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formation of finite intersections (use that fact that ∩n
i=1Ai = (∪n

i=1Ac
i )

c). Thus we
could have defined an algebra using only conditions (a), (b), and (c). A similar
argument shows that we could have used only conditions (a), (b), and (d).

Again let X be an arbitrary set. A collection A of subsets of X is a σ -algebra1

on X if

(a) X ∈ A,
(b) for each set A that belongs to A , the set Ac belongs to A,
(c) for each infinite sequence {Ai} of sets that belong to A , the set ∪∞

i=1Ai belongs
to A, and

(d) for each infinite sequence {Ai} of sets that belong to A , the set ∩∞
i=1Ai belongs

to A .

Thus a σ -algebra on X is a family of subsets of X that contains X and is closed
under complementation, under the formation of countable unions, and under the
formation of countable intersections. Note that, as in the case of algebras, we could
have used only conditions (a), (b), and (c), or only conditions (a), (b), and (d), in our
definition.

Each σ -algebra on X is an algebra on X since, for example, the union of the finite
sequence A1, A2, . . . , An is the same as the union of the infinite sequence A1, A2, . . . ,
An, An, An, . . . .

If X is a set and A is a family of subsets of X that is closed under complemen-
tation, then X belongs to A if and only if ∅ belongs to A . Thus in the definitions
of algebras and σ -algebras given above, we can replace condition (a) with the
requirement that ∅ be a member of A . Furthermore, if A is a family of subsets of
X that is nonempty, closed under complementation, and closed under the formation
of finite or countable unions, then A must contain X : if the set A belongs to A , then
X , since it is the union of A and Ac, must also belong to A . Thus in our definitions
of algebras and σ -algebras, we can replace condition (a) with the requirement that
A be nonempty.

If A is a σ -algebra on the set X , it is sometimes convenient to call a subset of X
A -measurable if it belongs to A .

Examples 1.1.1 (Some Families of Sets That Are Algebras or σ -algebras, and
Some That Are Not).

(a) Let X be a set, and let A be the collection of all subsets of X . Then A is a
σ -algebra on X .

(b) Let X be a set, and let A = {∅,X}. Then A is a σ -algebra on X .
(c) Let X be an infinite set, and let A be the collection of all finite subsets of X .

Then A does not contain X and is not closed under complementation; hence it
is not an algebra (or a σ -algebra) on X .

1The terms field and σ -field are sometimes used in place of algebra and σ -algebra.
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(d) Let X be an infinite set, and let A be the collection of all subsets A of X such
that either A or Ac is finite. Then A is an algebra on X (check this) but is not
closed under the formation of countable unions; hence it is not a σ -algebra.

(e) Let X be an uncountable set, and let A be the collection of all countable
(i.e., finite or countably infinite) subsets of X . Then A does not contain X and
is not closed under complementation; hence it is not an algebra.

(f) Let X be a set, and let A be the collection of all subsets A of X such that either
A or Ac is countable. Then A is a σ -algebra.

(g) Let A be the collection of all subsets of R that are unions of finitely many
intervals of the form (a,b], (a,+∞), or (−∞,b]. It is easy to check that each set
that belongs to A is the union of a finite disjoint collection of intervals of the
types listed above, and then to check that A is an algebra on R (the empty set
belongs to A , since it is the union of the empty, and hence finite, collection of
intervals). The algebra A is not a σ -algebra; for example, the bounded open
subintervals of R are unions of sequences of sets in A but do not themselves
belong to A . �	

Next we consider ways of constructing σ -algebras.

Proposition 1.1.2. Let X be a set. Then the intersection of an arbitrary nonempty
collection of σ -algebras on X is a σ -algebra on X.

Proof. Let C be a nonempty collection of σ -algebras on X , and let A be the
intersection of the σ -algebras that belong to C . It is enough to check that A contains
X , is closed under complementation, and is closed under the formation of countable
unions. The set X belongs to A , since it belongs to each σ -algebra that belongs
to C . Now suppose that A ∈ A . Each σ -algebra that belongs to C contains A and
so contains Ac; thus Ac belongs to the intersection A of these σ -algebras. Finally,
suppose that {Ai} is a sequence of sets that belong to A and hence to each σ -algebra
in C . Then ∪iAi belongs to each σ -algebra in C and so to A . �	

The reader should note that the union of a family of σ -algebras can fail to be a
σ -algebra (see Exercise 5).

Proposition 1.1.2 implies the following result, which is a basic tool for the
construction of σ -algebras.

Corollary 1.1.3. Let X be a set, and let F be a family of subsets of X. Then there
is a smallest σ -algebra on X that includes F .

Of course, to say that A is the smallest σ -algebra on X that includes F is to
say that A is a σ -algebra on X that includes F and that every σ -algebra on X that
includes F also includes A . If A1 and A2 are both smallest σ -algebras that include
F , then A1 ⊆ A2 and A2 ⊆ A1, and so A1 = A2; thus the smallest σ -algebra on X
that includes F is unique. The smallest σ -algebra is called the σ -algebra generated
by F and is often denoted by σ(F ).

Proof. Let C be the collection of all σ -algebras on X that include F . Then
C is nonempty, since it contains the σ -algebra that consists of all subsets of
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X . The intersection of the σ -algebras that belong to C is, according to Proposi-
tion 1.1.2, a σ -algebra; it includes F and is included in every σ -algebra in C —that
is, it is included in every σ -algebra on X that includes F . �	

We now use the preceding corollary to define an important family of σ -algebras.
The Borel σ -algebra on R

d is the σ -algebra on R
d generated by the collection of

open subsets of Rd ; it is denoted by B(Rd). The Borel subsets of Rd are those that
belong to B(Rd). In case d = 1, one generally writes B(R) in place of B(R1).

Proposition 1.1.4. The σ -algebra B(R) of Borel subsets of R is generated by each
of the following collections of sets:

(a) the collection of all closed subsets of R;
(b) the collection of all subintervals of R of the form (−∞,b];
(c) the collection of all subintervals of R of the form (a,b].

Proof. Let B1, B2, and B3 be the σ -algebras generated by the collections of sets in
parts (a), (b), and (c) of the proposition. We will show that B(R)⊇B1 ⊇B2 ⊇B3

and then that B3 ⊇ B(R); this will establish the proposition. Since B(R) includes
the family of open subsets of R and is closed under complementation, it includes the
family of closed subsets of R; thus it includes the σ -algebra generated by the closed
subsets of R, namely B1. The sets of the form (−∞,b] are closed and so belong to
B1; consequently B1 ⊇ B2. Since (a,b] = (−∞,b]∩ (−∞,a]c, each set of the form
(a,b] belongs to B2; thus B2 ⊇ B3. Finally, note that each open subinterval of R
is the union of a sequence of sets of the form (a,b] and that each open subset of R
is the union of a sequence of open intervals (see Proposition C.4). Thus each open
subset of R belongs to B3, and so B3 ⊇ B(R). �	

As we proceed, the reader should note the following properties of the σ -algebra
B(R):

(a) It contains virtually2 every subset of R that is of interest in analysis.
(b) It is small enough that it can be dealt with in a fairly constructive manner.

It is largely these properties that explain the importance of B(R).

Proposition 1.1.5. The σ -algebra B(Rd) of Borel subsets of Rd is generated by
each of the following collections of sets:

(a) the collection of all closed subsets of Rd;
(b) the collection of all closed half-spaces in R

d that have the form {(x1, . . . ,xd) :
xi ≤ b} for some index i and some b in R;

(c) the collection of all rectangles in R
d that have the form

{(x1, . . . ,xd) : ai < xi ≤ bi for i = 1, . . . , d}.

2See Chap. 8 for some interesting and useful sets that are not Borel sets.
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Proof. This proposition can be proved with essentially the argument that was used
for Proposition 1.1.4, and so most of the proof is omitted. To see that the σ -algebra
generated by the rectangles of part (c) is included in the σ -algebra generated by the
half-spaces of part (b), note that each strip that has the form

{(x1, . . . ,xd) : a < xi ≤ b}
for some i is the difference of two of the half-spaces in part (b) and that each of the
rectangles in part (c) is the intersection of d such strips. �	

Let us look in more detail at some of the sets in B(Rd). Let G be the family of all
open subsets of Rd , and let F be the family of all closed subsets of Rd . (Of course
G and F depend on the dimension d, and it would have been more precise to write
G (Rd) and F (Rd).) Let Gδ be the collection of all intersections of sequences of
sets in G , and let Fσ be the collection of all unions of sequences of sets in F . Sets
in Gδ are often called Gδ ’s, and sets in Fσ are often called Fσ ’s. The letters G and
F presumably stand for the German word Gebiet and the French word fermé, and
the letters σ and δ for the German words Summe and Durchschnitt.

Proposition 1.1.6. Each closed subset of Rd is a Gδ , and each open subset of Rd

is an Fσ .

Proof. Suppose that F is a closed subset of Rd . We need to construct a sequence
{Un} of open subsets of Rd such that F = ∩nUn. For this define Un by

Un = {x ∈ R
d : ‖x− y‖< 1/n for some y in F}.

(Note that Un is empty if F is empty.) It is clear that each Un is open and that
F ⊆ ∩nUn. The reverse inclusion follows from the fact that F is closed (note that
each point in ∩nUn is the limit of a sequence of points in F). Hence each closed
subset of Rd is a Gδ .

If U is open, then Uc is closed and so is a Gδ . Thus there is a sequence {Un} of
open sets such that Uc = ∩nUn. The sets Uc

n are then closed, and U = ∪nUc
n ; hence

U is an Fσ . �	
For an arbitrary family S of sets, let Sσ be the collection of all unions of

sequences of sets in S , and let Sδ be the collection of all intersections of sequences
of sets in S . We can iterate the operations represented by σ and δ , obtaining from
the class G the classes Gδ , Gδσ , Gδσδ , . . . , and from the class F the classes Fσ ,
Fσδ , Fσδσ , . . . . (Note that G = Gσ and F = Fδ . Note also that Gδδ = Gδ , that
Fσσ =Fσ , and so on.) It now follows (see Proposition 1.1.6) that all the inclusions
in Fig. 1.1 below are valid.

It turns out that no two of these classes of sets are equal and that there are Borel
sets that belong to none of them (see Exercises 7 and 9 in Sect. 8.2).

A sequence {Ai} of sets is called increasing if Ai ⊆ Ai+1 holds for each i and
decreasing if Ai ⊇ Ai+1 holds for each i.
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G ⊂ Gδ ⊂ Gδσ ⊂ Gδσδ ⊂ . . .

F ⊂ Fσ ⊂ Fσδ ⊂ Fσδσ ⊂ . . .

Fig. 1.1

Proposition 1.1.7. Let X be a set, and let A be an algebra on X. Then A is a
σ -algebra if either

(a) A is closed under the formation of unions of increasing sequences of sets, or
(b) A is closed under the formation of intersections of decreasing sequences of

sets.

Proof. First suppose that condition (a) holds. Since A is an algebra, we can check
that it is a σ -algebra by verifying that it is closed under the formation of countable
unions. Suppose that {Ai} is a sequence of sets that belong to A . For each n let
Bn = ∪n

i=1Ai. The sequence {Bn} is increasing, and, since A is an algebra, each Bn

belongs to A ; thus assumption (a) implies that ∪nBn belongs to A . However, ∪iAi

is equal to ∪nBn and so belongs to A . Thus A is closed under the formation of
countable unions and so is a σ -algebra.

Now suppose that condition (b) holds. It is enough to check that condition (a)
holds. If {Ai} is an increasing sequence of sets that belong to A , then {Ac

i } is a
decreasing sequence of sets that belong to A , and so condition (b) implies that
∩iAc

i belongs to A . Since ∪iAi = (∩iAc
i )

c, it follows that ∪iAi belongs to A . Thus
condition (a) follows from condition (b), and the proof is complete. �	

Exercises

1. Find the σ -algebra on R that is generated by the collection of all one-point
subsets of R.

2. Show that B(R) is generated by the collection of intervals (−∞,b] for which the
endpoint b is a rational number.

3. Show that B(R) is generated by the collection of all compact subsets of R.
4. Show that if A is an algebra of sets, and if ∪nAn belongs to A whenever {An}

is a sequence of disjoint sets in A , then A is a σ -algebra.
5. Show by example that the union of a collection of σ -algebras on a set X can fail

to be a σ -algebra on X . (Hint: There are examples in which X is a small finite
set.)

6. Find an infinite collection of subsets of R that contains R, is closed under the
formation of countable unions, and is closed under the formation of countable
intersections, but is not a σ -algebra.
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7. Let S be a collection of subsets of the set X . Show that for each A in σ(S ),
there is a countable subfamily C0 of S such that A ∈ σ(C0). (Hint: Let A be the
union of the σ -algebras σ(C ), where C ranges over the countable subfamilies of
S , and show that A is a σ -algebra that satisfies S ⊆ A ⊆ σ(S ) and hence is
equal to σ(S ).)

