence relation. Change back to the original variables if required. If $x_0$ is an ordinary point @definitions of the differential equation $ y^('') + p(x)y^' + q(x)y = 0 $ then the general solution in a neighbourhood $|x - x_0|< R$ may be represented as a power series. === method of frobenius #theorem[ If $x_0 = 0$ is a regular singular point of the differential equation $ y^('') + p(x)y^' + q(x)y = 0 $ then there exists at least one series solution of the form $ y(x) = x^r sum^infinity_(n=0) c_n x^n = sum^infinity_(n=0) c_n x^(n+r), c_0 eq.not 0 $ for some constant $r$ (index). ] ==== general indicial equation $ r(r-1) + p_0 r + q_0 = 0 $ == n order admits $n$ linearly independent solutions. === power series expansion (not sure if it works for n order) For an $n^"th"$ order linear ODE with variable coefficients: $ a_n(x) y^((n)) + a_(n-1)(x) y^((n-1)) + dots + a_1(x) y^' + a_0(x) y = f(x) $ We assume a solution of the form: $ y(x) = sum^infinity_(k=0) c_k (x-x_0)^k $ Taking derivatives and substituting yields a recurrence relation for coefficients $c_k$, typically allowing us to determine $c_n$ in terms of $c_0, c_1, dots, c_(n-1)$. === reduction of order any $n^"th"$ order ODE can be formulated as a system of $n$ first order ODE's. For $y^((n)) = f(x, y, y^', dots, y^((n-1)))$, set $y_i = y^((i-1))$ for $i = 1,2,dots,n$ to obtain: $ y_i' = y_(i+1) $ for $i = 1,2,dots,n-1$ $ y_n' = f(x, y_1, y_2, dots, y_n) $ #pagebreak() == partial differential equations === standard form (linear, homogenous, 2nd order pde) $ A (partial^2 u)/(partial x^2) + B (partial^2 u)/(partial x partial y) + C (partial^2 u)/(partial y^2) + D(partial u)/(partial x) + E(partial u)/(partial y) + F u = 0 $ parabolic equation: $B^2 - 4A C = 0$ (@heat[Heat Equation]) hyperbolic equation: $B^2 - 4A C > 0$ (@wave[Wave Equation]) elliptic equation: $B^2 - 4A C < 0$ (@laplace-eqn[Laplace Equation]) === separation of variables $ U(x,y) = X(x) Y(y) $ then $U_x = Y X^'$ and $U_y = Y^' X$ rewrite the PDE with these substitutions, then divide through by $X Y$. Integrate and solve. === change of variables When a PDE is difficult to solve directly, changing variables can transform it into a simpler form. For a second-order PDE, the transformation $u = u(xi, eta)$ where $xi = xi(x,y)$ and $eta = eta(x,y)$ requires computing: $ (partial u)/(partial x) = (partial u)/(partial xi)(partial xi)/(partial x) + (partial u)/(partial eta)(partial eta)/(partial x) $ $ (partial u)/(partial y) = (partial u)/(partial xi)(partial xi)/(partial y) + (partial u)/(partial eta)(partial eta)/(partial y) $ And similarly for second-order derivatives. The canonical transformations are: - For hyperbolic: $xi = x + y, eta = x - y$ (characteristic coordinates) - For parabolic: $xi = x, eta = y - f(x)$ (transformation along characteristics) - For elliptic: $xi = x + i y, eta = x - i y$ (complex characteristics) = systems / dynamical systems - $lambda_2 < lambda_1 < 0 arrow.r.double.long "stable node"$ - $0 < lambda_1 < lambda_2 arrow.r.double.long "unstable node"$ - $lambda_1 = lambda_2, lambda_1 > 0 arrow.r.double.long "unstable star"$ - $lambda_1 = lambda_2, lambda_1 < 0 arrow.r.double.long "stable star"$ - $lambda_1 < 0 < lambda_2 arrow.r.double.long "unstable saddle node"$ - $Re(lambda_1) = 0 arrow.r.double.long "centre, stable"$ - $Re(lambda_1) < 0 arrow.r.double.long "stable focus"$ - $Re(lambda_1) > 0 arrow.r.double.long "unstable focus"$ real canonical form For a linear system $dot(bold(x)) = bold(A) bold(x)$, the real canonical form depends on the eigenvalues of $bold(A)$: - Real distinct eigenvalues $lambda_1 eq.not lambda_2$: $ bold(A)_"canonical" = mat(lambda_1, 0; 0, lambda_2) $ - Real repeated eigenvalues $lambda_1 = lambda_2$ with linearly independent eigenvectors: $ bold(A)_"canonical" = mat(lambda_1, 0; 0, lambda_1) $ - Real repeated eigenvalues $lambda_1 = lambda_2$ with one linearly independent eigenvector: $ bold(A)_"canonical" = mat(lambda_1, 1; 