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Examples 8.1.1.

(a) For each d the space Rd , with its usual topology, is Polish.
(b) More generally, each separable Banach space, with the topology induced by its

norm, is Polish.
(c) Each compact metrizable space is Polish (see Theorem D.39 and

Corollary D.40). It amounts to the same thing to say that each compact
Hausdorff space that has a countable base is Polish (see Proposition 7.1.13).

�	
We need the following results before we look at some additional examples.

Proposition 8.1.2. Each closed subspace, and each open subspace, of a Polish
space is Polish.

Proof. Let X be a Polish space. According to D.33, every subspace of X is separable.
Hence we need only check that the closed subspaces and the open subspaces of X
can be metrized by means of complete metrics.

Let d be a complete metric for X . If F is a closed subspace of X , then the
restriction of d to F is a complete metric for F . Hence each closed subspace of
X is Polish.

Now suppose that U is an open subspace of X . We can assume that U �= X . Recall
that d(x,Uc), the distance between x and Uc, is defined by

d(x,Uc) = inf{d(x,z) : z ∈Uc}

(see D.27). It is easy to see that

d0(x,y) = d(x,y)+

∣
∣
∣
∣

1
d(x,Uc)

− 1
d(y,Uc)

∣
∣
∣
∣

defines a metric d0 on the set U ; we will check that d0 metrizes the topology that U
inherits as a subspace of X and then that U is complete under d0.

The function x �→ d(x,Uc) is continuous (again see D.27), from which it follows
that if x and x1, x2, . . . belong to U , then the sequence {xn} converges to x with
respect to d if and only if it converges to x with respect to d0. Thus d0 metrizes the
topology of U .

We turn to the completeness of U under d0. A sequence {xn} that is Cauchy under
d0 is also Cauchy under d, and so converges under d to a point x of X . The point
x belongs to U , since otherwise we would have limn d(xn,Uc) = 0, which would
imply that

lim
m,n

d0(xm,xn) = +∞,

contradicting the assumption that {xn} is Cauchy under d0. It now follows that {xn}
also converges to x under d0, and the completeness of U under d0 follows. �	
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For the next results we need to recall a technique for constructing bounded
metrics. Suppose that d is a metric on a set X . It is easy to check that the formula

d0(x,y) = min(1,d(x,y)) (1)

defines a metric on X and that d(x,y) = d0(x,y) holds whenever x and y are such
that d(x,y) (or d0(x,y)) is less than 1. It follows that d and d0 determine the same
topology on X and that X is complete under d0 if and only if it is complete under d.

Recall that the disjoint union ∑α Xα of an indexed collection {Xα} of topological
spaces is defined by letting the underlying set ∑α Xα be the disjoint union1 of the
Xα’s and then declaring that a subset of ∑α Xα is open if and only if for each α its
intersection with Xα is an open subset of Xα .

Proposition 8.1.3. The disjoint union of a finite or infinite sequence of Polish
spaces is Polish.

Proof. Let X1, X2, . . . be Polish spaces, and let ∑n Xn be their disjoint union. For
each n let Dn be a countable dense subset of Xn and let dn be a complete metric on
Xn. We can assume that dn(x,y) ≤ 1 holds for each n and for all x and y in Xn (see
Eq. (1)). Then ∑n Dn is a countable dense subset of ∑n Xn, and

d(x,y) =

{
dn(x,y) if x,y ∈ Xn for some n,

1 if x ∈ Xm and y ∈ Xn, where m �= n

defines a complete metric that metrizes ∑n Xn. �	
Proposition 8.1.4. The product of a finite or infinite sequence of Polish spaces is
Polish.

Proof. Let X1, X2, . . . be a finite or infinite sequence of Polish spaces. We can
assume that no Xn is empty. For each n let dn be a complete metric that metrizes
Xn and satisfies dn(x,y) ≤ 1 for all x and y in Xn (see Eq. (1)). For points x and y in
∏n Xn, with coordinates x1, x2, . . . and y1, y2, . . . , respectively, let

d(x,y) = ∑
n

1
2n dn(xn,yn).

It is easy to check that this defines a metric d on ∏n Xn, that d metrizes the product
topology on ∏n Xn, and that ∏n Xn is complete under d.

1Let {Yα} be an indexed collection of sets such that

(a) for each α the set Yα has the same cardinality as the set Xα , and
(b) Yα1 and Yα2 are disjoint if α1 �= α2

(for instance, one might let Yα be Xα ×{α}). The disjoint union of the Xα ’s is defined to be the
union of the Yα ’s. (One generally thinks of the Yα ’s as being identified with the corresponding
Xα ’s.)
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To prove the separability of ∏n Xn, it is enough to construct a countable base for
∏n Xn (see D.10). For each n choose a countable base Un for Xn (see D.32). Then
the collection of subsets of ∏n Xn that have the form

U1 ×·· ·×UN ×XN+1 ×XN+2 × . . .

for some N and some choice of sets Un in Un, n = 1, . . . , N, is the required base for
∏n Xn. �	
Proposition 8.1.5. Let X be a Polish space. Then a subspace of X is Polish if and
only if it is a Gδ in X.

Proof. First let {Un} be a sequence of open subsets of X and let Y = ∩nUn. Each Un

is Polish (Proposition 8.1.2), as is the product ∏n Un (Proposition 8.1.4). Let Δ be
the subset of ∏n Un defined by

Δ =

{

{un} ∈ ∏
n

Un : u j = uk for all j, k

}

.

Then Δ is a closed subset of ∏n Un, and so is Polish. Furthermore Y is homeomor-
phic to Δ via the map that takes an element y of Y to the sequence each term of
which is y. Hence Y is Polish.