8. Find all σ -algebras on N.
9. (a) Show that Q is an Fσ , but not a Gδ , in R. (Hint: Use the Baire category

theorem, Theorem D.37.)
(b) Find a subset of R that is neither an Fσ nor a Gδ .

1.2 Measures

Let X be a set, and let A be a σ -algebra on X . A function μ whose domain is the
σ -algebra A and whose values belong to the extended half-line [0,+∞] is said to
be countably additive if it satisfies

μ(∪∞
i=1Ai) =

∞

∑
i=1

μ(Ai)

for each infinite sequence {Ai} of disjoint sets that belong to A . (Since μ(Ai) is
nonnegative for each i, the sum ∑∞

i=1 μ(Ai) always exists, either as a real number or
as +∞; see Appendix B.) A measure (or a countably additive measure) on A is a
function μ : A → [0,+∞] that satisfies μ(∅) = 0 and is countably additive.

We should note a related concept which is sometimes of interest. Let A be an
algebra (not necessarily a σ -algebra) on the set X . A function μ whose domain is
A and whose values belong to [0,+∞] is finitely additive if it satisfies

μ(∪n
i=1Ai) =

n

∑
i=1

μ(Ai)

for each finite sequence A1, . . . , An of disjoint sets that belong to A . A finitely
additive measure on the algebra A is a function μ : A → [0,+∞] that satisfies
μ(∅) = 0 and is finitely additive.

It is easy to check that every countably additive measure is finitely additive:
simply extend the finite sequence A1, . . . , An to an infinite sequence {Ai} by
letting Ai = ∅ if i > n, and then use the fact that μ(∅) = 0. There are, however,
finitely additive measures that are not countably additive (see Example 1.2.1(d) and
Exercise 8 in Sect. 3.5).

Finite additivity might at first seem to be a more natural property than count-
able additivity. However, countably additive measures on the one hand seem to
be sufficient for almost all applications and, on the other hand, support a much
more powerful theory of integration than do finitely additive measures. Thus we
will follow the usual practice and devote almost all of our attention to countably
additive measures.
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We should emphasize that in this book the word “measure” (without modifiers)
will always denote a countably additive measure. The expression “finitely additive
measure” will always be written out in full.

If X is a set, if A is a σ -algebra on X , and if μ is a measure on A , then the triplet
(X ,A ,μ) is often called a measure space. Likewise, if X is a set and if A is a σ -
algebra on X , then the pair (X ,A ) is often called a measurable space. If (X ,A ,μ)
is a measure space, then one often says that μ is a measure on (X ,A ), or, if the
σ -algebra A is clear from context, a measure on X .

Examples 1.2.1.

(a) Let X be an arbitrary set, and let A be a σ -algebra on X . Define a function
μ : A → [0,+∞] by letting μ(A) be n if A is a finite set with n elements and
letting μ(A) be +∞ if A is an infinite set. Then μ is a measure; it is often called
counting measure on (X ,A ).

(b) Let X be a nonempty set, and let A be a σ -algebra on X . Let x be a member of
X . Define a function δx : A → [0,+∞] by letting δx(A) be 1 if x ∈ A and letting
δx(A) be 0 if x /∈ A. Then δx is a measure; it is called a point mass concentrated
at x.

(c) Consider the set R of all real numbers and the σ -algebra B(R) of Borel subsets
of R. In Sect. 1.3 we will construct a measure on B(R) that assigns to each
subinterval of R its length; this measure is known as Lebesgue measure and
will be denoted by λ in this book.

(d) Let X be the set of all positive integers, and let A be the collection of all
subsets A of X such that either A or Ac is finite. Then A is an algebra, but not a
σ -algebra (see Example 1.1.1(d)). Define a function μ : A → [0,+∞] by letting
μ(A) be 1 if A is infinite and letting μ(A) be 0 if A is finite. It is easy to check
that μ is a finitely additive measure; however, it is impossible to extend μ to a
countably additive measure on the σ -algebra generated by A (if Ak = {k} for
each k, then μ(∪∞

k=1Ak) = μ(X) = 1, while ∑∞
k=1 μ(Ak) = 0).

(e) Let X be an arbitrary set, and let A be an arbitrary σ -algebra on X . Define a
function μ : A → [0,+∞] by letting μ(A) be +∞ if A �=∅, and letting μ(A) be
0 if A =∅. Then μ is a measure.

(f) Let X be a set that has at least two members, and let A be the σ -algebra
consisting of all subsets of X . Define a function μ : A → [0,+∞] by letting
μ(A) be 1 if A �= ∅ and letting μ(A) be 0 if A = ∅. Then μ is not a measure,
nor even a finitely additive measure, for if A1 and A2 are disjoint nonempty
subsets of X , then μ(A1 ∪A2) = 1, while μ(A1)+ μ(A2) = 2. �	

Proposition 1.2.2. Let (X ,A ,μ) be a measure space, and let A and B be subsets of
X that belong to A and satisfy A ⊆ B. Then μ(A)≤ μ(B). If in addition A satisfies
μ(A)<+∞, then μ(B−A) = μ(B)− μ(A).

Proof. The sets A and B − A are disjoint and satisfy B = A ∪ (B − A); thus the
additivity of μ implies that

μ(B) = μ(A)+ μ(B−A).
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Since μ(B−A)≥ 0, it follows that μ(A)≤ μ(B). In case μ(A)< +∞, the relation
μ(B)− μ(A) = μ(B−A) also follows. �	

Let μ be a measure on a measurable space (X ,A ). Then μ is a finite measure if
μ(X)<+∞ and is a σ -finite measure if X is the union of a sequence A1, A2, . . . of
sets that belong to A and satisfy μ(Ai)<+∞ for each i. More generally, a set in A
is σ -finite under μ if it is the union of a sequence of sets that belong to A and have
finite measure under μ . The measure space (X ,A ,μ) is also called finite or σ -finite
if μ is finite or σ -finite. Most of the constructions and basic properties that we will
consider are valid for all measures. For a few important theorems, however, we will
need to assume that the measures involved are finite or σ -finite.

If the measure space (X ,A ,μ) is σ -finite, then X is the union of a sequence {Bi}
of disjoint sets that belong to A and have finite measure under μ ; such a sequence
{Bi} can be formed by choosing a sequence {Ai} as in the definition of σ -finiteness,
and then letting B1 = A1 and Bi = Ai − (∪i−1

j=1A j) if i > 1.

Examples 1.2.3 (Dealing with σ -Finiteness). Note that the measure defined in
Example 1.2.1(a) is finite if and only if the set X is finite and is σ -finite if and
only if the set X is the union of a sequence of finite sets that belong to A .3

The measure defined in Example 1.2.1(b) is finite. Lebesgue measure, described
in Example 1.2.1(c), is σ -finite, since R is the union of a sequence of bounded
intervals. See also Exercises 2 and 7 below. �	

The following propositions give some elementary but useful properties of
measures.

Proposition 1.2.4. Let (X ,A ,μ) be a measure space. If {Ak} is an arbitrary
sequence of sets that belong to A , then

μ(∪∞
k=1Ak)≤

∞

∑
k=1

μ(Ak).

Proof. Define a sequence {Bk} of subsets of X by letting B1 = A1 and letting
Bk = Ak − (∪k−1

i=1 Ai) if k > 1. Then each Bk belongs to A and is a subset of the
corresponding Ak, and so satisfies μ(Bk)≤ μ(Ak). Since in addition the sets Bk are
disjoint and satisfy ∪kBk = ∪kAk, it follows that

μ(∪kAk) = μ(∪kBk) = ∑
k

μ(Bk)≤∑
k

μ(Ak). �	

In other words, the countable additivity of μ implies the countable subadditivity
of μ .

3If in Example 1.2.1(a) the σ -algebra A contains all the subsets of X , then μ is σ -finite if and only
if X is at most countably infinite.
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Proposition 1.2.5. Let (X ,A ,μ) be a measure space.

(a) If {Ak} is an increasing sequence of sets that belong to A , then μ(∪kAk) =
limk μ(Ak).

(b) If {Ak} is a decreasing sequence of sets that belong to A , and if μ(An) < +∞
holds for some n, then μ(∩kAk) = limk μ(Ak).

Proof. First suppose that {Ak} is an increasing sequence of sets that belong to A ,
and define a sequence {Bi} of sets by letting B1 = A1 and letting Bi = Ai −Ai−1 if
i > 1. The sets just constructed are disjoint, belong to A , and satisfy Ak = ∪k

i=1Bi

for each k. It follows that ∪kAk = ∪iBi and hence that

μ(∪kAk) = ∑
i

μ(Bi) = lim
k

k

∑
i=1

μ(Bi) = lim
k

μ(∪k
i=1Bi) = lim

k
μ(Ak).

This completes the proof of (a).
Now suppose that {Ak} is a decreasing sequence of sets that belong to A and

that μ(An) < +∞ holds for some n. We can assume that n = 1. For each k let Ck =
A1 −Ak. Then {Ck} is an increasing sequence of sets that belong to A and satisfy

∪kCk = A1 − (∩kAk).

It follows from part (a) that μ(∪kCk) = limk μ(Ck) and hence that

μ(A1 − (∩kAk)) = μ(∪kCk) = lim
k

μ(Ck) = lim
k

μ(A1 −Ak).

In view of Proposition 1.2.2 and the assumption that μ(A1)<+∞, this implies that
μ(∩kAk) = limk μ(Ak). �	

The preceding proposition has the following partial converse, which is sometimes
useful for checking that a finitely additive measure is in fact countably additive.

Proposition 1.2.6. Let (X ,A ) be a measurable space, and let μ be a finitely
additive measure on (X ,A ). Then μ is a measure if either

(a) limk μ(Ak) = μ(∪kAk) holds for each increasing sequence {Ak} of sets that
belong to A, or

(b) limk μ(Ak) = 0 holds for each decreasing sequence {Ak} of sets that belong to
A and satisfy ∩kAk =∅.

Proof. We need to verify the countable additivity of μ . Let {B j} be a sequence of
disjoint sets that belong to A ; we will prove that μ(∪ jB j) = ∑ j μ(B j).

First assume that condition (a) holds, and for each k let Ak = ∪k
j=1B j. Then the

finite additivity of μ implies that μ(Ak) = ∑k
j=1 μ(B j), while condition (a) implies

that μ(∪∞
k=1Ak) = limk μ(Ak); since ∪∞

j=1B j = ∪∞
k=1Ak, it follows that

μ(∪∞
j=1B j) = μ(∪∞

k=1Ak) = lim
k

μ(Ak) =
∞

∑
j=1

μ(B j).
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Now assume that condition (b) holds, and for each k let Ak = ∪∞
j=kB j. Then the

finite additivity of μ implies that

μ(∪∞
j=1B j) =

k

∑
j=1

μ(B j)+ μ(Ak+1),

while condition (b) implies that limk μ(Ak+1) = 0; hence μ(∪∞
j=1B j) = ∑∞

j=1 μ(B j).
�	

Let us close this section by introducing a bit of terminology. A measure on
(Rd ,B(Rd)) is often called a Borel measure on R

d . More generally, if X is a Borel
subset of Rd and if A is the σ -algebra consisting of those Borel subsets of Rd that
are included in X , then a measure on (X ,A ) is called a Borel measure on X .

Now suppose that (X ,A ) is a measurable space such that for each x in X the
set {x} belongs to A . A finite or σ -finite measure μ on (X ,A ) is continuous if
μ({x}) = 0 holds for each x in X and is discrete if there is a countable subset D
of X such that μ(Dc) = 0. (More elaborate definitions are needed if A does not
contain each {x} or if μ is not σ -finite. We will, however, not need to consider such
matters.)

Exercises

1. Suppose that μ is a finite measure on (X ,A ).
(a) Show that if A and B belong to A , then

μ(A∪B) = μ(A)+ μ(B)− μ(A∩B).

(b) Show that if A, B, and C belong to A , then

μ(A∪B∪C) =μ(A)+ μ(B)+ μ(C)

− μ(A∩B)− μ(A∩C)− μ(B∩C)

+ μ(A∩B∩C).

(c) Find and prove a corresponding formula for the measure of the union of n
sets.

2. Define μ on (R,B(R)) by letting μ(A) be the number of rational numbers in A
(of course μ(A) = +∞ if there are infinitely many rational numbers in A). Show
that μ is a σ -finite measure under which each open subinterval of R has infinite
measure.

3. Let A be the σ -algebra of all subsets of N, and let μ be counting measure on
(N,A ). Give a decreasing sequence {Ak} of sets in A such that μ(∩kAk) �=
limk μ(Ak). Hence the finiteness assumption cannot be removed from part (b) of
Proposition 1.2.5.
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4. Let (X ,A ) be a measurable space.
(a) Suppose that μ is a nonnegative countably additive function on A . Show that

if μ(A) is finite for some A in A , then μ(∅) = 0. (Thus μ is a measure.)
(b) Show by example that in general the condition μ(∅) = 0 does not follow

from the remaining parts of the definition of a measure.
5. Let (X ,A ) be a measurable space, and let x and y belong to X . Show that the

point masses δx and δy are equal if and only if x and y belong to exactly the same
sets in A .

