% !TEX TS-program = lualatex \documentclass[11pt]{article} \usepackage[margin=1in]{geometry} \usepackage{lmodern} % Latin Modern fonts (works with LuaLaTeX) \usepackage{microtype} \usepackage{amsmath,amssymb} \usepackage{hyperref} \usepackage{tikz} \usetikzlibrary{calc,angles,quotes,intersections,decorations.markings,through} \hypersetup{ colorlinks=true, linkcolor=blue, urlcolor=blue } % --- TikZ helpers (ticks + right-angle marks) --- \tikzset{ tick/.style={ postaction={decorate}, decoration={markings, mark=at position 0.5 with {\draw (-2pt,-2pt)--(2pt,2pt);} } }, tick2/.style={ postaction={decorate}, decoration={markings, mark=at position 0.45 with {\draw (-2pt,-2pt)--(2pt,2pt);}, mark=at position 0.55 with {\draw (-2pt,-2pt)--(2pt,2pt);} } }, tick3/.style={ postaction={decorate}, decoration={markings, mark=at position 0.43 with {\draw (-2pt,-2pt)--(2pt,2pt);}, mark=at position 0.50 with {\draw (-2pt,-2pt)--(2pt,2pt);}, mark=at position 0.57 with {\draw (-2pt,-2pt)--(2pt,2pt);} } } } \newcommand{\theoremblock}[3]{% \subsection*{#1}% \textbf{Theorem.} #2\par \textbf{Suggested abbreviation.} #3\par } \newcommand{\diagram}{\par\medskip\noindent\textbf{Diagram.}\par\smallskip} \title{Circle geometry theorems} \author{} \date{} \begin{document} \maketitle \noindent\textbf{Source:} \href{http://topdrawer.aamt.edu.au/Geometric-reasoning/Big-ideas/Circle-geometry/Angle-and-chord-properties}{http://topdrawer.aamt.edu.au/Geometric-reasoning/Big-ideas/Circle-geometry/Angle-and-chord-properties} \section*{Circle geometry theorems} \theoremblock{1. Intersecting circles: centres bisect common chord}{When two circles intersect, the line joining their centres bisects their common chord at right angles.}{centres of touching circles} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.0} \coordinate (O1) at (-1.4,0); \coordinate (O2) at ( 1.4,0); % Two equal circles \draw (O1) circle (\R); \draw (O2) circle (\R); % Intersection points (computed for r=2, d=2.8 -> x=0, y=sqrt(r^2-(d/2)^2)) \coordinate (I1) at (0, 1.428); \coordinate (I2) at (0,-1.428); % Common chord \draw[thick] (I1) -- (I2); % Line of centres \draw[thick] (O1) -- (O2); % Right angle at intersection of chord and centres line (origin) \coordinate (M) at (0,0); \pic[draw, angle radius=6mm] {right angle = I1--M--O2}; \fill (O1) circle (1.2pt) node[below] {$O_1$}; \fill (O2) circle (1.2pt) node[below] {$O_2$}; \end{tikzpicture} \end{center} \theoremblock{2. Equal arcs in equal circles $\Leftrightarrow$ equal central angles}{Equal arcs on circles of equal radii subtend equal angles at the centre, and conversely.}{equal arcs, equal angles} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.0} \coordinate (O) at (0,0); \draw (O) circle (\R); % Two equal arcs (shown bold) with equal central angles \coordinate (A) at (70:\R); \coordinate (B) at (20:\R); \coordinate (C) at (-110:\R); \coordinate (D) at (-160:\R); \draw[thick] (O) -- (A) (O) -- (B); \draw[thick] (O) -- (C) (O) -- (D); % Highlight arcs AB and CD \draw[line width=2pt] (A) arc[start angle=70,end angle=20,radius=\R]; \draw[line width=2pt] (C) arc[start angle=-110,end angle=-160,radius=\R]; \fill (O) circle(1.2pt) node[below] {$O$}; \pic[draw, "$\theta$", angle radius=10mm] {angle = B--O--A}; \pic[draw, "$\theta$", angle radius=10mm] {angle = D--O--C}; \end{tikzpicture} \end{center} \theoremblock{3. Equal central angles $\Leftrightarrow$ equal chords}{Equal angles at the centre stand on equal chords, and conversely.