We turn to the converse. So suppose that Y is a subspace of X that is Polish. Let
d be a metric for the topology of X , and let d0 be a complete metric for the topology
of Y . For each n let Vn be the union of those open subsets W of X that have diameter
at most 1/n under d and for which W ∩Y is nonempty and has diameter at most 1/n
under d0. Since d and d0 induce the same topology on Y , every point in Y belongs
to each Vn. Let us show that

Y = Y ∩ (∩nVn). (2)

We just noted that Y ⊆ Vn holds for each n, and so, we have Y ⊆ Y ∩ (∩nVn). We
turn to the reverse inclusion. Suppose that x ∈ Y ∩ (∩nVn). Since x ∈ ∩nVn, we can
choose a sequence {Wn} of open neighborhoods of x such that for each n the sets Wn

and Y ∩Wn have diameters (under d and d0, respectively) at most 1/n. Since x ∈ Y ,
our sets Wn satisfy Wn ∩Y �= ∅ for each n. Thus we can form a sequence {xn} by
choosing (for each n) a point xn in Wn ∩Y . Our conditions on the diameters of the
sets Wn under d and d0 imply that {xn} converges to x with respect to d and that it
is a Cauchy sequence (in Y ) with respect to d0. Thus there is a point y in Y to which
{xn} converges under d0. Since d and d0 metrize the same topology on Y , it follows
{xn} also converges to y under d and hence that x = y ∈Y . Thus Y ∩(∩nVn)⊆Y and
the proof of (2) is complete. Since each closed subset of X (in particular, Y ) is a Gδ
in X (see D.28), relation (2) implies that Y is a Gδ in X . �	
Examples 8.1.6.

(a) Let X be a locally compact Hausdorff space that has a countable base for
its topology. Its one-point compactification X∗ also has a countable base
(Lemma 7.1.14) and so is Polish (Example 8.1.1(c)). Proposition 8.1.2 now
implies that X , as an open subset of X∗, is Polish.
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(b) The space N
N is, according to Proposition 8.1.4, Polish. We will often denote

this space by N . Its elements are, of course, sequences of positive integers.
A typical such sequence will generally be denoted by {ni} or by n (the boldface
n is a useful substitute for {ni} in complicated expressions).

For positive integers k and n1, . . . , nk we will denote by N (n1, . . . ,nk) the
set of those elements {mi} of N that satisfy mi = ni for i= 1, . . . , k. It is easy to
check that the family of all such sets is a countable base for N . It is also easy
to check that the collection of those elements {mi} of N that are eventually
constant (that is, for which there is a positive integer k such that mi = mk holds
whenever i > k) is a countable dense subset of N .

(c) Next consider the space I of irrational numbers in the interval (0,1), together
with the topology it inherits from R. The complement of I in R is an Fσ , and
so I is a Gδ ; thus Proposition 8.1.5 implies that I is Polish. It can be shown
that I is homeomorphic to N (see Exercise 3 in Sect. 8.2).

(d) The space Q of rational numbers is not Polish (see Exercise 2).
(e) The space {0,1}N, which consists of all sequences of zeroes and ones, is Polish

(Proposition 8.1.4 or Example 8.1.1(c)). It can be shown that this space is
homeomorphic to the Cantor set (see Exercise 1). �	

The spaces N and {0,1}N turn out to be very important in the development of
the theory of Polish spaces and analytic sets.

We turn to some basic facts about the Borel subsets of Polish spaces.
Let (X1,A1), (X2,A2), . . . be measurable spaces. The product of these measura-

ble spaces is the measurable space (∏n Xn,∏n An) where ∏n An is the σ -algebra on
∏n Xn that is generated by the sets that have the form

A1 ×A2 ×·· ·×AN ×XN+1 ×XN+2 × . . . (3)

for some positive integer N and some choice of An in An, n = 1, . . . , N. For each i
let πi be the projection of ∏n Xn onto Xi. Then

π−1
i (A) = X1 ×·· ·×Xi−1 ×A×Xi+1× . . .

holds for each subset A of Xi, and so πi is measurable with respect to ∏n An and
Ai. The set in display (3) is equal to ∩N

i=1π−1
i (Ai); hence ∏n An is the smallest

σ -algebra on ∏n Xn that makes all the projections πi measurable.

Proposition 8.1.7. Let X1, X2, . . . be a finite or infinite sequence of separable
metrizable spaces. Then B(∏n Xn) = ∏n B(Xn).

Proof. For each i consider the projection πi of ∏n Xn onto Xi. Each such projection
is continuous and so is measurable (Lemma 7.2.1) with respect to B(∏n Xn) and
B(Xi). Since ∏n B(Xn) is the smallest σ -algebra on ∏n Xn that makes these projec-
tions measurable (see the remarks above), it follows that ∏n B(Xn)⊆ B(∏n Xn).
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We turn to the reverse inclusion. For each n choose a countable base Un for Xn

(see D.32), and then let U be the collection of sets that have the form

U1 ×·· ·×UN ×XN+1 × . . .

for some positive integer N and some choice of sets Un in Un, for n = 1, . . . , N.
Then U is a countable base for ∏n Xn, and U ⊆ ∏n B(Xn). Since each open subset
of ∏n Xn is the union of a (necessarily countable) subfamily of U , it follows that
B(∏n Xn)⊆ ∏n B(Xn). Thus B(∏n Xn) = ∏n B(Xn), and the proof is complete.

�	
Let X and Y be sets, and let f be a function from X to Y . The graph of f , denoted

by gr( f ), is defined by

gr( f ) = {(x,y) ∈ X ×Y : y = f (x)}.

Proposition 8.1.8. Let X and Y be separable metrizable spaces, and let f : X → Y
be Borel measurable. Then the graph of f is a Borel subset of X ×Y.

Proof. Let F : X ×Y → Y ×Y be the map that takes (x,y) to ( f (x),y). The Borel
measurability of f implies that if A,B ∈ B(Y ), then F−1(A×B) ∈ B(X)×B(Y );
hence F is measurable with respect to B(X)×B(Y ) and B(Y )×B(Y ) (Propo-
sition 2.6.2) and so with respect to B(X ×Y ) and B(Y ×Y ) (Proposition 8.1.7).
Let Δ = {(y1,y2) ∈ Y ×Y : y1 = y2}. Then Δ is a closed subset of Y ×Y and
gr( f ) = F−1(Δ). It follows that gr( f ) is a Borel subset of X ×Y . �	
Lemma 8.1.9. Let (X ,A ) be a measurable space, and let Y be a metrizable
topological space. Then a function f : X → Y is measurable with respect to A and
B(Y ) if and only if for each continuous function g : Y → R the function g ◦ f is
A -measurable.