6. Let (X ,A ) be a measurable space.
(a) Show that if {μn} is an increasing sequence of measures on (X ,A ) (here

“increasing” means that μn(A)≤ μn+1(A) holds for each A and each n), then
the formula μ(A) = limn μn(A) defines a measure on (X ,A ).

(b) Show that if {μn} is an arbitrary sequence of measures on (X ,A ), then the
formula μ(A) = ∑n μn(A) defines a measure on (X ,A ).

7. Let {xn} be a sequence of real numbers, and define a measure μ on (R,B(R))
by μ = ∑n δxn (see Exercise 6).
(a) Show that μ assigns finite values to the bounded subintervals of R if and only

if limn |xn|=+∞.
(b) For which sequences {xn} is the measure μ σ -finite?

8. Let (X ,A ,μ) be a measure space, and define μ• : A → [0,+∞] by

μ•(A) = sup{μ(B) : B ⊆ A, B ∈ A , and μ(B)<+∞}.
(a) Show that μ• is a measure on (X ,A ).
(b) Show that if μ is σ -finite, then μ• = μ .
(c) Find μ• if X is nonempty and μ is the measure defined by

μ(A) =

{
+∞ if A ∈ A and A �=∅, and

0 if A =∅.

9. Let μ be a measure on (X ,A ), and let {Ak} be a sequence of sets in A such that
∑k μ(Ak)<+∞. Show that the set of points that belong to Ak for infinitely many
values of k has measure zero under μ . (Hint: Consider the set ∩∞

n=1 ∪∞
k=n Ak, and

note that μ(∩∞
n=1 ∪∞

k=n Ak)≤ μ(∪∞
k=pAk) holds for each p.)

1.3 Outer Measures

In this section we develop one of the standard techniques for constructing measures;
then we use it to construct Lebesgue measure on R

d .
Let X be a set, and let P(X) be the collection of all subsets of X . An outer

measure on X is a function μ∗ : P(X)→ [0,+∞] such that
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(a) μ∗(∅) = 0,
(b) if A ⊆ B ⊆ X , then μ∗(A)≤ μ∗(B), and
(c) if {An} is an infinite sequence of subsets of X , then μ∗(∪nAn)≤ ∑n μ∗(An).

Thus an outer measure on X is a monotone and countably subadditive function from
P(X) to [0,+∞] whose value at ∅ is 0.

Note that a measure can fail to be an outer measure; in fact, a measure on X is an
outer measure if and only if its domain is P(X) (see Propositions 1.2.2 and 1.2.4).
On the other hand, an outer measure generally fails to be countably additive and so
fails to be a measure.

In Theorem 1.3.6, we will prove that for each outer measure μ∗ on X there is
a relatively natural σ -algebra Mμ∗ on X such that the restriction of μ∗ to Mμ∗ is
countably additive, and hence a measure. Many important measures can be derived
from outer measures in this way.

Examples 1.3.1.

(a) Let X be an arbitrary set, and define μ∗ on P(X) by μ∗(A) = 0 if A = ∅ and
μ∗(A) = 1 otherwise. Then μ∗ is an outer measure.

(b) Let X be an arbitrary set, and define μ∗ on P(X) by μ∗(A) = 0 if A is countable,
and μ∗(A) = 1 if A is uncountable. Then μ∗ is an outer measure.

(c) Let X be an infinite set, and define μ∗ on P(X) by μ∗(A) = 0 if A is finite, and
μ∗(A) = 1 if A is infinite. Then μ∗ fails to be countably subadditive and so is
not an outer measure.

(d) Lebesgue outer measure on R, which we will denote by λ ∗, is defined as
follows. For each subset A of R, let CA be the set of all infinite sequences
{(ai,bi)} of bounded open intervals such that A⊆∪i(ai,bi). Then λ ∗ : P(R)→
[0,+∞] is defined by

λ ∗(A) = inf
{

∑
i
(bi − ai) : {(ai,bi)} ∈ CA

}
.

(Note that the set of sums involved here is nonempty and that the infimum of
the set consisting of +∞ alone is +∞. We check in the following proposition
that λ ∗ is indeed an outer measure.) �	

Proposition 1.3.2. Lebesgue outer measure on R is an outer measure, and it
assigns to each subinterval of R its length.

Proof. We begin by verifying that λ ∗ is an outer measure. The relation λ ∗(∅) = 0
holds, since for each positive number ε there is a sequence {(ai,bi)} of open
intervals (whose union necessarily includes ∅) such that ∑i(bi − ai) < ε . For the
monotonicity of λ ∗, note that if A ⊆ B, then each sequence of open intervals
that covers B also covers A, and so λ ∗(A) ≤ λ ∗(B). Now consider the countable
subadditivity of λ ∗. Let {An}∞

n=1 be an arbitrary sequence of subsets of R.
If ∑n λ ∗(An) = +∞, then λ ∗(∪nAn) ≤ ∑n λ ∗(An) certainly holds. So suppose that
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∑n λ ∗(An) < +∞, and let ε be an arbitrary positive number. For each n choose a
sequence {(an,i,bn,i)}∞

i=1 that covers An and satisfies

∞

∑
i=1

(bn,i − an,i)< λ ∗(An)+ ε/2n.

If we combine these sequences into one sequence {(a j,b j)} (see, for example, the
construction in the last paragraph of A.6), then the combined sequence satisfies

∪nAn ⊆ ∪ j(a j,b j)

and

∑
j
(b j − a j)< ∑

n
(λ ∗(An)+ ε/2n) = ∑

n
λ ∗(An)+ ε.

These relations, together with the fact that ε is arbitrary, imply that λ ∗(∪nAn) ≤
∑n λ ∗(An). Thus λ ∗ is an outer measure.

Now we compute the outer measure of the subintervals of R. First consider a
closed bounded interval [a,b]. It is easy to see that λ ∗([a,b]) ≤ b− a (cover [a,b]
with sequences of open intervals in which the first interval is barely larger than
[a,b], and the sum of the lengths of the other intervals is very small). We turn to
the reverse inequality. Let {(ai,bi)} be a sequence of bounded open intervals whose
union includes [a,b]. Since [a,b] is compact, there is a positive integer n such that
[a,b]⊆ ∪n

i=1(ai,bi). It is easy to check that b− a ≤ ∑n
i=1(bi − ai) (use induction on

n) and hence that b− a ≤ ∑∞
i=1(bi − ai). Since {(ai,bi)} was an arbitrary sequence

whose union includes [a,b], it follows that b − a ≤ λ ∗([a,b]). Thus λ ∗([a,b]) =
b− a.

The outer measure of an arbitrary bounded interval is its length, since such an
interval I includes and is included in closed bounded intervals of length arbitrarily
close to the length of I. Finally, an unbounded interval has infinite outer measure,
since it includes arbitrarily long closed bounded intervals. �	

Let us look at another basic example.

Example 1.3.3. Lebesgue outer measure on R
d , which we will denote by λ ∗ (or, if

necessary in order to avoid ambiguity, by λ ∗
d ) is defined as follows. A d-dimensional

interval is a subset of Rd of the form I1 ×·· ·× Id , where I1, . . . , Id are subintervals
of R and I1 ×·· ·× Id is given by

I1 ×·· ·× Id = {(xi, . . . ,xd) : xi ∈ Ii for i = 1, . . . , d}.
Note that the intervals I1, . . . , Id , and hence the d-dimensional interval I1 ×·· ·× Id ,
can be open, closed, or neither open nor closed. The volume of the d-dimensional
interval I1 × ·· · × Id is the product of the lengths of the intervals I1, . . . , Id , and
will be denoted by vol(I1 ×·· ·× Id). For each subset A of Rd let CA be the set of all
sequences {Ri} of bounded and open d-dimensional intervals for which A ⊆∪∞

i=1Ri.
Then λ ∗(A), the outer measure of A, is the infimum of the set
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{ ∞

∑
i=1

vol(Ri) : {Ri} ∈ CA

}
. �	

We note the following analogue of Proposition 1.3.2.

Proposition 1.3.4. Lebesgue outer measure on R
d is an outer measure, and it

assigns to each d-dimensional interval its volume.

Proof. Most of the details are omitted, since they are very similar to those in the
proof of Proposition 1.3.2. Note, however, that if K is a compact d-dimensional
interval and if {Ri}∞

i=1 is a sequence of bounded and open d-dimensional intervals
for which K ⊆ ∪∞

i=1Ri, then there is a positive integer n such that K ⊆ ∪n
i=1Ri, and

K can be decomposed into a finite collection {Kj} of d-dimensional intervals that
overlap only on their boundaries and are such that for each j the interior of Kj is
included in some Ri (where i ≤ n). From this it follows that

vol(K) = ∑
j

vol(Kj)≤ ∑
i

vol(Ri)

and hence that vol(K)≤ λ ∗(K). The remaining modifications needed to convert our
proof of Proposition 1.3.2 into a proof of the present result are straightforward. �	

Let X be a set, and let μ∗ be an outer measure on X . A subset B of X is μ∗-
measurable (or measurable with respect to μ∗) if

μ∗(A) = μ∗(A∩B)+ μ∗(A∩Bc)

holds for every subset A of X . Thus a μ∗-measurable subset of X is one that divides
each subset of X in such a way that the sizes (as measured by μ∗) of the pieces
add properly. A Lebesgue measurable subset of R or of Rd is of course one that is
measurable with respect to Lebesgue outer measure.

Note that the subadditivity of the outer measure μ∗ implies that

μ∗(A)≤ μ∗(A∩B)+ μ∗(A∩Bc)

holds for all subsets A and B of X . Thus to check that a subset B of X is μ∗-
measurable, we need only check that

μ∗(A)≥ μ∗(A∩B)+ μ∗(A∩Bc) (1)

holds for each subset A of X . Note also that inequality (1) certainly holds if μ∗(A) =
+∞. Thus the μ∗-measurability of B can be verified by checking that (1) holds for
each A that satisfies μ∗(A)<+∞.

Proposition 1.3.5. Let X be a set, and let μ∗ be an outer measure on X. Then each
subset B of X that satisfies μ∗(B) = 0 or that satisfies μ∗(Bc) = 0 is μ∗-measurable.

Proof. Assume that μ∗(B) = 0 or that μ∗(Bc) = 0. According to the remarks above,
we need only check that each subset A of X satisfies
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μ∗(A)≥ μ∗(A∩B)+ μ∗(A∩Bc).

However our assumption about B and the monotonicity of μ∗ imply that one of the
terms on the right-hand side of this inequality vanishes and that the other is at most
μ∗(A); thus the required inequality follows. �	

It follows that the sets ∅ and X are measurable for every outer measure on X .
The following theorem is the fundamental fact about outer measures; it will be

the key to many of our constructions of measures.

Theorem 1.3.6. Let X be a set, let μ∗ be an outer measure on X, and let Mμ∗ be
the collection of all μ∗-measurable subsets of X. Then

(a) Mμ∗ is a σ -algebra, and
(b) the restriction of μ∗ to Mμ∗ is a measure on Mμ∗ .

Proof. We begin by showing that Mμ∗ is an algebra of sets. First note that
Proposition 1.3.5 implies that X belongs to Mμ∗ . Note also that the equation

μ∗(A) = μ∗(A∩B)+ μ∗(A∩Bc)

is not changed if the sets B and Bc are interchanged; thus the μ∗-measurability of
B implies that of Bc, and so Mμ∗ is closed under complementation. Now suppose
that B1 and B2 are μ∗-measurable subsets of X ; we will show that B1 ∪B2 is μ∗-
measurable. For this, let A be an arbitrary subset of X . The μ∗-measurability of B1

implies

μ∗(A∩ (B1 ∪B2)) = μ∗(A∩ (B1 ∪B2)∩B1)+ μ∗(A∩ (B1 ∪B2)∩Bc
1)

= μ∗(A∩B1)+ μ∗(A∩Bc
1 ∩B2).

If we use this identity and the fact that (B1 ∪B2)
c = Bc

1 ∩Bc
2, and then simplify the

resulting expression by appealing first to the measurability of B2 and then to the
measurability of B1, we find

μ∗(A∩ (B1 ∪B2))+ μ∗(A∩ (B1 ∪B2)
c)

= μ∗(A∩B1)+ μ∗(A∩Bc
1 ∩B2)+ μ∗(A∩Bc

1 ∩Bc
2)

= μ∗(A∩B1)+ μ∗(A∩Bc
1)

= μ∗(A).

Since A was an arbitrary subset of X , the set B1∪B2 must be measurable. Thus Mμ∗
is an algebra.