}{equal chords, equal angles \quad OR \quad angles standing on equal chords \quad OR \quad angles standing on equal arcs} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.0} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (A) at (110:\R); \coordinate (B) at (40:\R); \coordinate (C) at (-70:\R); \coordinate (D) at (-140:\R); % Chords \draw[thick,tick2] (A) -- (B); \draw[thick,tick2] (C) -- (D); % Radii for angles \draw (O) -- (A) (O) -- (B); \draw (O) -- (C) (O) -- (D); \fill (O) circle(1.2pt) node[below] {$O$}; \pic[draw, "$\theta$", angle radius=9mm] {angle = B--O--A}; \pic[draw, "$\theta$", angle radius=9mm] {angle = D--O--C}; \end{tikzpicture} \end{center} \bigskip \theoremblock{4. Central angle is twice circumferential angle}{The angle at the centre is twice the angle at the circumference subtended by the same arc.}{angles at the centre and circumference} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.0} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (A) at (230:\R); \coordinate (B) at (-50:\R); \coordinate (C) at (90:\R); \draw[thick] (A) -- (C) -- (B) -- cycle; \draw[thick] (O) -- (A) (O) -- (B) (O) -- (C); \fill (O) circle(1.2pt) node[below] {$O$}; \node[below left] at (A) {$A$}; \node[below right] at (B) {$B$}; \node[above] at (C) {$C$}; \pic[draw, "$\theta$", angle radius=7mm] {angle = A--C--B}; \pic[draw, "$2\theta$", angle radius=10mm] {angle = B--O--A}; \end{tikzpicture} \end{center} \theoremblock{5. Tangent $\perp$ radius at point of contact}{The tangent to a circle is perpendicular to the radius drawn to the point of contact and conversely.}{tangent perpendicular to radius} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.0} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (B) at (-30:\R); % Tangent line at B \draw[thick] ($(B)+(-2.5,-0.6)$) -- ($(B)+(2.5,0.6)$); \draw[thick] (O) -- (B); \coordinate (Tg) at ($(B)+(2.5,0.6)$); \pic[draw, angle radius=6mm] {right angle = O--B--Tg}; \fill (O) circle(1.2pt) node[above] {$O$}; \fill (B) circle(1.2pt) node[below] {$B$}; \node[left] at ($(B)+(-2.1,-0.5)$) {$A$}; \node[right] at ($(B)+(2.1,0.5)$) {$C$}; \end{tikzpicture} \end{center} \theoremblock{6. Perpendicular from centre to chord bisects chord}{The perpendicular from the centre of a circle to a chord bisects the chord.}{perpendicular from the centre} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.0} \coordinate (O) at (0,0.2); \draw (O) circle (\R); \coordinate (A) at (210:\R); \coordinate (C) at (-30:\R); \coordinate (B) at ($(A)!0.5!(C)$); \draw[thick] (A) -- (C); \draw[thick] (O) -- (B); % Mark equal halves of chord \draw[thick,tick2] (A) -- (B); \draw[thick,tick2] (B) -- (C); \pic[draw, angle radius=6mm] {right angle = A--B--O}; \fill (O) circle(1.2pt) node[above] {$O$}; \node[below left] at (A) {$A$}; \node[below right] at (C) {$C$}; \fill (B) circle(1.2pt) node[below] {$B$}; \end{tikzpicture} \end{center} \theoremblock{7. Centre to midpoint of chord is perpendicular to chord}{The line from the centre of a circle to the midpoint of a chord is perpendicular to the chord.}{line joining centre to midpoint of chord} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.0} \coordinate (O) at (0,0.2); \draw (O) circle (\R); \coordinate (A) at (200:\R); \coordinate (C) at (-20:\R); \coordinate (B) at ($(A)!0.5!(C)$); \draw[thick] (A) -- (C); \draw[thick] (O) -- (B); \draw[thick,tick2] (A) -- (B); \draw[thick,tick2] (B) -- (C); \pic[draw, angle radius=6mm] {right angle = A--B--O}; \fill (O) circle(1.2pt) node[above] {$O$}; \node[below left] at (A) {$A$}; \node[below right] at (C) {$C$}; \fill (B) circle(1.2pt) node[below] {$B$}; \end{tikzpicture} \end{center} \theoremblock{8. Perpendicular bisector of a chord passes through centre}{The perpendicular bisector of a chord passes through the centre of the circle.}{perpendicular bisector of chord} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.0} \coordinate (O) at (0,0.2); \draw (O) circle (\R); \coordinate (A) at (210:\R); \coordinate (C) at (-30:\R); \coordinate (B) at ($(A)!0.5!