Proof. If f is measurable with respect to A and B(Y ), then the measurability of
g ◦ f for each continuous g follows from the measurability of g (Lemma 7.2.1),
together with Proposition 2.6.1.

Now assume that for each continuous g : Y → R the function g ◦ f is A -
measurable, and let d be a metric that metrizes Y . Suppose that U is an open subset
of Y . Then there is a continuous function gU : Y → R such that

U = {y ∈ Y : gU(y)> 0}
(if U �=Y , define gU by gU(y) = d(y,Uc); otherwise, let gU be the constant function
1). The set f−1(U) is equal to

{x ∈ X : (gU ◦ f )(x)> 0}
and so belongs to A . Since U was an arbitrary open subset of X , the measurability
of f follows (Proposition 2.6.2). �	



8.1 Polish Spaces 245

Proposition 8.1.10. Let (X ,A ) be a measurable space, let Y be a metrizable
topological space, and for each positive integer n let fn : X → Y be measurable
with respect to A and B(Y ). If limn fn(x) exists for each x in X, then the function
f : X → Y given by f (x) = limn fn(x) is measurable with respect to A and B(Y ).

Proof. Note that if g : Y →R is continuous, then g( f (x)) = limn g( fn(x)) holds for
each x in X . The proposition is now an immediate consequence of Lemma 8.1.9 and
Proposition 2.1.5. �	
Proposition 8.1.11. Let (X ,A ) be a measurable space, let Y be a Polish space,
and for each positive integer n let fn : X → Y be measurable with respect to A
and B(Y ). Let C = {x ∈ X : limn fn(x) exists}. Then C ∈ A . Furthermore, the map
f : C → Y defined by f (x) = limn fn(x) is measurable with respect to A and B(Y ).

Proof. Let d be a complete metric for Y . Then C is the set consisting of those x
in X for which { fn(x)} is a Cauchy sequence in Y . For each positive integer n the
set {(y1,y2) ∈ Y ×Y : d(y1,y2) < 1/n} is an open subset of Y ×Y and so belongs
to B(Y )×B(Y ) (Proposition 8.1.7). Thus for each i, j, and n the set C(i, j,n)
defined by

C(i, j,n) =

{

x ∈ X : d( fi(x), f j(x))<
1
n

}

belongs to A . Since

C =
⋂

n

⋃

k

⋂

i≥k

⋂

j≥k

C(i, j,n),

it follows that C ∈ A . The measurability of f is now a consequence of
Proposition 8.1.10, applied to the spaces (C,AC) and Y (here AC is the trace
of A on C; see Exercise 1.5.11). �	

We conclude this section with the following useful fact about measures on Polish
spaces.

Proposition 8.1.12. Every finite Borel measure on a Polish space is regular.

Proof. Let X be a Polish space, let d be a complete metric for X , and let μ be a finite
Borel measure on X . We can assume that X is not empty. Since each open subset
of X is an Fσ in X (see D.28), Lemma 7.2.4 implies that each Borel subset A of X
satisfies

μ(A) = inf{μ(U) : A ⊆U and U is open} (4)

and

μ(A) = sup{μ(F) : F ⊆ A and F is closed}. (5)

We will strengthen (5) by showing that each Borel subset A of X satisfies

μ(A) = sup{μ(K) : K ⊆ A and K is compact}. (6)
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First consider the case where A = X . Let {xk} be a sequence whose terms form
a dense subset of X , and let ε be a positive number. For each positive integer n use
Proposition 1.2.5 and the fact that X is the union of the open balls B(xk,1/n), k = 1,
2, . . . , to choose a positive integer kn such that

μ
( kn⋃

k=1

B(xk,1/n)
)
> μ(X)− ε/2n.

Let K = ∩n ∪kn
k=1 B(xk,1/n). Then K is complete and totally bounded under the

restriction of d to K, and so is compact (Theorem D.39). Furthermore

μ(Kc)≤ ∑
n

μ
(( kn⋃

k=1

B(xk,1/n)
)c)

< ∑
n

ε/2n = ε,

and so μ(K)> μ(X)− ε . Since ε is arbitrary, (6) follows in the case where A = X .
Now let A be an arbitrary Borel subset of X , and let ε be a positive number.

Choose a compact set K such that μ(K)> μ(X)− ε , and use (5) to choose a closed
subset F of A such that μ(F)> μ(A)− ε . Then K∩F is a compact subset of A, and
μ(K ∩F)> μ(A)− 2ε . Since ε is arbitrary, A must satisfy (6). Thus μ is regular.

�	

Exercises

1. Show that the map that takes the sequence {nk} to the number ∑k 2nk/3k is a
homeomorphism of {0,1}N onto the Cantor set.

2. Show that the set Q of rational numbers, with the topology it inherits as
a subspace of R, is not Polish. (Hint: Use the Baire category theorem,
Theorem D.37.)

3. Let (X ,A ) be a measurable space, let Y be a separable metrizable space, and
let f ,g : X →Y be measurable with respect to A and B(Y ). Show that {x ∈ X :
f (x) = g(x)} belongs to A .

4. Suppose that {Xn} is a sequence of nonempty separable metrizable spaces and
that, for each n, Dn is a countable dense subset of Xn. Give (rather explicitly) a
countable dense subset of ∏n Xn.

5. Let X be a Polish space, let {Un} be a sequence of open subsets of X , and
let d be a complete metric for X . Construct a complete metric for ∩nUn;
show directly that it has the required properties. (Hint: Examine the proofs of
Propositions 8.1.2, 8.1.4, and 8.1.5.)

6. Let C[0,+∞) be the set of all continuous real-valued functions on the interval
[0,+∞).
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(a) Show that the formula

d( f ,g) = sup{1∧| f (t)− g(t)| : t ∈ [0,+∞)}
defines a metric on C[0,+∞).