Next suppose that {Bi} is an infinite sequence of disjoint μ∗-measurable sets; we
will show by induction that

μ∗(A) =
n

∑
i=1

μ∗(A∩Bi)+ μ∗(A∩ (∩n
i=1Bc

i )) (2)
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holds for each subset A of X and each positive integer n. Equation (2) is, in the case
where n = 1, simply a restatement of the measurability of B1. As to the induction
step, note that the μ∗-measurability of Bn+1 and the disjointness of the sequence
{Bi} imply that

μ∗(A∩ (∩n
i=1Bc

i ))

= μ∗(A∩ (∩n
i=1Bc

i )∩Bn+1)+ μ∗(A∩ (∩n
i=1Bc

i )∩Bc
n+1)

= μ∗(A∩Bn+1)+ μ∗(A∩ (∩n+1
i=1 Bc

i )).

With this (2) is proved.
Note that we do not increase the right-hand side of Eq. (2) if we replace

μ∗(A ∩ (∩n
i=1Bc

i )) with μ∗(A ∩ (∩∞
i=1Bc

i )), and thus with μ∗(A ∩ (∪∞
i=1Bi)

c); by
letting the n in the sum in the resulting inequality approach infinity, we find

μ∗(A)≥
∞

∑
i=1

μ∗(A∩Bi)+ μ∗(A∩ (∪∞
i=1Bi)

c). (3)

This and the countable subadditivity of μ∗ imply that

μ∗(A)≥
∞

∑
i=1

μ∗(A∩Bi)+ μ∗(A∩ (∪∞
i=1Bi)

c)

≥ μ∗(A∩ (∪∞
i=1Bi))+ μ∗(A∩ (∪∞

i=1Bi)
c)

≥ μ∗(A);

it follows that each inequality in the preceding calculation must in fact be an equality
and hence that ∪∞

i=1Bi is μ∗-measurable. Thus Mμ∗ is closed under the formation of
unions of disjoint sequences of sets. Since the union of an arbitrary sequence {Bi}
of sets in Mμ∗ is the union of a disjoint sequence of sets in Mμ∗ , namely of the
sequence

B1, Bc
1 ∩B2, . . . , Bc

1 ∩Bc
2 ∩·· ·∩Bc

n−1 ∩Bn, . . . ,

the algebra Mμ∗ is closed under the formation of countable unions. With this we
have proved that Mμ∗ is a σ -algebra.

To show that the restriction of μ∗ to Mμ∗ is a measure, we need to verify its
countable additivity. If {Bi} is a sequence of disjoint sets in Mμ∗ , then replacing A
with ∪∞

i=1Bi in inequality (3) yields

μ∗(∪∞
i=1Bi)≥

∞

∑
i=1

μ∗(Bi)+ 0;

since the reverse inequality is automatic, the countable additivity of the restriction
of μ∗ to Mμ∗ follows. �	

We turn to applications of Theorem 1.3.6 and begin with Lebesgue measure.
We will denote the collection of Lebesgue measurable subsets of R by Mλ ∗ .
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Proposition 1.3.7. Every Borel subset of R is Lebesgue measurable.

Proof. We begin by checking that every interval of the form (−∞,b] is Lebesgue
measurable. Let B be such an interval. According to the remarks made just before
the statement of Proposition 1.3.5, we need only check that

λ ∗(A)≥ λ ∗(A∩B)+λ ∗(A∩Bc) (4)

holds for each subset A of R for which λ ∗(A) < +∞. Let A be such a set, let ε
be an arbitrary positive number, and let {(an,bn)} be a sequence of open intervals
that covers A and satisfies ∑∞

n=1(bn − an) < λ ∗(A) + ε . Then for each n the sets
(an,bn)∩B and (an,bn)∩Bc are disjoint intervals (one of which may instead be the
empty set) whose union is (an,bn), and so

bn − an = λ ∗((an,bn)) = λ ∗((an,bn)∩B)+λ ∗((an,bn)∩Bc) (5)

(see Proposition 1.3.2). Since the sequence {(an,bn) ∩ B} covers A ∩ B and the
sequence {(an,bn)∩ Bc} covers A∩ Bc, we have from Eq. (5) and the countable
subadditivity of λ ∗ that

λ ∗(A∩B)+λ ∗(A∩Bc)≤ ∑
n

λ ∗((an,bn)∩B)+∑
n

λ ∗((an,bn)∩Bc)

= ∑
n
(bn − an)< λ ∗(A)+ ε.

However, ε was arbitrary, and so inequality (4) and the Lebesgue measurability of
B follow.

Thus the collection Mλ ∗ of Lebesgue measurable sets is a σ -algebra on R

(Theorem 1.3.6) that contains each interval of the form (−∞,b]. However B(R)
is the smallest σ -algebra on R that contains all these intervals (Proposition 1.1.4),
and so B(R)⊆ Mλ ∗ . �	

We will also use Mλ ∗ to denote the collection of Lebesgue measurable subsets
of Rd .

Proposition 1.3.8. Every Borel subset of Rd is Lebesgue measurable.

Proof. It is easy to give a proof of Proposition 1.3.8 by modifying that of
Proposition 1.3.7; the details are left to the reader. �	

The restriction of Lebesgue outer measure on R (or on R
d) to the collection Mλ ∗

of Lebesgue measurable subsets of R (or of Rd) is called Lebesgue measure and
will be denoted by λ or by λd . The restriction of Lebesgue outer measure to B(R)
or to B(Rd) is also called Lebesgue measure, and it too will be denoted by λ or by
λd . We can specify which version of Lebesgue measure we intend by referring, for
example, to Lebesgue measure on (R,B(R)) or to Lebesgue measure on (R,Mλ ∗).
We will deal most often with Lebesgue measure on the Borel sets; its relation to the
other version of Lebesgue measure is treated in Sect. 1.5.
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Two questions arise immediately. Is every subset of R Lebesgue measurable?
Is every Lebesgue measurable set a Borel set? The answer to each of these questions
is no; see Sects. 1.4 and 2.1 for details.

We close this section with a technique for constructing and representing all finite
measures on (R,B(R)). We begin with the following elementary fact.

Proposition 1.3.9. Let μ be a finite measure on (R,B(R)), and let Fμ : R → R

be defined by Fμ(x) = μ((−∞,x]). Then Fμ is bounded, nondecreasing, and right-
continuous, and satisfies limx→−∞ Fμ(x) = 0.

Proof. It follows from Proposition 1.2.2 that 0 ≤ μ((−∞,x]) ≤ μ(R) holds for
all x in R and that μ((−∞,x]) ≤ μ((−∞,y]) holds for all x and y in R such that
x ≤ y; hence Fμ is bounded and nondecreasing. Next suppose that x ∈ R and that
{xn} is the sequence defined by xn = x+ 1/n. Then (−∞,x] = ∩∞

n=1(−∞,xn], and
so Proposition 1.2.5 implies that Fμ(x) = limn Fμ(xn). The right continuity of Fμ
follows (note that if x < y < xn, then, since Fμ is nondecreasing, |Fμ(y)−Fμ(x)| ≤
|Fμ(xn)−Fμ(x)|). A similar argument shows that limx→−∞ Fμ(x) = 0. �	

Let μ and Fμ be as in Proposition 1.3.9. The interval (a,b] is the difference of
the intervals (−∞,b] and (−∞,a], and so Proposition 1.2.2 implies that

μ((a,b]) = Fμ(b)−Fμ(a). (6)

Since Fμ is bounded and nondecreasing, the limit of Fμ(t) as t approaches x from
the left exists for each x in R; this limit is equal to sup{Fμ(t) : t < x} and will be
denoted by Fμ(x−). Now let {an} be a sequence that increases to the real number
b; if we apply Eq. (6) to each interval (an,b] and then use Proposition 1.2.5, we find
that

μ({b}) = Fμ(b)−Fμ(b−). (7)

Consequently Fμ is continuous at b if μ({b}) = 0, and is discontinuous there, with
a jump of size μ({b}) in its graph, if μ({b}) �= 0. Thus the measure μ is continuous
(see Sect. 1.2) if and only if the function Fμ is continuous.

Equations (6) and (7) allow one to use Fμ to recover the measure under μ of
certain subsets of R (see also Exercise 4); however, the following proposition allows
us to say more, namely that the measure under μ of every Borel subset of R is in
fact determined by Fμ .

Proposition 1.3.10. For each bounded, nondecreasing, and right-continuous
function F : R→R that satisfies limx→−∞ F(x) = 0, there is a unique finite measure
μ on (R,B(R)) such that F(x) = μ((−∞,x]) holds at each x in R.

Proof. Let F be as in the statement of the proposition. We begin by constructing
the required measure μ . Define a function μ∗ : P(R) → [0,+∞] by letting μ∗(A)
be the infimum of the set of sums ∑∞

n=1(F(bn)−F(an)), where {(an,bn]} ranges
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over the set of sequences of half-open intervals that cover A, in the sense that
A ⊆ ∪∞

n=1(an,bn]. Then μ∗ is an outer measure on R; the reader can check this
by modifying some of the arguments used in the proof of Proposition 1.3.2.

Next we verify that μ∗((−∞,x]) = F(x) holds for each x in R. The inequality
μ∗((−∞,x]) ≤ F(x) holds, since (−∞,x] can be covered by the intervals in the
sequence {(x−n,x−n+1]}∞

n=1, for which we have ∑∞
n=1(F(x−n+1)−F(x−n))=

F(x). We turn to the reverse inequality. Let {(an,bn]} be a sequence that covers
(−∞,x], and let ε be a positive number. Use the fact that limt→−∞ F(t) = 0 to choose
a number t such that t < x and F(t) < ε , and for each n use the right continuity of
F to choose a positive number δn such that F(bn + δn) < F(bn)+ ε/2n. Then the
interval [t,x] is compact, each interval (an,bn + δn) is open, [t,x] ⊆ ∪∞

n=1(an,bn +
δn), and ∑n(F(bn + δn)− F(an)) ≤ ∑n(F(bn)− F(an)) + ε . The compactness of
[t,x] implies that there is a positive integer N such that [t,x] ⊆ ∪N

n=1(an,bn + δn).
It follows that (t,x] is the union of a finite collection of disjoint intervals (c j,d j],
each of which is included in some (an,bn + δn]. Consequently

F(x)−F(t) = ∑
j
(F(d j)−F(c j))≤

∞

∑
n=1

(F(bn + δn)−F(an)),

and so

F(x)− ε ≤
∞

∑
n=1

(F(bn)−F(an))+ ε.

Since ε and the sequence {(an,bn]} are arbitrary, the inequality F(x)≤ μ∗((−∞,x])
follows. With this we have shown that F(x) = μ∗((−∞,x]).

The reader should check that the proof of Proposition 1.3.7 can be modified so as
to show that each interval (−∞,b] is μ∗-measurable and then that each Borel subset
of R is μ∗-measurable.

Let μ be the restriction of μ∗ to B(R). The preceding steps of our proof, together
with Theorem 1.3.6, show that μ is a measure and that it satisfies μ((−∞,x]) =
F(x) at each x in R. Since F is bounded, while μ(R) = limn→∞ μ((−∞,n]) =
limn→∞ F(n) (Proposition 1.2.5), the measure μ is finite.

Finally we check the uniqueness of μ . Let μ be as constructed above, and let ν
be a possibly different measure such that ν((−∞,x]) = F(x) holds for each x in R.
We first show that

ν(A)≤ μ(A) (8)

is true for each Borel subset A of R. To see this, note that if A is a Borel set and
if {(an,bn]} is a sequence such that A ⊆ ∪n(an,bn], then (according to (6), applied
to ν)

ν(A)≤ ∑
n

ν((an,bn]) = ∑
n
(F(bn)−F(an)). (9)
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Since μ∗(A) was defined to be the infimum of the set of values that can occur as
sums on the right side of (9), inequality (8) follows. If we apply inequality (8) to A
and to Ac, we find

ν(R) = ν(A)+ν(Ac)≤ μ(A)+ μ(Ac) = μ(R).

Since ν(R) = μ(R) < +∞, it follows that ν(A) and ν(Ac) are equal to μ(A) and
μ(Ac), respectively. With this the proof that ν = μ is complete. �	

The uniqueness assertion on Proposition 1.3.10 can also be proved by means of
other standard techniques; see, for example, the discussion following the proof of
Corollary 1.6.3.

Exercises

1. Define functions μ∗
1 , . . . , μ∗

6 on P(R) by

μ∗
1 (A) =

{
0 if A is empty,

1 if A is nonempty,

μ∗
2 (A) =

{
0 if A is empty,

+∞ if A is nonempty,

μ∗
3 (A) =

{
0 if A is bounded,

1 if A is unbounded,

μ∗
4 (A) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if A is empty,

1 if A is nonempty and bounded,

+∞ if A is unbounded,

μ∗
5 (A) =

{
0 if A is countable,

1 if A is uncountable,

μ∗
6 (A) =

{
0 if A is countable, and

+∞ if A is uncountable.