0, lambda_1) $ - Complex conjugate eigenvalues $lambda = alpha plus.minus i beta$: $ bold(A)_"canonical" = mat(alpha, beta; -beta, alpha) $ = functions == wronskian #set math.mat(delim: "|") $ "W"(f_1, f_2, dots, f_n)(x) = mat( f_1(x), f_2(x), dots, f_n(x); f_1^'(x), f_2^'(x), dots, f_n^'(x); dots.v, dots.v, dots.down, dots.v; f_1^((n-1))(x), f_2^((n-1))(x), dots, f_n^((n-1))(x) ) $ note that if a set of functions is linearly dependent, then its Wronskian will equal 0. == power series, taylor series and maclaurin series expansions #figure( align(center)[ #box( width: 90%, fill: rgb(230, 240, 255), stroke: blue, inset: 2em, )[ #align(center)[ #text(weight: "bold", size: 1.2em)[Power Series] #linebreak() $sum_(n=0)^(infinity) a_n (x - a)^n$ ] #v(1em) #align(center)[ #box( width: 80%, fill: rgb(230, 250, 230), stroke: green, inset: 2em, )[ #align(center)[ #text(weight: "bold", size: 1.2em)[Taylor Series] #linebreak() $sum_(n=0)^(infinity) (f^((n))(a))/(n!) (x - a)^n$ ] #v(1em) #align(center)[ #box( width: 70%, fill: rgb(255, 240, 220), stroke: orange, inset: 2em, )[ #align(center)[ #text(weight: "bold", size: 1.2em)[Maclaurin Series] #linebreak() $sum_(n=0)^(infinity) (f^((n))(0))/(n!) x^n$ ] ] ] ] ] ] ], caption: [Relationship between power series, Taylor series, and Maclaurin series, showing proper subset relationships] ) == orthogonality A set of functions ${phi.alt_n}_(n=1,2,3,dots)$ is said to be orthogonal on the interval $[a,b]$ with respect to the inner product defined by $ (f, g)_w = integral^b_a w(x)f(x)g(x) dif x $ with weight function $w(x) > 0$, if $(phi.alt_n,phi.alt_m)_w =0$ for $m eq.not n$. == orthonormality a set ${phi.alt_n}_(n=1,2,3,dots)$ is _orthonormal_ when in addition to being @orthogonal, $(phi.alt_n,phi.alt_n) = 1$, for $n = 1,2,3,dots.h$. == cauchy-euler $ x^2 y^('') + a_1 x y^' + a_0 y = 0$ you can solve this by either letting $x = e^t$ or using the ansatz $y = x^lambda$ the characteristic equation is $lambda^2 + (a_1 - 1) lambda + a_0 = 0$ if you are blessed with the inhomogenous case of above, just use method of undetermined coefficients @method-uc. == legendre legendre's (differential) equation $ ( 1 - x^2 )y^('') - 2x y^' + n(n+1)y = 0 $ legendre's polynomials == bessel bessel's differential equation $ y^('') x^2 + x y^' + (x^2 - nu^2) y = 0 $ bessel function of the first kind of order $alpha$: $ J_alpha(x) = sum^infinity_(m=0) (-1)^m / Gamma(m+1)Gamma(m+alpha+1) (x/2)^(2m+alpha) $ implies $ dif / dif x [x^alpha J_alpha(x)] = x^alpha J_(alpha-1)(x) $ implies $ integral^r_0 x^n J_(n-1) (x) dif x = r^n J_n(r) $ for $n = 1, 2, 3, dots.h$ thus the de admits solutions case 1: $2 nu in.not ZZ $ $ y(x) = A J_(nu)(x) + B J_(-nu)(x) $ $J_(nu)(x)$, $J_(-nu)(x)$ linearly independent case 2: $2 nu in ZZ $ $ y(x) = A J_(nu)(x) + B J_(-nu)(x) $ case 3: $nu in ZZ $ $J_(nu)(x)$, $J_(-nu)(x)$ linearly independent $ y(x) = A J_(nu)(x) + B Y_(nu)(x) $ == laguerre's equation $ x y^('') + (1-x)y^' +n y = 0 $ == hermite's equation $ y^('') - 2 x y^' + 2 n y = 0 $ == sturm-liouville form $ (p y^')^' + (q + lambda r ) y = 0 $ note that @bessel[Bessel], @laguerre[Laguerre], @hermite[Hermite] and @legendre[Legendre] equations can all be written in this form. furthermore, *any* 2nd order linear homogenous ODE $y^('') + a_1(x)y^' + [a_2(x) + lambda a_3(x)]y = 0$ may be written in this form. == heat equation (pde) $ (partial^2 u) / (partial x^2) = (partial u)/(partial t) $ == wave equation (pde) $ (partial^2 u) / (partial x^2) = 1/c^2 (partial^2 u)/(partial t^2) $ == laplace's equation (pde ) $ (partial^2 u)/ (partial x^2) + (partial^2 u) / (partial y^2) = 0 $ == fourier series $ y(x) = a_0/2 + sum^N_(n=1) (a_n cos (n x) + b_n sin (n x)) $ $ a_n = 1/pi integral^pi_(-pi) y(x) cos(n x) dif x, n = 0, 1, 2, dots.h $ $ b_n = 1/pi integral^pi_(-pi) y(x) sin(n x) dif x, n = 1, 2, dots.h $ == parseval's identity $ (|| f ||^2) / L = 1/L integral^L_(-L) f^2 dif x = a_0 / 2 + sum^infinity_(n=1) (a_n^2 + b_n^2) $