(b) Suppose that f and f1, f2, . . . belong to C[0,+∞). Show that { fk} converges
to f with respect to the metric in part (a) if and only if it converges to f
uniformly on [0,+∞).

(c) Show that C[0,+∞), when endowed with the topology determined by the
metric in part (a), is not separable and hence not Polish.

7.(a) Show that the formula

d( f ,g) = ∑
n

1
2n sup{1∧| f (t)− g(t)| : t ∈ [0,n]}

defines a metric on the set C[0,+∞) (see Exercise 6).
(b) Suppose that f and f1, f2, . . . belong to C[0,+∞). Show that { fk} converges

to f with respect to the metric in part (a) if and only if it converges to f
uniformly on each compact subset of [0,+∞).

(c) Show that C[0,+∞) is complete and separable under the metric defined in
part (a). (Hint: See Exercise 7.1.9.)

8. Prove Proposition 8.1.10 directly, without using continuous functions.
9. Suppose that in Proposition 8.1.11 the space Y were only required to be

separable and metrizable. Show by example that the set C would not need to
belong to A .

10. Show that every finite Borel measure on Q is regular. (Recall that Q is not
Polish; see Exercise 2.)

11. Show by example that a finite Borel measure on a separable metrizable space
can fail to be regular. (Hint: Suppose that X is a subset of R that satisfies
λ ∗(X) < +∞ but is not Lebesgue measurable. Consider the measure on
(X ,B(X)) that results when the construction of Exercise 1.5.11 is applied to
Lebesgue measure.)

12. Show that every separable metrizable space is homeomorphic to a subspace of
the product space [0,1]N and that every Polish space is homeomorphic to a Gδ
in [0,1]N. (Hint: Let d be a metric for the separable metrizable space X , and
let {xn} be a sequence whose terms form a dense subset of X . Consider the
map from X to [0,1]N that takes the point x to the sequence whose nth term is
min(1,d(x,xn)).)

13. Let (X ,A ) be a measurable space, let Y be a Polish space, let A be a subset
of X that might not belong to A , and let AA be the trace of A on A
(see Exercise 1.5.11). Show that if f : A → Y is measurable with respect to AA

and B(Y ), then f has an extension F : X → Y that is measurable with respect
to A and B(Y ).
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14. Give a counterexample that shows that the metrizability of Y cannot be omitted
in Proposition 8.1.10. (Hint: Let (X ,A ) be ([0,1],B([0,1])) and let Y be
[0,1][0,1] with the product topology. For each n let fn : X → Y be the function
that takes x to the element of Y (i.e., to the function from [0,1] to [0,1]) given
by t �→ max(0,1− n|t− x|).)

8.2 Analytic Sets

Let X be a Polish space. A subset A of X is analytic if there is a Polish space Z and
a continuous function f : Z → X such that f (Z) = A.

We will soon see that every Borel subset of a Polish space is analytic, but that
there are analytic sets that are not Borel.

Analytic sets are useful tools for the study of Borel sets and Borel measurable
functions (see Sect. 8.3); they also possess measurability properties that make
them useful in their own right (see Sects. 8.4 and 8.5). This section contains a
few elementary properties of analytic sets, some techniques for constructing those
continuous maps that will be needed later in this chapter, and a construction
that provides an analytic set that is not Borel. The reader might well skip from
Proposition 8.2.9 to Sect. 8.3 at a first reading, returning for the remaining results as
they are needed.

Proposition 8.2.1. Let X be a Polish space. Then each open subset, and each closed
subset, of X is analytic.

Proof. This is an immediate consequence of Proposition 8.1.2, together with the
continuity of the standard injection of a subspace of X into X . �	
Proposition 8.2.2. Let X be a Polish space, and let A1, A2, . . . be analytic subsets
of X. Then ∪kAk and ∩kAk are analytic.

Proof. For each k choose a Polish space Zk and a continuous function fk : Zk → X
such that f (Zk) = Ak. Let Z be the disjoint union of the spaces Z1, Z2, . . . , and
define f : Z → X so that for each k it agrees on Zk with fk . Then Z is a Polish space
(Proposition 8.1.3), f is a continuous function, and f (Z) = ∪kAk; hence ∪kAk is
analytic.

Next form the product space ∏k Zk, and let Δ consist of those sequences {zk} in
∏k Zk such that fi(zi) = f j(z j) holds for all i and j. Then Δ is a closed subspace
of ∏k Zk and so is Polish (Propositions 8.1.2 and 8.1.4). The set ∩kAk is the image
of Δ under the continuous function that takes the sequence {zk} to the point f1(z1);
hence it is analytic. �	

It should be noted that the complement of an analytic set is not necessarily
analytic. In fact, the complement of an analytic set A is analytic if and only if A
is Borel (see Proposition 8.2.3 and Corollary 8.3.3).

Proposition 8.2.3. Let X be a Polish space. Then each Borel subset of X is analytic.
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The proof will depend on the following lemma. Because of later applications,
this lemma is given in a slightly stronger form than is needed here.

Lemma 8.2.4. Let X be a Hausdorff topological space. Then B(X) is the smallest
family of subsets of X that

(a) contains the open and the closed subsets of X,
(b) is closed under the formation of countable intersections, and
(c) is closed under the formation of countable disjoint unions.

Note that closure under complementation is not one of the conditions listed in
Lemma 8.2.4.

Proof. Let S be the smallest collection of subsets of X that satisfies conditions
(a), (b), and (c) of the lemma (why does such a smallest collection exist?), and
let S0 = {A : A ∈ S and Ac ∈ S }. It is clear that S0 ⊆ S ⊆ B(X). Thus if we
show that S0 is a σ -algebra that contains each open subset of X , it will follow that
S0 = S = B(X), and the proof will be complete.