(a) Which of μ∗
2 , μ∗

3 , μ∗
4 , and μ∗

6 are outer measures? (We noted in Exam-
ples 1.3.1(a) and 1.3.1(b) that μ∗

1 and μ∗
5 are outer measures.)

(b) For each i such that μ∗
i is an outer measure determine the μ∗

i -measurable
subsets of R.

2. Let C be a countable subset of R. Using only the definition of λ ∗, show that
λ ∗(C) = 0.
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3. Show that for each subset A of R there is a Borel subset B of R that includes A
and satisfies λ (B) = λ ∗(A).

4. Let F : R→ R be a bounded, nondecreasing, and right-continuous function that
satisfies limx→−∞ F(x) = 0, and let μ be the measure on (R,B(R)) that is
associated to F by Proposition 1.3.10. Show that if a and b belong to R and
satisfy a < b, then

μ((−∞,b)) = F(b−),

μ((a,b)) = F(b−)−F(a),

μ([a,b]) = F(b)−F(a−), and

μ([a,b)) = F(b−)−F(a−).

5. Let X be a set, let A be an algebra of subsets of X , and let μ be a finitely additive
measure on A . For each subset A of X let μ∗(A) be the infimum of the set of
sums ∑∞

k=1 μ(Ak), where {Ak} ranges over the sequences of sets in A for which
A ⊆ ∪∞

k=1Ak.
(a) Show that μ∗ is an outer measure on X .
(b) Show that each set in A is μ∗-measurable.
(c) Show that if μ is countably additive (in the sense that μ(∪kAk) = ∑k μ(Ak)

holds whenever {Ak} is a sequence of disjoint sets in A for which ∪kAk

belongs to A ), then each A in A satisfies μ(A) = μ∗(A).
(d) Conclude that if μ is a countably additive measure on the algebra A , then

there is a countably additive measure on σ(A ) that agrees with μ on A .
6. (Continuation.) Let X , A , μ , and μ∗ be as in Exercise 5, and assume that μ is

countably additive.
(a) Show that if ν is a countably additive measure on σ(A ) that agrees with μ

on A , then ν(A)≤ μ∗(A) holds for each A in σ(A).
(b) Conclude that if μ is finite (or if X is the union of a sequence of sets that

belong to A and have finite measure under μ), then μ can be extended to a
countably additive measure on σ(A ) in only one way.

7. Show that a subset B of R is Lebesgue measurable if and only if

λ ∗(I) = λ ∗(I∩B)+λ ∗(I ∩Bc)

holds for each open subinterval I of R.
8. Let I be a bounded subinterval of R. Show that a subset B of I is Lebesgue

measurable if and only if it satisfies λ ∗(I) = λ ∗(B)+λ ∗(I ∩Bc).
9. Let λ ∗ be Lebesgue outer measure on R, and let π be the projection of R2 onto

R given by π(x,y) = x. Define a function μ∗ : P(R2) → [0,+∞] by μ∗(A) =
λ ∗(π(A)).
(a) Show that μ∗ is an outer measure on R

2.
(b) Show that a subset B of R2 is measurable for the outer measure μ∗ defined

in this exercise if and only if there are Lebesgue measurable subsets B0 and
B1 of R such that B0 ⊆ B1, λ ∗(B1 −B0) = 0, and B0 ×R⊆ B ⊆ B1 ×R.
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1.4 Lebesgue Measure

This section contains a number of the basic properties of Lebesgue measure on
R

d . The reader who wants to move quickly on to Chap. 2 might restrict his or her
attention to Proposition 1.4.1, Proposition 1.4.4, and Theorem 1.4.9.

Proposition 1.4.1. Let A be a Lebesgue measurable subset of Rd. Then

(a) λ (A) = inf{λ (U) : U is open and A ⊆U}, and
(b) λ (A) = sup{λ (K) : K is compact and K ⊆ A}.

Proposition 1.4.1 can be put more briefly, namely as the assertion that Lebesgue
measure is regular. In the interest of simplicity, however, we will delay the study
and even the definition of regularity until Sect. 1.5 and Chap. 7.

Proof. Note that the monotonicity of λ implies that

λ (A)≤ inf{λ (U) : U is open and A ⊆U}
and

λ (A)≥ sup{λ (K) : K is compact and K ⊆ A}.
Hence we need only prove the reverse inequalities.

We begin with part (a). Since the required equality clearly holds if λ (A) = +∞,
we can assume that λ (A) < +∞. Let ε be an arbitrary positive number. Then
according to the definition of Lebesgue measure, there is a sequence {Ri} of open
d-dimensional intervals such that A ⊆ ∪iRi and ∑i vol(Ri) < λ (A) + ε . Let U be
the union of these intervals. Then U is open, A ⊆ U , and (see Propositions 1.2.4
and 1.3.4)

λ (U)≤ ∑
i

λ (Ri) = ∑
i

vol(Ri)< λ (A)+ ε.

Since ε is arbitrary, part (a) is proved.
We turn to part (b) and deal first with the case where A is bounded. Let C be a

closed and bounded set that includes A, and let ε be an arbitrary positive number.
Use part (a) to choose an open set U that includes C−A and satisfies

λ (U)< λ (C−A)+ ε. (1)

Let K = C−U . (Drawing a sketch might help the reader.) Then K is a closed and
bounded (and hence compact) subset of A; furthermore, C ⊆ K ∪U and so

λ (C)≤ λ (K)+λ (U). (2)

Inequalities (1) and (2) (and the fact that λ (C − A) = λ (C)− λ (A)) imply that
λ (A)− ε < λ (K). Since ε was arbitrary, part (b) is proved in the case where A
is bounded.
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Finally, consider the case where A is not bounded. Suppose that b is a real number
less than λ (A); we will produce a compact subset K of A such that b < λ (K).
Let {A j} be an increasing sequence of bounded measurable subsets of A such that
A =∪ jA j (for example, we might let A j be the intersection of A with the closed ball
of radius j about the origin). Proposition 1.2.5 implies that λ (A) = lim j λ (A j), and
so we can choose j0 such that λ (A j0)> b. Now apply to A j0 the weakened form of
part (b) that was proved in the preceding paragraph; this gives a compact subset K
of A j0 (and hence of A) such that λ (K) > b. Since b was an arbitrary number less
than λ (A), the proof is complete. �	

The following lemma will be needed for the proof of Proposition 1.4.3. In this
lemma we will be dealing with a certain collection of half-open cubes, namely with
those that have the form

{(x1, . . . ,xd) : ji2
−k ≤ xi < ( ji + 1)2−k for i = 1, . . . , d} (3)

for some integers j1, . . . , jd and some positive integer k.

Lemma 1.4.2. Each open subset of R
d is the union of a countable disjoint

collection of half-open cubes, each of which is of the form given in expression (3).

Proof. For each positive integer k let Ck be the collection of all cubes of the form

{(x1, . . . ,xd) : ji2
−k ≤ xi < ( ji + 1)2−k for i = 1, . . . , d},

where j1, . . . , jd are arbitrary integers. It is easy to see that

(a) each Ck is a countable partition of Rd , and
(b) if k1 < k2, then each cube in Ck2 is included in some cube in Ck1 .

The reader should keep these facts about the family {Ck} in mind when checking
that the collection D defined below has the properties claimed for it.

Suppose that U is an open subset of Rd . We construct a collection D of cubes
inductively by letting D be empty at the start, and then at step k (for k = 1, 2, . . . )
adding to D those cubes in Ck that are included in U but are disjoint from all the
cubes put into D at earlier steps. It is clear that D is a countable disjoint collection of
cubes whose union is included in U . It remains only to check that its union includes
U . Let x be a member of U . Since U is open, the cube in Ck that contains x is
included in U if k is sufficiently large. Let k0 be the smallest such k. Then the cube
in Ck0 that contains x belongs to D , and so x belongs to the union of the cubes in D .

�	
Proposition 1.4.3. Lebesgue measure is the only measure on (Rd ,B(Rd)) that
assigns to each d-dimensional interval, or even to each half-open cube of the form
given in expression (3), its volume.

Proof. That Lebesgue measure does assign to each d-dimensional interval its
volume was noted in Sect. 1.3. So we need only assume that μ is a measure on
(Rd ,B(Rd)) that assigns to each cube of the form given in expression (3) its volume
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and prove that μ = λ . First suppose that U is an open subset of Rd . Then according
to Lemma 1.4.2 there is a disjoint sequence {Cj} of half-open cubes that have the
form given in expression (3) and whose union is U , and so

μ(U) = ∑
j

μ(Cj) = ∑
j

λ (Cj) = λ (U);

hence μ and λ agree on the open subsets of R
d . Next suppose that A is an

arbitrary Borel subset of R
d . If U is an open subset of R

d that includes A, then
μ(A) ≤ μ(U) = λ (U); it follows that μ(A) ≤ inf{λ (U) : U is open and A ⊆U}.
The regularity of λ (Proposition 1.4.1) now implies that

μ(A)≤ λ (A). (4)

We need to show that this inequality can be replaced with an equality. First suppose
that A is a bounded Borel subset of Rd and that V is a bounded open set that includes
A. Then inequality (4), applied to the sets A and V −A, implies that

μ(V ) = μ(A)+ μ(V −A)≤ λ (A)+λ (V −A) = λ (V );

since the extreme members of this inequality are equal, and since μ(A) and μ(V −A)
are no larger than λ (A) and λ (V −A), respectively, it follows that μ(A) and λ (A)
are equal. Finally, an arbitrary Borel subset A of Rd is the union of a sequence of
disjoint bounded Borel sets and so must satisfy μ(A) = λ (A). �	

For each element x and subset A of Rd we will denote by A+ x the subset of Rd

defined by

A+ x = {y ∈ R
d : y = a+ x for some a in A};

the set A+ x is called the translate of A by x. We turn to the invariance of Lebesgue
measure under such translations.

Proposition 1.4.4. Lebesgue outer measure on R
d is translation invariant, in the

sense that if x ∈ R
d and A ⊆ R

d, then λ ∗(A) = λ ∗(A+ x). Furthermore, a subset B
of Rd is Lebesgue measurable if and only if B+ x is Lebesgue measurable.

Proof. The equality of λ ∗(A) and λ ∗(A+ x) follows from the definition of λ ∗ and
the fact that the volume of a d-dimensional interval is invariant under translation.
The second assertion follows from the first, together with the definition of a
Lebesgue measurable set—note that a set B satisfies

λ ∗(A− x) = λ ∗((A− x)∩B)+λ ∗((A− x)∩Bc)

for all sets A− x if and only if B+ x satisfies

λ ∗(A) = λ ∗(A∩ (B+ x))+λ ∗(A∩ (B+ x)c)

for all sets A. �	
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Lebesgue measure on (Rd ,B(Rd)) is characterized up to constant multiples by
the following result; see Chap. 9 for analogous results that hold in more general
situations.

Proposition 1.4.5. Let μ be a nonzero measure on (Rd ,B(Rd)) that is finite on the
bounded Borel subsets of Rd and is translation invariant, in the sense that μ(A) =
μ(A+ x) holds for each A in B(Rd) and each x in R

d. Then there is a positive
number c such that μ(A) = cλ (A) holds for each A in B(Rd).

Note that for the concept of translation invariance for measures on (Rd ,B(Rd))
to make sense, the Borel σ -algebra on R

d must be translation invariant, in the sense
that if A ∈ B(Rd) and x ∈ R

d , then A + x ∈ B(Rd). To check this translation
invariance of B(Rd), note that {A ⊆ R

d : A + x ∈ B(Rd)} is a σ -algebra that
contains the open sets and hence includes B(Rd).

Proof. Let C = {(x1, . . . ,xd) : 0 ≤ xi < 1 for each i}, and let c = μ(C). Then c is
finite (since μ is finite on the bounded Borel sets) and positive (if it were 0, then
R

d , as the union of a sequence of translates of C, would have measure zero under
μ). Define a measure ν on B(Rd) by letting ν(A) = (1/c)μ(A) hold for each A
in B(Rd). Then ν is translation invariant, and it assigns to the set C defined above
its Lebesgue measure, namely 1. If D is a half-open cube that has the form given in
expression (3) and whose edges have length 2−k, then C is the union of 2dk translates
of D, and so

2dkν(D) = ν(C) = λ (C) = 2dkλ (D);

thus ν and λ agree on all such cubes. Proposition 1.4.3 now implies that ν = λ and
hence that μ = cλ . �	
Example 1.4.6 (The Cantor Set). We should note a few facts about the Cantor
set, a set which turns out to be a useful source of examples. Recall that it is defined
as follows. Let K0 be the interval [0,1]. Form K1 by removing from K0 the interval
(1/3,2/3). Thus K1 = [0,1/3]∪ [2/3,1]. Continue this procedure, forming Kn by
removing from Kn−1 the open middle third of each of the intervals making up
Kn−1. Thus Kn is the union of 2n disjoint closed intervals, each of length (1/3)n.
The Cantor set (which we will temporarily denote by K) is the set of points that
remain; thus K = ∩nKn.