(C)$); \draw[thick] (A) -- (C); % Perpendicular bisector line \draw[thick] ($(B)+(0,-2.5)$) -- ($(B)+(0,2.5)$); \draw[thick,tick2] (A) -- (B); \draw[thick,tick2] (B) -- (C); \fill (O) circle(1.2pt) node[above] {$O$}; \node[below left] at (A) {$A$}; \node[below right] at (C) {$C$}; \fill (B) circle(1.2pt) node[below] {$B$}; \end{tikzpicture} \end{center} \bigskip \theoremblock{9. Equal chords in equal circles are equidistant from centre}{Equal chords in equal circles are equidistant from the centres.}{equal chords equidistant from centre} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.2} \coordinate (O) at (0,0); \draw (O) circle (\R); % Two equal chords (top and lower-right) \coordinate (C) at (140:\R); \coordinate (D) at (40:\R); \coordinate (A) at (-120:\R); \coordinate (B) at (-20:\R); \coordinate (M) at ($(C)!0.5!(D)$); \coordinate (N) at ($(A)!0.5!(B)$); \draw[thick,tick2] (C) -- (D); \draw[thick,tick2] (A) -- (B); \draw[thick] (O) -- (M); \draw[thick] (O) -- (N); \pic[draw, angle radius=5mm] {right angle = C--M--O}; \pic[draw, angle radius=5mm] {right angle = A--N--O}; % Mark equal distances OM and ON (two ticks) \draw[thick,tick] (O) -- (M); \draw[thick,tick] (O) -- (N); \fill (O) circle(1.2pt) node[right] {$O$}; \node[above left] at (C) {$C$}; \node[above right] at (D) {$D$}; \node[below left] at (A) {$A$}; \node[below right] at (B) {$B$}; \fill (M) circle(1.2pt) node[above] {$M$}; \fill (N) circle(1.2pt) node[below] {$N$}; \end{tikzpicture} \end{center} \theoremblock{10. Chords equidistant from centre are equal}{Chords in a circle which are equidistant from the centre are equal.}{equal chords equidistant from centre} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.2} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (C) at (140:\R); \coordinate (D) at (40:\R); \coordinate (A) at (-120:\R); \coordinate (B) at (-20:\R); \coordinate (M) at ($(C)!0.5!(D)$); \coordinate (N) at ($(A)!0.5!(B)$); % Equal distances from centre (ticks on OM and ON) \draw[thick,tick2] (O) -- (M); \draw[thick,tick2] (O) -- (N); \draw[thick] (C) -- (D); \draw[thick] (A) -- (B); \draw[thick] (O) -- (M); \draw[thick] (O) -- (N); \pic[draw, angle radius=5mm] {right angle = C--M--O}; \pic[draw, angle radius=5mm] {right angle = A--N--O}; % Mark chords equal (double ticks) \draw[thick,tick2] (C) -- (D); \draw[thick,tick2] (A) -- (B); \fill (O) circle(1.2pt) node[right] {$O$}; \node[above left] at (C) {$C$}; \node[above right] at (D) {$D$}; \node[below left] at (A) {$A$}; \node[below right] at (B) {$B$}; \fill (M) circle(1.2pt) node[above] {$M$}; \fill (N) circle(1.2pt) node[below] {$N$}; \end{tikzpicture} \end{center} \theoremblock{11. Three non-collinear points determine a unique circle (circumcentre)}{Any three non-collinear points lie on a unique circle, whose centre is the point of concurrency of the perpendicular bisectors of the intervals joining the points.}{perpendicular bisector of chord passes through the centre} \diagram \begin{center} \begin{tikzpicture}[scale=1] \coordinate (A) at (-2.2,-1.0); \coordinate (B) at ( 2.2,-1.0); \coordinate (C) at ( 0.2, 2.2); % Circumcircle \path[name path=AB] (A) -- (B); \path[name path=BC] (B) -- (C); \path[name path=CA] (C) -- (A); % Compute circumcenter using perpendicular bisectors intersections \coordinate (Mab) at ($(A)!0.5!(B)$); \coordinate (Mbc) at ($(B)!0.5!