It is immediate that S0 contains the open subsets of X and is closed under
complementation. Now suppose that {An} is a sequence of sets in S0. Then ∪nAn

is the union of the sets

A1, Ac
1 ∩A2, Ac

1 ∩Ac
2 ∩A3, . . . ;

these sets are disjoint and belong to S , and so ∪nAn must also belong to S .
Furthermore (∪nAn)

c is the intersection of a sequence (namely {Ac
n}) of sets in

S , and so belongs to S . Consequently ∪nAn belongs to S0. It follows that S0 is
closed under the formation of countable unions. With this we have shown that S0

is a σ -algebra that contains the open subsets of X , and the proof of Lemma 8.2.4 is
complete. �	
Proof of Proposition 8.2.3. Since the collection of analytic subsets of X satisfies
conditions (a), (b), and (c) of Lemma 8.2.4 (see Propositions 8.2.1 and 8.2.2), it
must include B(X). �	
Proposition 8.2.5. Let X1, X2, . . . be a finite or infinite sequence of Polish spaces,
and for each k let Ak be an analytic subset of Xk. Then ∏k Ak is an analytic subset
of ∏k Xk.

Proof. If some Ak is empty, then ∏k Ak is empty and so is an analytic set. Otherwise
for each k choose a Polish space Zk and a continuous function fk : Zk → Xk such
that fk(Zk) = Ak. Define a function f : ∏k Zk → ∏k Xk by f ({zk}) = { fk(zk)}. Then
∏k Zk is Polish, f is continuous, and f (∏k Zk) = ∏k Ak. Thus ∏k Ak is analytic. �	
Proposition 8.2.6. Let X and Y be Polish spaces, let A be an analytic subset of X,
and let f : A → Y be Borel measurable (that is, measurable with respect to B(A)
and B(Y )). If A1 and A2 are analytic subsets of X and Y , respectively, then f (A∩A1)
and f−1(A2) are analytic subsets of Y and X, respectively.



250 8 Polish Spaces and Analytic Sets

Proof. Let πY be the projection of X ×Y onto Y . Proposition 8.1.8 implies that
gr( f ) ∈ B(A×Y), and Lemma 7.2.2 then implies that there is a Borel subset B of
X ×Y such that gr( f ) = B∩ (A×Y). Hence gr( f )∩ (A1 ×Y ) is an analytic subset
of X ×Y (Propositions 8.2.2, 8.2.3, and 8.2.5) and so is the image of a Polish space
(say Z) under a continuous map (say h). It follows that f (A∩A1), since it is the
projection of gr( f )∩(A1×Y ) on Y , is the image of Z under the continuous map πY ◦
h and so is analytic. A similar argument shows that f−1(A2) is analytic (note that it
is the projection of gr( f )∩ (X ×A2) on X). �	

We turn to the construction of some continuous functions that are useful in the
study of Borel and analytic sets.

Proposition 8.2.7. Each nonempty Polish space is the image of N under a
continuous function.

Proof. Let X be a nonempty Polish space, and let d be a complete metric for X . We
begin by constructing a family {C(n1, . . . ,nk)} of subsets of X , indexed by the set
of all finite sequences (n1, . . . ,nk) of positive integers, in such a way that

(a) C(n1, . . . ,nk) is closed and nonempty,
(b) the diameter of C(n1, . . . ,nk) is at most 1/k,
(c) C(n1, . . . ,nk−1) = ∪nkC(n1, . . . ,nk), and
(d) X = ∪n1C(n1).

We do this by induction on k.
First, suppose that k = 1, and let {xn1}∞

n1=1 be a sequence whose terms form a
dense subset of X . For each n1 in N define C(n1) to be the closed ball with center
xn1 and radius 1/2. Certainly each C(n1) is closed and nonempty and has diameter
at most 1. Furthermore, X = ∪n1C(n1).

Now suppose that k > 1 and that C(n1, . . . ,nk−1) has already been chosen.
It is easy to use a modification of the construction of the C(n1)’s, now applied to
C(n1, . . . ,nk−1) rather than to X , to produce sets C(n1, . . . ,nk), nk = 1, 2, . . . , that
satisfy conditions (a) through (c). With this, the inductive step in our construction is
complete.

We turn to the construction of a continuous function that maps N onto X .
Let n = {nk} be an element of N . It follows from (a), (b), and (c) above that
C(n1), C(n1,n2), . . . is a decreasing sequence of nonempty closed subsets of X
whose diameters approach 0. Thus there is a unique element in the intersection of
these sets (see Theorem D.35), and we can define a function f : N → X by letting
f (n) be the unique member of ∩kC(n1, . . . ,nk). Note that if m and n are elements
of N such that mi = ni holds for i = 1, . . . , k, then d( f (m), f (n)) ≤ 1/k. It follows
that f is continuous. Finally, (c) and (d) above imply that for each x in X there is an
element n = {nk} of N such that x ∈ ∩kC(n1, . . . ,nk) and hence such that x = f (n);
thus f is surjective. �	
Corollary 8.2.8. Each nonempty analytic subset of a Polish space is the image of
N under some continuous function.
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Proof. If A is the image of the Polish space Z under the continuous function f and
if Z is the image of N under the continuous function g (Proposition 8.2.7), then A
is the image of N under f ◦ g. �	
Proposition 8.2.9. Let X be a Polish space. A subset A of X is analytic if and only
if there is a closed subset of N ×X whose projection on X is A.

Proof. The projection on X of a closed subset of N ×X is the image of a Polish
space (see Propositions 8.1.2 and 8.1.4) under a continuous function (the projec-
tion), and so is analytic.

Now suppose that A is an analytic subset of X . If A is empty, then it is the
projection of the empty subset of N ×X . Otherwise there is a continuous function
f : N → X such that f (N ) = A (Corollary 8.2.8). Then gr( f ) is a closed subset of
N ×X whose projection on X is A. �	

While the preceding material is fundamental, the following results will be used
only occasionally in this book. The reader who does Exercises 1 and 5 and replaces
the proof for Theorem 8.3.6 given below with the one sketched in Exercise 8.3.5
can skip everything from here through Corollary 8.2.14.