Of course K is closed and bounded. Furthermore, K has no interior points, since
an open interval included in K would for each n be included in one of the intervals
making up Kn and so would have length at most (1/3)n. The cardinality of K is that
of the continuum: it is easy to check that the map that assigns to a sequence {zn}
of 0’s and 1’s the number ∑∞

n=1 2zn/3n is a bijection of the set of all such sequences
onto K; hence the cardinality of K is that of the set of all sequences of 0’s and 1’s
and so that of the continuum (see Appendix A). �	
Proposition 1.4.7. The Cantor set is a compact set that has the cardinality of the
continuum but has Lebesgue measure zero.
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Proof. We have already noted that the Cantor set (again call it K) is compact and
has the cardinality of the continuum. To compute the measure of K, note that for
each n it is included in the set Kn constructed above and that λ (Kn) = (2/3)n. Thus
λ (K)≤ (2/3)n holds for each n, and so λ (K) must be zero. (For an alternative proof,
check that the sum of the measures of the intervals removed from [0,1] during the
construction of K is the sum of the geometric series

1
3
+

2
3
· 1

3
+
(2

3

)2 · 1
3
+
(2

3

)3 · 1
3
+ . . . ,

and so is 1.) �	
Example 1.4.8 (A Nonmeasurable Set). We now return to one of the promises
made in Sect. 1.3 and prove that there is a subset of R that is not Lebesgue
measurable. Note that our proof of this uses the axiom of choice.4 Whether the
use of this axiom is essential was an open question until the mid-1960s, when R.M.
Solovay showed that if a certain consistency assumption holds, then the existence
of a subset of R that is not Lebesgue measurable cannot be proved from the axioms
of Zermelo–Frankel set theory without the use of the axiom of choice.5

Theorem 1.4.9. There is a subset of R, and in fact of the interval (0,1), that is not
Lebesgue measurable.

Proof. Define a relation ∼ on R by letting x ∼ y hold if and only if x− y is rational.
It is easy to check that ∼ is an equivalence relation: it is reflexive (x ∼ x holds for
each x), symmetric (x∼ y implies y∼ x), and transitive (x∼ y and y∼ z imply x∼ z).
Note that each equivalence class under ∼ has the form Q+ x for some x and so is
dense in R. Since these equivalence classes are disjoint, and since each intersects
the interval (0,1), we can use the axiom of choice to form a subset E of (0,1) that
contains exactly one element from each equivalence class. We will prove that the
set E is not Lebesgue measurable.

Let {rn} be an enumeration of the rational numbers in the interval (−1,1), and
for each n let En = E + rn. We will check that

(a) the sets En are disjoint,
(b) ∪nEn is included in the interval (−1,2), and
(c) the interval (0,1) is included in ∪nEn.

To check (a), note that if Em ∩En �= ∅, then there are elements e and e′ of E such
that e+ rm = e′+ rn; it follows that e ∼ e′ and hence that e = e′ and m = n. Thus (a)
is proved. Assertion (b) follows from the inclusion E ⊆ (0,1) and the fact that each
term of the sequence {rn} belongs to (−1,1). Now consider assertion (c). Let x be

4See items A.12 and A.13 in Appendix A.
5For details, see Solovay [110].
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an arbitrary member of (0,1), and let e be the member of E that satisfies x ∼ e. Then
x−e is rational and belongs to (−1,1) (recall that both x and e belong to (0,1)) and
so has the form rn for some n. Hence x ∈ En, and assertion (c) is proved.

Suppose that the set E is Lebesgue measurable. Then for each n the set En is
measurable (Proposition 1.4.4), and so property (a) above implies that

λ (∪nEn) = ∑
n

λ (En);

furthermore, the translation invariance of λ implies that λ (En) = λ (E) holds for
each n. Hence if λ (E) = 0, then λ (∪nEn) = 0, contradicting assertion (c) above,
while if λ (E) �= 0, then λ (∪nEn) = +∞, contradicting assertion (b). Thus the
assumption that E is measurable leads to a contradiction, and the proof is complete.

�	
Let A be a subset of R. Then diff(A) is the subset of R defined by

diff(A) = {x− y : x ∈ A and y ∈ A}.
The following fact about such sets is occasionally useful.

Proposition 1.4.10. Let A be a Lebesgue measurable subset of R such that λ (A)>
0. Then diff(A) includes an open interval that contains 0.

Proof. According to Proposition 1.4.1, there is a compact subset K of A such that
λ (K) > 0. Since diff(K) is then included in diff(A), it is enough to prove that
diff(K) includes an open interval that contains 0. Note that a real number x belongs
to diff(K) if and only if K intersects x+K; thus it suffices to prove that if |x| is
sufficiently small, then K intersects x+K.

Use Proposition 1.4.1 to choose an open set U such that K ⊆ U and λ (U) <
2λ (K). The distances between the points in K and the points outside U are bounded
away from 0 (since the distance from a point x of U to the complement of U is
a continuous strictly positive function of x and so has a positive minimum on the
compact set K; see D.27 and D.18). Thus there is a positive number ε such that if
|x| < ε , then x+K is included in U . Suppose that |x| < ε . If x+K were disjoint
from K, then it would follow from the translation invariance of λ and the relation
x+K ⊆U that

2λ (K) = λ (K)+λ (x+K) = λ (K ∪ (x+K))≤ λ (U).

However this contradicts the inequality λ (U)< 2λ (K), and so K and x+K cannot
be disjoint. Therefore, x ∈ diff(K). Consequently the interval (−ε,ε) is included in
diff(K), and thus in diff(A). �	

We can use Proposition 1.4.10, plus a modification of the proof of Theorem 1.4.9,
to prove the following rather strong result (see the remark at the end of this section
and the one following the proof of Proposition 1.5.4).
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Proposition 1.4.11. There is a subset A of R such that each Lebesgue measurable
set that is included in A or in Ac has Lebesgue measure zero.

Proof. Define subsets G, G0, and G1 of R by

G = {x : x = r+ n
√

2 for some r in Q and n in Z},
G0 = {x : x = r+ 2n

√
2 for some r in Q and n in Z}, and

G1 = {x : x = r+(2n+ 1)
√

2 for some r in Q and n in Z}.

It is easy to see that G and G0 are subgroups of R (under addition), that G0 and G1

are disjoint, that G1 = G0 +
√

2, and that G = G0 ∪G1. Define a relation ∼ on R

by letting x ∼ y hold when x− y ∈ G; the relation ∼ is then an equivalence relation
on R. Use the axiom of choice to form a subset E of R that contains exactly one
representative of each equivalence class of ∼. Let A = E +G0 (that is, let A consist
of the points that have the form e+ g0 for some e in E and some g0 in G0).

We now show that there does not exist a Lebesgue measurable subset B of A
such that λ (B) > 0. For this let us assume that such a set exists; we will derive
a contradiction. Proposition 1.4.10 implies that there is an interval (−ε,ε) that is
included in diff(B) and hence in diff(A). Since G1 is dense in R, it meets the interval
(−ε,ε) and hence meets diff(A). This, however, is impossible, since each element
of diff(A) is of the form e1 − e2 + g0 (where e1 and e2 belong to E and g0 belongs
to G0) and so cannot belong to G1 (the relation e1 − e2 + g0 = g1 would imply that
e1 = e2 and g0 = g1, contradicting the disjointness of G0 and G1). This completes
our proof that every Lebesgue measurable subset of A must have Lebesgue measure
zero.

It is easy to check that Ac = E +G1 and hence that Ac = A+
√

2. It follows that
each Lebesgue measurable subset of Ac is of the form B+

√
2 for some Lebesgue

measurable subset B of A. Since A has no Lebesgue measurable subsets of positive
measure, it follows that Ac also has no such subsets, and with this the proof is
complete. �	

Note that the set A of Proposition 1.4.11 is not Lebesgue measurable: if it were,
then both A and Ac would include (in fact, would be) Lebesgue measurable sets
of positive Lebesgue measure. Thus we could have presented Theorem 1.4.9 as a
corollary of Proposition 1.4.11. (Of course, the proof of Theorem 1.4.9 presented
earlier is simpler than the proofs of Propositions 1.4.10 and 1.4.11 taken together
and is in fact a classical and well-known argument; hence it was included.)

Exercises

1. Prove that under Lebesgue measure on R
2

(a) every straight line has measure zero, and
(b) every circle has measure zero.
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2. Let A be a subset of Rd . Show that the conditions

(i) A is Lebesgue measurable,
(ii) A is the union of an Fσ and a set of Lebesgue measure zero, and

(iii) there is a set B that is an Fσ and satisfies λ ∗(A�B) = 0

are equivalent.
3. Let T be a rotation of R2 about the origin (or, more generally, a linear map from

R
d to R

d that preserves distances).
(a) Show that a subset A of R2 (or of Rd) is Borel if and only if T (A) is Borel.

(Hint: See the remark following the statement of Proposition 1.4.5.)
(b) Show that each Borel subset A of R2 (or of Rd) satisfies λ (A) = λ (T (A)).

(Hint: Use Proposition 1.4.5.)
4. Show that for each number α that satisfies 0<α < 1 there is a closed subset C of

[0,1] that satisfies λ (C) = α and includes no nonempty open set. (Hint: Imitate
the construction of the Cantor set.)

5. Show that there is a Borel subset A of R such that 0 < λ (I ∩A) < λ (I) holds
whenever I is a bounded open subinterval of R.

6. Show that if B is a subset of R that satisfies λ ∗(B)> 0, then B includes a set that
is not Lebesgue measurable. (Hint: Use Proposition 1.4.11.)

7. Show that there exists a decreasing sequence {An} of subsets of [0,1] such that
λ ∗(An) = 1 holds for each n, but for which ∩nAn = ∅. (Hint: Let B be a Hamel
basis6 for R as a vector space over Q, and let {Bn} be a strictly increasing
sequence of sets such that B = ∪nBn. For each n let Vn be the subspace of R

spanned by Bn, and let An = [0,1]∩V c
n . Use Proposition 1.4.10 to show that each

Borel subset of Vn has Lebesgue measure zero and hence that λ ∗(An) = 1.)

1.5 Completeness and Regularity

Let (X ,A ,μ) be a measure space. The measure μ (or the measure space (X ,A ,μ))
is complete if the relations A ∈ A , μ(A) = 0, and B ⊆ A together imply that B ∈A .
It is sometimes convenient to call a subset B of X μ-negligible (or μ-null) if there
is a subset A of X such that A ∈ A , B ⊆ A, and μ(A) = 0. Thus the measure μ is
complete if and only if every μ-negligible subset of X belongs to A .

It follows from Proposition 1.3.5 that if μ∗ is an outer measure on the set X
and if Mμ∗ is the σ -algebra of all μ∗-measurable subsets of X , then the restriction
of μ∗ to Mμ∗ is complete. In particular, Lebesgue measure on the σ -algebra of

6This means that B spans R (i.e., that R is the smallest linear subspace of R that includes B) and
that no proper subset of B spans R. The axiom of choice implies that such a set B exists; see, for
example, Lang [80, Section 5 of Chapter III].
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Lebesgue measurable subsets of Rd is complete. On the other hand, as we will soon
see, the restriction of Lebesgue measure to the σ -algebra of Borel subsets of R is
not complete.

It is sometimes convenient to be able to deal with arbitrary subsets of sets of
measure zero, and at such times complete measures are desirable. In many such
situations the following construction proves useful.

Let (X ,A ) be a measurable space, and let μ be a measure on A . The completion
of A under μ is the collection Aμ of subsets A of X for which there are sets E and
F in A such that

E ⊆ A ⊆ F (1)

and

μ(F −E) = 0. (2)

A set that belongs to Aμ is sometimes said to be μ-measurable.
Suppose that A, E , and F are as in the preceding paragraph. It follows imme-

diately that μ(E) = μ(F). Furthermore, if B is a subset of A that belongs to A ,
then

μ(B)≤ μ(F) = μ(E).

Hence

μ(E) = sup{μ(B) : B ∈ A and B ⊆ A},
and so the common value of μ(E) and μ(F) depends only on the set A (and the
measure μ), and not on the choice of sets E and F satisfying (1) and (2). Thus we
can define a function μ : Aμ → [0,+∞] by letting μ(A) be the common value of
μ(E) and μ(F), where E and F belong to A and satisfy (1) and (2). This function
μ is called the completion of μ .

Proposition 1.5.1. Let (X ,A ) be a measurable space, and let μ be a measure on
A . Then Aμ is a σ -algebra on X that includes A , and μ is a measure on Aμ that
is complete and whose restriction to A is μ .