(C)$); \path[name path=pbAB] (Mab) -- ($(Mab)+(0,3)$); \path[name path=pbBC] (Mbc) -- ($(Mbc)+(-3,0)$); % Choose explicit perpendicular bisectors for drawing (dashed) \draw[dashed] ($(Mab)+(-0.0,-2.8)$) -- ($(Mab)+(0.0,2.8)$); \draw[dashed] ($(Mbc)+(-2.8,0.0)$) -- ($(Mbc)+(2.8,0.0)$); % Circumcenter (computed by TikZ calc: use intersection of the two dashed lines) \path[name path=V1] ($(Mab)+(-0.0,-2.8)$) -- ($(Mab)+(0.0,2.8)$); \path[name path=V2] ($(Mbc)+(-2.8,0.0)$) -- ($(Mbc)+(2.8,0.0)$); \path [name intersections={of=V1 and V2, by=O}]; % Draw circumcircle through A (centre O) \node[draw, circle through={(A)}] at (O) {}; % Triangle \draw[thick] (A) -- (B) -- (C) -- cycle; \fill (O) circle (1.4pt) node[right] {$O$}; \fill (A) circle (1.2pt) node[below left] {$A$}; \fill (B) circle (1.2pt) node[below right] {$B$}; \fill (C) circle (1.2pt) node[above] {$C$}; \end{tikzpicture} \end{center} \theoremblock{12. Angles in the same segment are equal}{Angles in the same segment are equal.}{angles in the same segment} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.2} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (A) at (210:\R); \coordinate (B) at (-30:\R); \coordinate (C) at (120:\R); \coordinate (D) at (60:\R); \draw[thick] (A) -- (B); \draw[thick] (A) -- (C) -- (B); \draw[thick] (A) -- (D) -- (B); \pic[draw, "$\theta$", angle radius=7mm] {angle = A--C--B}; \pic[draw, "$\theta$", angle radius=7mm] {angle = A--D--B}; \node[below left] at (A) {$A$}; \node[below right] at (B) {$B$}; \node[above left] at (C) {$C$}; \node[above right] at (D) {$D$}; \end{tikzpicture} \end{center} \theoremblock{13. Angle in a semi-circle is a right angle}{The angle in a semi-circle is a right angle.}{angle in a semi-circle} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.2} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (A) at (180:\R); \coordinate (B) at (0:\R); \coordinate (C) at (70:\R); \draw[thick] (A) -- (B); % diameter \draw[thick] (A) -- (C) -- (B); \pic[draw, angle radius=6mm] {right angle = A--C--B}; \fill (O) circle(1.2pt) node[below] {$O$}; \node[left] at (A) {$A$}; \node[right] at (B) {$B$}; \node[above] at (C) {$C$}; \end{tikzpicture} \end{center} \bigskip \theoremblock{14. Opposite angles of a cyclic quadrilateral are supplementary}{Opposite angles of a cyclic quadrilateral are supplementary.}{opposite angles in a cyclic quad \quad $x+y=180$} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.3} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (A) at (230:\R); \coordinate (B) at (-10:\R); \coordinate (C) at (60:\R); \coordinate (D) at (150:\R); \draw[thick] (A) -- (B) -- (C) -- (D) -- cycle; \pic[draw, "$x^\circ$", angle radius=7mm] {angle = C--D--A}; \pic[draw, "$y^\circ$", angle radius=7mm] {angle = A--B--C}; \node[below left] at (A) {$A$}; \node[below right] at (B) {$B$}; \node[above right] at (C) {$C$}; \node[above left] at (D) {$D$}; \node at (0,-3.1) {$x+y=180$}; \end{tikzpicture} \end{center} \theoremblock{15. Exterior angle of a cyclic quadrilateral}{The exterior angle at a vertex of a cyclic quadrilateral is equal to the interior opposite angle.}{exterior angle of cyclic quad} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.3} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (A) at (230:\R); \coordinate (B) at (-20:\R); \coordinate (C) at (60:\R); \coordinate (D) at (150:\R); \draw[thick] (A) -- (B) -- (C) -- (D) -- cycle; % Extend AB beyond A to create exterior angle at A \coordinate (E) at ($(A)!-0.5!(B)$); \draw[thick] (A) -- (E); \pic[draw, "$a^\circ$", angle radius=7mm] {angle = D--A--E}; % exterior at A \pic[draw, "$a^\circ$", angle radius=7mm] {angle = B--C--D}; % interior opposite at C \node[below left] at (A) {$A$}; \node[below right] at (B) {$B$}; \node[above right] at (C) {$C$}; \node[above left] at (D) {$D$}; \end{tikzpicture} \end{center} \theoremblock{16. Converse: supplementary opposite angles $\Rightarrow$ cyclic}{If the opposite angles in a quadrilateral are supplementary then the quadrilateral is cyclic.\\\emph{Note: This theorem is also a test for four points to be concyclic.}}{converse of opposite angles in a cyclic quad \quad If $x+y=180$ then $ABCD$ is a cyclic quadrilateral.} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.3} \coordinate (O) at (0,0); \draw[dashed] (O) circle (\R); \coordinate (A) at (230:\R); \coordinate (B) at (-10:\R); \coordinate (C) at (60:\R); \coordinate (D) at (150:\R); \draw[thick] (A) -- (B) -- (C) -- (D) -- cycle; \pic[draw, "$x^\circ$", angle radius=7mm] {angle = C--D--A}; \pic[draw, "$y^\circ$", angle radius=7mm] {angle = A--B--C}; \node at (0,-3.1) {If $x+y=180$ then $ABCD$ is a cyclic quadrilateral.}; \end{tikzpicture} \end{center} \theoremblock{17. Intersecting chords (power of a point)}{The products of the intercepts of two intersecting chords are equal.}{intersecting chords \quad $AP\times BP = CP\times DP$} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.3} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (A) at (80:\R); \coordinate (B) at (-100:\R); \coordinate (C) at (170:\R); \coordinate (D) at (-10:\R); \path [name path=ch1] (A) -- (B); \path [name path=ch2] (C) -- (D); \path [name intersections={of=ch1 and ch2, by=P}]; \draw[thick] (A) -- (B); \draw[thick] (C) -- (D); \fill (P) circle(1.2pt) node[right] {$P$}; \node[above] at (A) {$A$}; \node[below] at (B) {$B$}; \node[left] at (C) {$C$}; \node[right] at (D) {$D$}; \node at (0,-3.1) {$AP\times BP = CP\times DP$}; \end{tikzpicture} \end{center} \bigskip \theoremblock{18. Intersecting secants from an external point}{The products of the intercepts of two intersecting secants to a circle from an external point.}{intersecting secants \quad $AP\times BP = CP\times DP$} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.3} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (P) at (-3.3, 2.8); % Two secants from P \coordinate (dir1) at (-1.0,0.6); \coordinate (s1b) at ($(P)!2.2!(dir1)$); % extend beyond the circle \draw[thick] (P) -- (s1b); \coordinate (dir2) at (-0.6,1.4); \coordinate (s2b) at ($(P)!2.7!(dir2)$); % extend beyond the circle \draw[thick] (P) -- (s2b); % Find intersections with circle for labeling \path[name path=circle] (O) circle (\R); \path[name path=sec1] (P) -- (s1b); \path[name path=sec2] (P) -- (s2b); \path[name intersections={of=circle and sec1, by={A,B}}]; \path[name intersections={of=circle and sec2, by={C,D}}]; \fill (P) circle(1.2pt) node[left] {$P$}; \node[above left] at (A) {$A$}; \node[below right] at (B) {$B$}; \node[above] at (C) {$C$}; \node[right] at (D) {$D$}; \node at (0,-3.5) {$AP\times BP = CP\times DP$}; \end{tikzpicture} \end{center} \theoremblock{19. Tangents from an external point are equal}{Tangents to a circle from an external point are equal.}{tangents from external point} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.2} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (A) at (-3.2, 2.0); % Construct tangency points roughly \coordinate (B) at (-1.9, 0.6); \coordinate (C) at (-0.5, 2.15); \draw[thick,tick2] (A) -- (B); \draw[thick,tick2] (A) -- (C); \draw[thick] (O) -- (B); \draw[thick] (O) -- (C); \fill (O) circle(1.2pt) node[below] {$O$}; \fill (A) circle(1.2pt) node[left] {$A$}; \fill (B) circle(1.2pt) node[left] {$B$}; \fill (C) circle(1.2pt) node[above] {$C$}; \end{tikzpicture} \end{center} \theoremblock{20. Alternate segment theorem (tangent--chord angle)}{The angle between a tangent and a chord through the point of contact is equal to the angle in the alternate segment.