We need to recall a definition and a few facts before proving Proposition 8.2.10.
A topological space is zero dimensional if its topology has a base that consists of
sets that are both open and closed. Among the zero-dimensional spaces are the space
of all rational numbers, the space of all irrational numbers, and each space that
has a discrete topology. Note that a subspace of a zero-dimensional space is zero
dimensional, that a product of zero-dimensional spaces is zero dimensional, and that
the disjoint union of a collection of zero-dimensional spaces is zero dimensional.
In particular, the spaces N and {0,1}N are products of zero-dimensional spaces,
and so are zero dimensional.

Proposition 8.2.10. Each Borel subset of a Polish space is the image under a
continuous injective map of some zero-dimensional Polish space.

Proof. We begin by showing that each Polish space is the image under a continuous
injective map of some zero-dimensional Polish space. First consider the interval
[0,1]. It is the image of the space {0,1}N under the map F : {0,1}N → [0,1] that
takes the sequence {xk} to the number ∑k(xk/2k). Each number in [0,1) that has
two binary expansions (that is, each number in (0,1) that is of the form m/2n for
some m and n) is the image under F of two elements of {0,1}N; the remaining
members of [0,1] are images of only one element of {0,1}N. Thus if we remove a
suitable countably infinite subset from {0,1}N, the remaining points form a space
Z such that the restriction of F to Z is a bijection of Z onto [0,1]. Note that F
is continuous, that Z is zero dimensional (it is a subspace of the zero-dimensional
space {0,1}N), and that Z is Polish (its complement in {0,1}N is countable, and so
it is a Gδ in {0,1}N). Hence [0,1] is the image of a zero-dimensional Polish space
under a continuous injective map.

It follows that [0,1]N is the image of the zero-dimensional Polish space ZN under
a continuous injective map.
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Now suppose that X is an arbitrary Polish space. Recall (see Exercise 8.1.12)
that there is a homeomorphism G of X onto a Gδ in [0,1]N. Let H be a continuous
injective map of ZN onto [0,1]N. Since G(X) is a Gδ in [0,1]N, it follows that
H−1(G(X)) is a Gδ in ZN, and so is Polish. Let H0 be the restriction of H to
H−1(G(X)). Then X is the image of the zero-dimensional Polish space H−1(G(X))
under the continuous injective map G−1 ◦H0.

We turn to the Borel subsets of X . Let F consist of those Borel subsets B of
X for which there is a zero-dimensional Polish space Y and a continuous injective
map f : Y → X such that f (Y ) = B. According to the first part of this proof, F
contains the open and the closed subsets of X (see Proposition 8.1.2), and an easy
modification of the proof of Proposition 8.2.2 shows that F is closed under the
formation of countable intersections and under the formation of countable disjoint
unions. Thus Lemma 8.2.4 implies that F = B(X). �	

See Theorem 8.3.7 for a rather powerful result that implies the converse of
Proposition 8.2.10.

Let us make some preparations for the proof of our next major result,
Proposition 8.2.13.

Lemma 8.2.11. Let X be a zero-dimensional separable metric space, let U be an
open and non-compact subset of X, and let ε be a positive number. Then U is the
union of a countably infinite family of disjoint sets, each of which is nonempty, open,
closed, and of diameter at most ε .

Proof. Since U is open and not compact, there is a family U of open sets whose
union is U , but that has no finite subfamily whose union is U . Let V be the collection
of all subsets of X that are open, closed, of diameter at most ε , and included in some
member of U . Since X is zero dimensional, the set U is the union of the family V .
According to D.11, there is a countable subfamily V0 of V whose union is U . List
the sets in V0 in a sequence V1, V2, . . . , and consider the nonempty sets that appear
in the sequence

V1, V c
1 ∩V2, V c

1 ∩V 2
2 ∩V3, . . . .

These sets are open, closed, disjoint, and of diameter at most ε , and their union is U .
There are infinitely many of them, since otherwise there would be a finite subfamily
of U that would cover U . �	

Let X be a topological space and let A be a subset of X , possibly the entire space
X . A point x of X is a condensation point of A if every open neighborhood of x
contains uncountably many points of A.

Lemma 8.2.12. Let X be a separable metrizable space, and let C be the set of
condensation points of X. Then C is closed, and Cc is countable.

Proof. Let U be a countable base for X (see D.32). Then x fails to belong to C if
and only if there is a countable open set that belongs to U and contains x. Hence
Cc is the union of a countable collection of countable open sets, and so Cc itself is
countable and open. �	
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Proposition 8.2.13. Let X be a Polish space, and let B be an uncountable Borel
subset of X. Then there is a continuous injective map f : N → X such that
f (N )⊆ B and such that B− f (N ) is countable.

Proof. According to Proposition 8.2.10, there exist a zero-dimensional Polish space
Z and a continuous injective map g : Z →X such that g(Z) =B. Thus it will suffice to
construct a continuous injective map h : N → Z such that Z − h(N ) is countable,
and then to define f to be g ◦ h.

Let Z0 be the collection of all points in Z that are condensation points of Z. Then
Z0 is Polish (Lemma 8.2.12) and zero dimensional. Since Zc

0 is countable, every
point in Z0 is a condensation point of Z0 (and not just a condensation point of Z).

Suppose that d is a complete metric that metrizes Z0. For each k we construct a
family of sets, indexed by N

k, as follows. Let us begin with the case where k = 1.
Apply Lemma 8.2.11 to the space Z0, letting ε be 1 and letting U consist of the
points that remain when one point is removed from Z0 (this is to guarantee that U
is not compact). The sets provided by Lemma 8.2.11, say A(n1), n1 = 1, 2, . . . , are
disjoint, nonempty, open, closed, and of diameter at most 1, each of them consists
entirely of condensation points of itself, and the union of these sets is Z0 less a single
point. We can repeat this construction over and over, for each k and n1, . . . , nk−1

producing sets A(n1, . . . ,nk), nk = 1, 2, . . . , that are disjoint, nonempty, open, closed,
and of diameter at most 1/k, and are such that ∪nk A(n1, . . . ,nk) is A(n1, . . . ,nk−1)
less a single point.