Proof. It is clear that Aμ includes A (for A in A let the sets E and F in (1) and
(2) equal A), and in particular that X ∈ Aμ . Note that the relations E ⊆ A ⊆ F and
μ(F −E) = 0 imply the relations Fc ⊆ Ac ⊆ Ec and μ(Ec −Fc) = 0; thus Aμ is
closed under complementation. Next suppose that {An} is a sequence of sets in Aμ .
For each n choose sets En and Fn in A such that En ⊆ An ⊆ Fn and μ(Fn −En) = 0.
Then ∪nEn and ∪nFn belong to A and satisfy ∪nEn ⊆ ∪nAn ⊆∪nFn and

μ(∪nFn −∪nEn)≤ μ(∪n(Fn −En))≤ ∑
n

μ(Fn −En) = 0;

thus ∪An belongs to Aμ . This completes the proof that Aμ is a σ -algebra on X that
includes A .

Now consider the function μ. It is an extension of μ , since for A in A we can
again let E and F equal A. It is clear that μ has nonnegative values and satisfies
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μ(∅) = 0, and so we need only check its countable additivity. Let {An} be a
sequence of disjoint sets in Aμ , and for each n again choose sets En and Fn in
A that satisfy En ⊆ An ⊆ Fn and μ(Fn −En) = 0. The disjointness of the sets An

implies the disjointness of the sets En, and so we can conclude that

μ(∪nAn) = μ(∪nEn) = ∑
n

μ(En) = ∑
n

μ(An).

Thus μ is a measure. It is easy to check that μ is complete. �	
We turn to an example.

Proposition 1.5.2. Lebesgue measure on (Rd ,Mλ ∗) is the completion of Lebesgue
measure on (Rd ,B(Rd)).

We begin with the following lemma.

Lemma 1.5.3. Let A be a Lebesgue measurable subset of Rd. Then there exist Borel
subsets E and F of Rd such that E ⊆ A ⊆ F and λ (F −E) = 0.

Proof. First suppose that A is a Lebesgue measurable subset of Rd such that λ (A)<
+∞. For each positive integer n, use Proposition 1.4.1 to choose a compact set Kn

such that Kn ⊆ A and λ (A)−1/n< λ (Kn) and an open set Un such that A ⊆Un and
λ (Un)< λ (A)+1/n. Let E =∪nKn and F =∩nUn. Then E and F belong to B(Rd)
and satisfy E ⊆ A ⊆ F . The relation

λ (F −E)≤ λ (Un −Kn) = λ (Un −A)+λ (A−Kn)< 2/n

holds for each n, and so λ (F −E) = 0. Thus the lemma is proved in the case where
λ (A)<+∞.

If A is an arbitrary Lebesgue measurable subset of Rd , then A is the union of a
sequence {An} of Lebesgue measurable sets of finite Lebesgue measure. For each
n we can choose Borel sets En and Fn such that En ⊆ An ⊆ Fn and λ (Fn −En) = 0.
The sets E and F defined by E = ∪nEn and F = ∪nFn then satisfy E ⊆ A ⊆ F and
λ (F −E) = 0 (note that F −E ⊆ ∪n(Fn −En)). �	
Proof of Proposition 1.5.2. Let λ be Lebesgue measure on (Rd ,B(Rd)), let λ be
the completion of λ , and let λm be Lebesgue measure on (Rd ,Mλ ∗). Lemma 1.5.3
implies that Mλ ∗ is included in the completion of B(Rd) under λ and that λm is the
restriction of λ to Mλ ∗ . Thus we need only check that each set A that belongs to the
completion of B(Rd) under λ is Lebesgue measurable. For such a set A there exist
Borel sets E and F such that E ⊆ A ⊆ F and λ (F −E) = 0. Since A−E ⊆ F −E
and λm(F −E) = λ (F −E) = 0, the completeness of Lebesgue measure on Mλ ∗
implies that A−E ∈Mλ ∗ . Thus A, since it is the union of A−E and E , must belong
to Mλ ∗ . �	

We will see in Sect. 2.1 that

(a) there are Lebesgue measurable subsets of R that are not Borel sets, and
(b) the restriction of Lebesgue measure to B(R) is not complete.
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It should be noted that although replacing a measure space (X ,A ,μ) with
its completion (X ,Aμ ,μ) enables one to avoid some difficulties, it introduces
others. Some difficulties arise because the completed σ -algebra Aμ is often more
complicated than the original σ -algebra A . Others are caused by the fact that for
measures μ and ν defined on a common σ -algebra A , the completions Aμ and
Aν of A under μ and ν may not be equal (see Exercise 3). Because of these
complications it seems wise whenever possible to avoid arguments that depend on
completeness; it turns out that in the basic parts of measure theory this can almost
always be done.

Let (X ,A ) be a measurable space, let μ be a measure on A , and let A be an
arbitrary subset of X . Then μ∗(A), the outer measure of A, is defined by

μ∗(A) = inf{μ(B) : A ⊆ B and B ∈ A }, (3)

and μ∗(A), the inner measure of A, is defined by

μ∗(A) = sup{μ(B) : B ⊆ A and B ∈ A }.
It is easy to check that μ∗(A)≤ μ∗(A) holds for each subset A of X .

Proposition 1.5.4. Let (X ,A ) be a measurable space, and let μ be a measure
on (X ,A ). Then the function μ∗ : P(X) → [0,+∞] defined by Eq. (3) is an outer
measure (as defined in Sect. 1.3) on X.

Proof. Certainly μ∗ satisfies μ∗(∅) = 0 and is monotone. We turn to its subadditiv-
ity. Let {An} be a sequence of subsets of X . The inequality μ∗(∪nAn)≤ ∑n μ∗(An)
is clear if ∑n μ∗(An) = +∞. So suppose that ∑n μ∗(An)<+∞. Let ε be an arbitrary
positive number, and for each n choose a set Bn that belongs to A , includes An, and
satisfies μ(Bn) ≤ μ∗(An)+ ε/2n. Then the set B defined by B = ∪nBn belongs to
A , includes ∪nAn, and satisfies μ(B)≤ ∑n μ∗(An)+ ε (see Proposition 1.2.4); thus
μ∗(∪nAn)≤ ∑n μ∗(An)+ ε . Since ε is arbitrary, the proof is complete. �	

Note that Proposition 1.4.11 can now be rephrased: there is a subset A of R such
that λ∗(A) = 0 and λ∗(Ac) = 0.

Proposition 1.5.5. Let (X ,A ) be a measurable space, let μ be a measure on A ,
and let A be a subset of X such that μ∗(A)<+∞. Then A belongs to Aμ if and only
if μ∗(A) = μ∗(A).

Proof. If A belongs to Aμ , then there are sets E and F that belong to A and satisfy
E ⊆ A ⊆ F and μ(F −E) = 0. Then

μ(E)≤ μ∗(A)≤ μ∗(A)≤ μ(F),

and since μ(E) = μ(F), the relation μ∗(A) = μ∗(A) follows.
One can obtain a proof that the relation μ∗(A) = μ∗(A) < +∞ implies that A

belongs to Aμ by modifying the first paragraph of the proof of Lemma 1.5.3; the
details are left to the reader (replace appeals to Proposition 1.4.1 with appeals to the
definitions of μ∗ and μ∗). �	
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In this section we have been dealing with one way of approximating sets from
above and from below by measurable sets. We turn to another such approximation.

Let A be a σ -algebra on R
d that includes the σ -algebra B(Rd) of Borel sets. A

measure μ on (Rd ,A ) is regular if

(a) each compact subset K of Rd satisfies μ(K)<+∞,
(b) each set A in A satisfies

μ(A) = inf{μ(U) : U is open and A ⊆U}, and

(c) each open subset U of Rd satisfies

μ(U) = sup{μ(K) : K is compact and K ⊆U}.

Proposition 1.4.1 implies that Lebesgue measure, whether on (Rd ,Mλ ∗) or
on (Rd ,B(Rd)), is regular. Part (b) of that proposition appears to be stronger
than condition (c) in the definition of regularity; however, we will see in Chap. 7
that every regular measure on (Rd ,B(Rd)) satisfies the analogue of part (b) of
Proposition 1.4.1. In Chap. 7 we will also see that on more general spaces, the
analogue of condition (c) above, rather than of part (b) of Proposition 1.4.1, is the
condition that should be used in the definition of regularity.

Proposition 1.5.6. Let μ be a finite measure on (Rd ,B(Rd)). Then μ is regular.
Moreover, each Borel subset A of Rd satisfies

μ(A) = sup{μ(K) : K ⊆ A and K is compact}. (4)

Let us first prove the following weakened form of Proposition 1.5.6.

Lemma 1.5.7. Let μ be a finite measure on (Rd ,B(Rd)). Then each Borel subset
A of Rd satisfies

μ(A) = inf{μ(U) : A ⊆U and U is open} and (5)

μ(A) = sup{μ(C) : C ⊆ A and C is closed}. (6)

Proof. Let R be the collection of those Borel subsets A of Rd that satisfy (5) and
(6).

We begin by showing that R contains the open subsets of Rd . Let V be an open
subset of Rd . Of course V satisfies

μ(V ) = inf{μ(U) : V ⊆U and U is open}.
According to Proposition 1.1.6, there is a sequence {Cn} of closed subsets of Rd

such that V = ∪nCn. We can assume that the sequence {Cn} is increasing (replace
Cn with ∪n

i=1Ci if necessary). Proposition 1.2.5 implies that μ(V ) = limn μ(Cn), and
so V satisfies
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μ(V ) = sup{μ(C) : C ⊆V and C is closed}.
With this we have proved that R contains all the open subsets of Rd .

It is easy to check (do so) that R consists of the Borel sets A that satisfy

for each positive ε there exist an open set U and a closed set C

such that C ⊆ A ⊆U and μ(U −C)< ε . (7)

We now show that R is a σ -algebra. If contains Rd , since Rd is open. If A ∈R, if
ε is a positive number, and if C and U are, respectively, closed and open and satisfy
C ⊆ A ⊆ U and μ(U −C) < ε , then Uc and Cc are respectively closed and open
and satisfy Uc ⊆ Ac ⊆ Cc and μ(Cc −Uc) < ε; thus it follows (from (7)) that R is
closed under complementation. Now let {Ak} be a sequence of sets in R and let ε
be a positive number. For each k choose a closed set Ck and an open set Uk such that
Ck ⊆ Ak ⊆Uk and μ(Uk −Ck)< ε/2k. Let U = ∪kUk and C = ∪kCk. Then U and C
satisfy the relations C ⊆ ∪kAk ⊆U and

μ(U −C)≤ μ(∪k(Uk −Ck))≤ ∑
k

(Uk −Ck)< ε. (8)

The set U is open, but the set C can fail to be closed. However, for each n the set
∪n

k=1Ck is closed, and it follows from (8), together with the fact that μ(U −C) =
limn μ(U −∪n

k=1Ck) that there is a positive integer n such that μ(U −∪n
k=1Ck)< ε .

Then U and ∪n
k=1Ck are the sets required in (7), and R is closed under the formation

of countable unions.
We have now shown that R is a σ -algebra on R

d that contains the open sets.
Since B(Rd) is the smallest σ -algebra on R

d that contains the open sets, it follows
that B(Rd)⊆ R. With this Lemma 1.5.7 is proved. �	
Proof of Proposition 1.5.6. Condition (a) in the definition of regularity follows
from the finiteness of μ , while condition (b) follows from Lemma 1.5.7. We
turn to condition (c) and Eq. (4). Let A be a Borel subset of R

d and let ε be a
positive number. Then according to Lemma 1.5.7 there is a closed subset C of A
such that μ(C) > μ(A)− ε . Choose an increasing sequence {Cn} of closed and
bounded (hence compact) sets whose union is C (these sets can, for example, be
constructed by letting Cn =C∩{x ∈ R

d : ‖x‖ ≤ n}). Proposition 1.2.5 implies that
μ(C) = limn μ(Cn), and so if n is large enough, then Cn is a compact subset of A
such that μ(Cn)> μ(A)− ε . Equation (4) and condition (c) follow. �	

Exercises

1. Let (X ,A ,μ) be a measure space. Show that (Aμ)μ = Aμ and μ = μ .
2. (a) Find the completion of B(R) under the point mass concentrated at 0.
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(b) Let A be the σ -algebra onR2 that consists of all unions of (possibly empty)
collections of vertical lines. Find the completion of A under the point mass
concentrated at (0,0).

3. Let μ and ν be finite measures on a measurable space (X ,A ).
(a) Show by example that Aμ and Aν need not be equal.
(b) Prove or disprove: Aμ = Aν if and only if μ and ν have exactly the same

sets of measure zero.
4. Show that there is a Lebesgue measurable subset of R2 whose projection on R

under the map (x,y) �→ x is not Lebesgue measurable.
5. Let μ be a measure on (X ,A ). Show that for each subset A of X there are sets A0

and A1 that belong to A and satisfy the conditions A0 ⊆A⊆A1, μ(A0)= μ∗(A),
and μ(A1) = μ∗(A).