}{angle in alternate segment \quad OR \quad angle between tangent and chord} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.2} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (T) at (-80:\R); % point of tangency \coordinate (C) at (60:\R); % chord endpoint \coordinate (D) at (170:\R); % alternate segment point % Tangent at T (approx direction) \draw[thick] ($(T)+(-2.5,0)$) -- ($(T)+(2.5,0)$); % Chord through T to C \draw[thick] (T) -- (C); % Angle in alternate segment at D \draw[thick] (D) -- (T); \draw[thick] (D) -- (C); \coordinate (Tdir) at ($(T)+(2.5,0)$); \pic[draw, "$x^\circ$", angle radius=7mm] {angle = Tdir--T--C}; \pic[draw, "$x^\circ$", angle radius=7mm] {angle = T--D--C}; \fill (O) circle(1.2pt) node[right] {$O$}; \fill (T) circle(1.2pt) node[below] {$T$}; \node[above right] at (C) {$C$}; \node[left] at (D) {$D$}; \end{tikzpicture} \end{center} \theoremblock{21. Tangent--secant theorem (power of a point)}{The square of the length of the tangent from an external point is equal to the product of the intercepts of the secant passing through this point.}{square of the tangent \quad OR \quad intersecting tangent and secant \quad OR \quad tangent and secant \quad $PT^2 = AP\times PB$} \diagram \begin{center} \begin{tikzpicture}[scale=1] \def\R{2.2} \coordinate (O) at (0,0); \draw (O) circle (\R); \coordinate (P) at (2.8, 3.0); % Tangent point \coordinate (T) at (80:\R); % Tangent line segment PT \draw[thick] (P) -- (T); % Secant through circle \coordinate (Q) at (1.2,-3.0); \path[name path=sec] (P) -- (Q); \path[name path=circle] (O) circle (\R); \path[name intersections={of=sec and circle, by={A,B}}]; \draw[thick] (P) -- (Q); \fill (P) circle(1.2pt) node[above] {$P$}; \fill (T) circle(1.2pt) node[left] {$T$}; \node[right] at (A) {$A$}; \node[below] at (B) {$B$}; \node at (0,-3.5) {$PT^2 = AP\times PB$}; \end{tikzpicture} \end{center} \section*{Supplementary theorems} \theoremblock{S1. Touching circles share a common tangent at the contact point}{Two circles touch if they have a common tangent at the point of contact.}{tangent of touching circles} \diagram \begin{center} \begin{tikzpicture}[scale=1] \coordinate (O1) at (-1.6,0); \coordinate (O2) at ( 1.6,0); \def\R{1.6} \draw (O1) circle (\R); \draw (O2) circle (\R); \coordinate (T) at (0,0); % point of contact \draw[thick] (-3.8,0) -- (3.8,0); % common tangent (horizontal) \fill (O1) circle(1.2pt) node[below] {$O_1$}; \fill (O2) circle(1.2pt) node[below] {$O_2$}; \fill (T) circle(1.2pt) node[above] {$T$}; \end{tikzpicture} \end{center} \theoremblock{S2. Converse of ``angles in the same segment''}{If an interval subtends equal angles at two points on the same side of it then the endpoints of the interval and the four points are concyclic.}{converse of angles in the same segment} \diagram \begin{center} \begin{tikzpicture}[scale=1] \coordinate (A) at (-2.2,-1.2); \coordinate (B) at ( 2.2,-1.2); \coordinate (C) at (-0.4, 1.8); \coordinate (D) at ( 1.2, 1.2); % Draw the (implied) circumcircle through A,B,C,D (using three points to define it) % Compute circumcenter of triangle A,B,C: \coordinate (Mab) at ($(A)!0.5!(B)$); \coordinate (Mac) at ($(A)!0.5!(C)$); \path[name path=pab] (Mab) -- ($(Mab)+(0,4)$); \path[name path=pac] (Mac) -- ($(Mac)+(-4,0)$); \path[name intersections={of=pab and pac, by=O}]; \node[draw, circle through={(A)}] at (O) {}; \draw[thick] (A) -- (B); \draw[thick] (A) -- (C) -- (B); \draw[thick] (A) -- (D) -- (B); \pic[draw, "$\theta$", angle radius=7mm] {angle = A--C--B}; \pic[draw, "$\theta$", angle radius=7mm] {angle = A--D--B}; \fill (A) circle(1.2pt) node[below left] {$A$}; \fill (B) circle(1.2pt) node[below right] {$B$}; \fill (C) circle(1.2pt) node[above left] {$C$}; \fill (D) circle(1.2pt) node[above right] {$D$}; \end{tikzpicture} \end{center} \bigskip \noindent\textbf{AAMT --- TOP DRAWER TEACHERS}\par \noindent\textcopyright\ 2013 Education Services Australia Ltd, except where indicated otherwise. This document may be used, reproduced, published, communicated and adapted free of charge for non-commercial educational purposes provided all acknowledgements associated with the material are retained. \end{document}