Define h : N → Z by letting h(n) be the unique point in ∩kA(n1, . . . ,nk)
(Theorem D.35). It is easy to check that h is continuous and injective and that
Z0 − h(N ) is the countably infinite set consisting of the points removed from
Z0 during the construction of the sets A(n1, . . . ,nk). It follows that Z − h(N ) is
countable. Thus the construction of h, and so of f , is complete. �	

The following is an interesting and well-known consequence of Proposi-
tion 8.2.13 (see also Exercise 1).

Corollary 8.2.14. Each uncountable Borel subset of a Polish space includes a
subset that is homeomorphic to {0,1}N.

Proof. Let X be a Polish space, and let A be an uncountable Borel subset of
X . Proposition 8.2.13 provides a continuous injective map f : N → X such that
f (N ) ⊆ A. If we regard {0,1}N as a subspace of N in the natural way, then the
restriction of f to {0,1}N is a homeomorphism of {0,1}N onto the subset f ({0,1}N)
of A (see D.17). �	

Let X be a set, and let F be a family of subsets of X. A subset A of N ×X is
universal for F if the collection of sections {An : n ∈ N } is equal to F .

Our goal now is to show that if X is Polish, then there is an analytic subset of
N ×X that is universal for the class of analytic subsets of X . We will use such a
universal set to construct an analytic set that is not a Borel set.

Lemma 8.2.15. Let X be a separable metrizable space. Then there is an open
subset of N ×X that is universal for the collection of open subsets of X and a
closed subset of N ×X that is universal for the collection of closed subsets of X.
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Proof. Let U be a countable base for X , and let {Un} be an infinite sequence whose
terms are the sets in U , together with the empty set (the sequence may have repeated
terms). Define a subset W of N ×X by

W = {(n,x) : x ∈Unk for some k}

(recall that n is an abbreviation for {nk}). For each n and each k the set W (k,n)
defined by

W (k,n) = {n ∈ N : nk = n}×Un

is open, and so W , since it is equal to ∪k ∪n W (k,n), is also open. For each n in N
the section Wn is given by

Wn =
⋃

k

Unk ;

hence W is universal for the collection of open subsets of X (recall the definition of
the sequence {Un}).

The complement of W is a closed subset of N ×X and is universal for the class
of closed subsets of X . �	
Proposition 8.2.16. Let X be a Polish space. Then there is an analytic subset of
N ×X that is universal for the collection of analytic subsets of X.

Proof. Use Lemma 8.2.15, applied to the space N ×X , to choose a closed subset
F of N ×N ×X that is universal for the collection of closed subsets of N ×X .
Let A be the image of F under the map (m,n,x) �→ (m,x). Then A is analytic,
and it is easy to check that for each m in N the section Am is the projection on
X of the corresponding section Fm of F . Since F is universal for the collection of
closed subsets of N ×X , Proposition 8.2.9 implies that the analytic subsets of X are
exactly the projections on X of the sections Fm. Thus A is universal for the collection
of analytic subsets of X . �	
Corollary 8.2.17. There is an analytic subset of N that is not a Borel set.

Proof. According to Proposition 8.2.16, there is an analytic subset A of N ×N
that is universal for the collection of analytic subsets of N . Let S = {n ∈ N :
(n,n) ∈ A}. Then S is analytic, since it is the projection on N of the intersection
of A with the diagonal {(m,n) ∈ N ×N : m = n}. Now suppose that S is a Borel
set. Then Sc is a Borel set, and so is analytic (Proposition 8.2.3). Thus, since A is
universal, there is an element n0 of N such that Sc = An0 . Let us consider whether
n0 belongs to S or to Sc. If n0 ∈ S, then by the definition of S we have (n0,n0)∈A and
so n0 ∈An0 = Sc, which is impossible. A similar argument shows that if n0 ∈ Sc, then
n0 ∈ S. In either case we have a contradiction, and so we must reject the assumption
that S is a Borel set. �	

One can use Corollary 8.2.17 to show that each uncountable Polish space has an
analytic subset that is not a Borel set; see Exercise 6.
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Exercises

1.(a) Let A be an uncountable analytic subset of the Polish space X . Show that
A has a subset that is homeomorphic to {0,1}N. (Hint: Let f : N → X be
a continuous function such that f (N ) = A. Choose a subset S of N such
that the restriction of f to S is a bijection of S onto A (why does such a
set exist?), and let S0 consist of the points in S that are condensation points
of S. Modify the proof of Proposition 8.2.7 so as to produce a continuous
function g : {0,1}N → N such that f ◦ g : {0,1}N → X is injective.)

(b) Conclude that each uncountable analytic subset of a Polish space has the
cardinality of the continuum.

2. Let X be an uncountable Polish space. Show that the collection of analytic
subsets of X and the collection of Borel subsets of X have the cardinality of
the continuum. (Hint: Use Proposition 8.2.9 or 8.2.16.)

3.(a) Let X be a nonempty zero-dimensional Polish space such that each
nonempty open subset of X is uncountable and not compact. Show that
X is homeomorphic to N . (Hint: Modify the proof of Proposition 8.2.7,
and use Lemma 8.2.11.)

(b) Conclude that the space I of irrational numbers in the interval (0,1) is
homeomorphic to N .

4. Show that each nonempty Polish space is the image of N under a continuous
open2 map. (Hint: Modify the construction of the sets C(n1, . . . ,nk) in the proof
of Proposition 8.2.7, replacing condition (a) with the requirement that each
C(n1, . . . ,nk) be nonempty and open and adding the requirement that for each
n1, . . . , nk, nk+1 the closure of C(n1, . . . ,nk+1) be included in C(n1, . . . ,nk).)

5. Show that if the phrase “zero-dimensional” is omitted from the statement
of Proposition 8.2.10, then a much simpler proof can be given. (Hint: Use
Lemma 8.2.4.)

6. Show that if X is an uncountable Polish space, then there is an analytic subset
of X that is not a Borel set. (Hint: Use Proposition 8.2.13 and Corollary 8.2.17.
One can avoid Proposition 8.2.13 by using Theorem 8.3.6.)