6. Show by example that half of Proposition 1.5.5 can fail if the assumption that
μ∗(A)<+∞ is omitted.

7. Suppose that μ is a measure on (X ,A ). Show that each subset A of X satisfies
μ∗(A)+ μ∗(Ac) = μ(X).

8. Show that there is a subset A of the interval [0,1] that satisfies λ ∗(A) = 1 and
λ∗(A) = 0. (Hint: Use Proposition 1.4.11.)

9. Let μ be a σ -finite measure on (X ,A ), and let μ∗ be the outer measure defined
in formula (3). Show that Aμ is equal to the σ -algebra of μ∗-measurable sets
and that μ is the restriction of μ∗ to Aμ .

10. Show that if A is a Lebesgue measurable subset of R, then {(x,y) ∈R
2 : x ∈ A}

is a Lebesgue measurable subset of R2.
11. Let (X ,A ) be a measurable space, and let C be a subset of X (it is not assumed

that C belongs to A ).
(a) Show that the collection of subsets of C that have the form A∩C for some

A in A is a σ -algebra on C. This σ -algebra is sometimes called the trace
of A on C and is denoted by AC.

(b) Now suppose that μ is a finite measure on (X ,A ). Let C1 be a set that
belongs to A , includes C, and satisfies μ(C1) = μ∗(C) (see Exercise 5).
Show that if A1 and A2 belong to A and satisfy A1 ∩C = A2 ∩C, then
μ(A1 ∩C1) = μ(A2 ∩C1). Thus we can use the formula μC(A∩C) = μ(A∩
C1) to define a function μC : AC → [0,+∞).

(c) Show that μC(B) = μ∗(B) holds for each B in AC. Thus μC does not depend
on the choice of the set C1.

(d) Show that μC is a measure on (C,AC). The measure μC is sometimes called
the trace of μ on C.

12. Let (X ,A ) be a measurable space, and let C be a subset of X .
(a) Show that the sets that belong to σ(A ∪{C}) are exactly those that have

the form (A1 ∩C)∪ (A2 ∩Cc) for some A1 and A2 in A .
(b) Now suppose that μ is a finite measure on (X ,A ). Let C0 and C1 be A -

measurable subsets of C and Cc that satisfy μ(C0) = μ∗(C) and μ(C1) =
μ∗(Cc), and let μC and μCc be the traces of μ on C and Cc (see Exercises 5
and 11). Show that the formulas
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μ0(A) = μ(A∩C0)+ μCc(A∩Cc)

and
μ1(A) = μC(A∩C)+ μ(A∩C1)

define measures μ0 and μ1 on σ(A ∪{C}), that these measures agree with
μ on A , and that they satisfy μ0(C) = μ∗(C) and μ1(C) = μ∗(C).

(c) Show that for each α between μ∗(C) and μ∗(C) there is a measure ν on
σ(A ∪{C}) that agrees with μ on A and satisfies ν(C) = α . (Hint: Let
ν = tμ0 +(1− t)μ1 for a suitable t.)

1.6 Dynkin Classes

This section is devoted to a technique that is often useful for verifying the equality of
measures and the measurability of functions (measurable functions will be defined
in Sect. 2.1). We begin with a basic definition.

Let X be a set. A collection D of subsets of X is a d-system (or a Dynkin class)
on X if

(a) X ∈ D ,
(b) A−B ∈ D whenever A,B ∈ D and A ⊇ B, and
(c) ∪nAn ∈ D whenever {An} is an increasing sequence of sets in D .

A collection of subsets of X is a π-system on X if it is closed under the formation of
finite intersections.

Example 1.6.1. Suppose that X is a set and that A is a σ -algebra on X . Then A
is certainly a d-system. Furthermore, if μ and ν are finite measures on A such
that μ(X) = ν(X), then the collection S of all sets A that belong to A and satisfy
μ(A) = ν(A) is a d-system; it is easy to show by example that S is not necessarily
a σ -algebra (see Exercise 3). The fact that such families S are d-systems forms the
basis for many of the applications of d-systems. �	

Note that the intersection of a nonempty family of d-systems on a set X is a d-
system on X and that an arbitrary collection of subsets of X is included in some
d-system on X , namely the collection of all subsets of X . Hence if C is an arbitrary
collection of subsets of X , then the intersection of all the d-systems on X that include
C is a d-system on X that includes C ; this intersection is the smallest such d-system
and is called the d-system generated by C . We will sometimes denote this d-system
by d(C ).

Theorem 1.6.2. Let X be a set, and let C be a π-system on X. Then the σ -algebra
generated by C coincides with the d-system generated by C .

Proof. Let D be the d-system generated by C , and, as usual, let σ(C ) be the σ -
algebra generated by C . Since every σ -algebra is a d-system, the σ -algebra σ(C )
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is a d-system that includes C ; hence D ⊆ σ(C ). We can prove the reverse inclusion
by showing that D is a σ -algebra, for then D , as a σ -algebra that includes C , must
include the σ -algebra generated by C , namely σ(C ).

We begin the proof that D is a σ -algebra by showing that D is closed under the
formation of finite intersections. Define a family D1 of subsets of X by letting

D1 = {A ∈ D : A∩C ∈ D for each C in C }.

The fact that C ⊆ D implies that X ∈ D1; furthermore, the identities

(A−B)∩C = (A∩C)− (B∩C)

and
(∪nAn)∩C = ∪n(An ∩C),

together with the fact that D is a d-system, imply that D1 is closed under the
formation of proper differences and under the formation of unions of increasing
sequences of sets. Thus D1 is a d-system. Since C is closed under the formation of
finite intersections and is included in D , it is included in D1. Thus D1 is a d-system
that includes C ; hence it must include D . With this we have proved that we get a
set in D whenever we take the intersection of a set in D and a set in C .

Next define D2 by letting

D2 = {B ∈ D : A∩B ∈ D for each A in D}.

The previous step of this proof shows that C ⊆ D2, and a straightforward modifica-
tion of the argument in the previous step shows that D2 is a d-system. It follows that
D ⊆D2—in other words, that D is closed under the formation of finite intersections.

It is now easy to complete the proof. Parts (a) and (b) of the definition of a d-
system imply that X ∈ D and that D is closed under complementation. As we have
just seen, D is also closed under the formation of finite intersections, and so it is
an algebra. Finally D , as a d-system, is closed under the formation of unions of
increasing sequences of sets, and so by Proposition 1.1.7 it must be a σ -algebra;
with that the proof is complete. �	

We turn to some applications of Theorem 1.6.2.

Corollary 1.6.3. Let (X ,A ) be a measurable space, and let C be a π-system on X
such that A = σ(C ). If μ and ν are finite measures on A that satisfy μ(X) = ν(X)
and that satisfy μ(C) = ν(C) for each C in C , then μ = ν .

Proof. Let D = {A ∈ A : μ(A) = ν(A)}. As we noted above, D is a d-system.
Since C is a π-system and is included in D , it follows from Theorem 1.6.2 that
D ⊇ σ(C ) = A . Thus μ(A) = ν(A) holds for each A in A , and the proof is
complete. �	
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Now suppose that μ and ν are finite Borel measures on R such that μ(I) =
ν(I) holds for each interval I of the form (−∞,b]. Note that R is the union of an
increasing sequence of intervals of the form (−∞,b] and hence that μ(R) = ν(R).
Since the collection of all intervals of the form (−∞,b] is a π-system that generates
B(R) (see Proposition 1.1.4), it follows from Corollary 1.6.3 that μ = ν . With this
we have another proof of the uniqueness assertion in Proposition 1.3.10.

The following result is essentially an extension of Corollary 1.6.3 to the case of
σ -finite measures. Note that it implies that Lebesgue measure is the only measure
on B(Rd) that assigns to each d-dimensional interval its volume, and so it provides
a second proof of part of Proposition 1.4.3.

Corollary 1.6.4. Let (X ,A ) be a measurable space, and let C be a π-system on X
such that A = σ(C ). If μ and ν are measures on (X ,A ) that agree on C , and if
there is an increasing sequence {Cn} of sets that belong to C , have finite measure
under μ and ν , and satisfy ∪nCn = X, then μ = ν .

Proof. Choose an increasing sequence {Cn} of sets that belong to C , have finite
measure under μ and ν , and satisfy ∪nCn = X . For each positive integer n
define measures μn and νn on A by μn(A) = μ(A∩Cn) and νn(A) = ν(A∩Cn).
Corollary 1.6.3 implies that for each n we have μn = νn. Since

μ(A) = lim
n

μn(A) = lim
n

νn(A) = ν(A)

holds for each A in A , the measures μ and ν must be equal. �	

Exercises

1. Give at least six π-systems on R, each of which generates B(R).
2. (b) Check that the rectangles of the form considered in part (c) of Proposi-

tion 1.1.5, together with the empty set, form a π-system on R
d .

(b) What is the smallest π-system on R
d that contains all the half-spaces of the

form considered in part (b) of Proposition 1.1.5?
3. Give a measurable space (X ,A ) and finite measures μ and ν on it that satisfy

μ(X) = ν(X) but are such that

{A ∈ A : μ(A) = ν(A)}

is not a σ -algebra. (Hint: Don’t work too hard; X can be a fairly small finite set.)
4. Show by example that Corollary 1.6.3 would be false if the hypothesis that μ

and ν are finite were replaced with the hypothesis that they are σ -finite. (See,
however, Corollary 1.6.4.)

5. Use Theorem 1.6.2 to give another proof of Proposition 1.5.6. (Hint: Show that
the collection consisting of those Borel subsets of Rd that can be approximated
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from below with compact sets and from above with open sets is a d-system, and
that this d-system contains each rectangle of the form considered in part (c) of
Proposition 1.1.5.)

6. Let X be a set. A collection C of subsets of X is a monotone class on X if it is
closed under monotone limits, in the sense that

(i) if {An} is an increasing sequence of sets that belong to C , then ∪nAn

belongs to C , and
(ii) if {An} is a decreasing sequence of sets that belong to C , then ∩nAn

belongs to C .

(a) Show that if A is a collection of subsets of X , then there is a smallest
monotone class on X that includes A . This smallest monotone class is called
the monotone class generated by A ; let us denote it by m(A ).

(b) Prove the monotone class theorem: if A is an algebra of subsets of X , then
m(A ) = σ(A ). (Hint: Modify the proof of Theorem 1.6.2.)

Notes

Halmos [54] is a standard reference for the theory of measure and integration.
The books by Bartle [3], Berberian [7], Billingsley [8], Bruckner, Bruckner, and
Thomson [23], Dudley [40], Folland [45], Hewitt and Stromberg [59], Munroe [92],
Royden [102], Rudin [105], and Wheeden and Zygmund [127] are also well known
and useful. The reader should see Billingsley [8] and Dudley [40] for applications
to probability theory, Rudin [105] and Benedetto and Czaja [6] for a great variety
of applications to analysis, and Wheeden and Zygmund [127] for applications to
harmonic analysis. Gelbaum and Olmsted [48] contains an interesting collection
of counterexamples. Bogachev’s recent two-volume work [15] and Fremlin’s five-
volume work [46] are good references. Pap [95] is a collection of survey papers on
measure theory. Federer [44], Krantz and Parks [75], Morgan [89], and Rogers [100]
treat topics in measure theory that are not touched upon here.

Theorem 1.6.2 is due to Dynkin [43] (see also Blumenthal and Getoor [14]).
See Dudley [40] and Bogachev [15] for very thorough historical notes and

bibliographic citations.



Chapter 2
Functions and Integrals

This chapter is devoted to the definition and basic properties of the Lebesgue
integral. We first introduce measurable functions—the functions that are simple
enough that the integral can be defined for them if their values are not too
large (Sect. 2.1). After a brief look in Sect. 2.2 at properties that hold almost
everywhere (that is, that may fail on some set of measure zero, as long as they hold
everywhere else), we turn to the definition of the Lebesgue integral and to its basic
properties (Sects. 2.3 and 2.4). The chapter ends with a sketch of how the Lebesgue
integral relates to the Riemann integral (Sect. 2.5) and then with a few more details
about measurable functions (Sect. 2.6).

2.1 Measurable Functions

In this section we introduce measurable functions and study some of their basic
properties. We begin with the following elementary result.

Proposition 2.1.1. Let (X ,A ) be a measurable space, and let A be a subset of X
that belongs to A . For a function f : A → [−∞,+∞] the conditions

(a) for each real number t the set {x ∈ A : f (x) ≤ t} belongs to A,
(b) for each real number t the set {x ∈ A : f (x) < t} belongs to A,
(c) for each real number t the set {x ∈ A : f (x) ≥ t} belongs to A, and
(d) for each real number t the set {x ∈ A : f (x) > t} belongs to A

are equivalent.

Proof. The identity

{x ∈ A : f (x)< t}=
⋃

n

{x ∈ A : f (x) ≤ t − 1/n}
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