7. In this and the following two exercises, we study a generalization of the
sequences F , Fσ , Fσδ , . . . and G , Gδ , Gδσ , . . . introduced in Sect. 1.1.
Suppose that X is a metrizable space. For each countable ordinal α we define
collections Fα(X) and Gα(X) of subsets of X as follows. Let F0(X) be the
collection of all closed subsets of X , and let G0(X) be the collection of all open
subsets of X . Once Fα(X) and Gα(X) are defined, let Fα+1(X) and Gα+1(X)
be given by3

2Suppose that X and Y are topological spaces. A function f : X →Y is open if for each open subset
U of X the set f (U) is an open subset of Y .
3Recall that each ordinal α can be written in a unique way in the form α = β +n, where β is either
zero or a limit ordinal and where n is finite. The ordinal α is called even if n is even and odd if n is
odd.
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Fα+1(X) =

{
(Fα (X))σ if α is even,

(Fα (X))δ if α is odd,

and

Gα+1(X) =

{
(Gα(X))δ if α is even,

(Gα(X))σ if α is odd.

Finally, if α is a limit ordinal, let Fα(X) be (∪β<αFβ (X))δ and let Gα(X) be
(∪β<αGβ (X))σ .

(a) Show that for each α the sets that belong to Gα(X) are exactly those whose
complements belong to Fα(X).

(b) Show that for each α and each A in Gα(X) (or in Fα (X)) the set Ac belongs
to Gα+1(X) (or to Fα+1(X)).

(c) Show that B(X) = ∪αGα(X) = ∪αFα(X).
(d) Suppose that Y is also a metrizable space and that f : X → Y is continuous.

Show that for each α and each A in Gα(Y ) (or in Fα(Y )) the set f−1(A)
belongs to Gα(X) (or to Fα(X)).

8. Suppose that X is an uncountable Polish space. We already know that the
collection of Borel subsets of X has the cardinality of the continuum (see
Exercise 2). Here you are not to use that result, but rather to use transfinite
induction to show that each Gα(X) has the cardinality of the continuum, that
each Fα(X) has the cardinality of the continuum, and that B(X) has the
cardinality of the continuum.

9.(a) Show that if X is a Polish space, then for each countable ordinal α there
is a set in Gα(N × X) (or in Fα (N × X)) that is universal for Gα(X)
(or for Fα(X)). (Hint: Use transfinite induction. Lemma 8.2.15 provides a
beginning. Next suppose that α > 0. Let ϕ : N → N N be a continuous
surjection, and let ϕk(n), k = 1, 2, . . . , be the components (in N ) of the
element ϕ(n) of N N. If α is a limit ordinal, let {αk} be an enumeration
of the ordinals less than α; otherwise, let {αk} be the sequence each of
whose terms is the immediate predecessor of α . For each k choose a set Ak

in Gαk(N ×X) that is universal for Gαk(X); then define sets B1, B2, . . . by

Bk = {(n,x) ∈ N ×X : (ϕk(n),x) ∈ Ak}.
Show that the set B defined by

B =

{⋃
k Bk if α is even,
⋂

k Bk if α is odd,

belongs to Gα(N ×X) and is universal for Gα(X). Finally, use part (a) of
Exercise 7.)

(b) Show that there is no set in B(N ×N ) that is universal for B(N ). (Hint:
Modify the proof of Corollary 8.2.17.)
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(c) Suppose that X is an uncountable Polish space and that there is a bijection
F : N →X such that both F and F−1 are Borel measurable (such a bijection
always exists; see Theorem 8.3.6). Show that there is no set in B(N ×X)
that is universal for B(X). Also show that no two of the sets G0(X), F0(X),
. . . , Gα(X), Fα(X), . . . , B(X) are equal.

10. Let X be a Polish space, and let Y be a metrizable space. Show that if A ∈B(X)
and if f : A → Y is Borel measurable, then f (A) is separable. (Hint: Let d be a
metric for Y , and suppose that f (A) is not separable. Choose a positive number
ε and an uncountable subset C of f (A) such that d(x,y)≥ ε holds for each pair
x, y of points in C; then choose a function g : C → A such that y = f (g(y)) holds
for each y in C (check that C and g exist). Show that each subset of g(C) is
analytic, and then use Exercises 1 and 2 to derive a contradiction.)

8.3 The Separation Theorem and Its Consequences

This section is devoted to a fundamental technical fact about analytic sets (Theorem
8.3.1) and to some of its applications. The reader should take particular note of
Theorems 8.3.6 and 8.3.7.

Let X be a Polish space, and let A1 and A2 be disjoint subsets of X . Then A1 and
A2 can be separated by Borel sets if there are disjoint Borel subsets B1 and B2 of X
such that A1 ⊆ B1 and A2 ⊆ B2.

Theorem 8.3.1. Let X be a Polish space, and let A1 and A2 be disjoint analytic
subsets of X. Then A1 and A2 can be separated by Borel sets.

Proof. Let us begin by showing that

(a) if C1, C2, . . . , and D are subsets of X such that for each n the sets Cn and D can
be separated by Borel sets, then ∪nCn and D can be separated by Borel sets, and

(b) if E1, E2, . . . , and F1, F2, . . . are subsets of X such that for each m and n the sets
Em and Fn can be separated by Borel sets, then ∪mEm and ∪nFn can be separated
by Borel sets.

First consider assertion (a). For each n choose disjoint Borel sets Gn and Hn such
that Cn ⊆ Gn and D ⊆ Hn. Then ∪nGn and ∩nHn are disjoint Borel sets that include
∪nCn and D, respectively. Hence assertion (a) is proved.

Next consider assertion (b). Assertion (a) implies that for each m the sets Em

and ∪nFn can be separated by Borel sets. Another application of assertion (a) now
implies that ∪mEm and ∪nFn can be separated by Borel sets.

We turn to the proof of the theorem itself. So suppose that A1 and A2 are disjoint
analytic subsets of X . Since the empty set can clearly be separated from an arbitrary
subset of X by Borel sets, we can assume that neither A1 nor A2 is empty. Thus
there are continuous functions f ,g : N → X such that f (N ) = A1 and g(N ) = A2

(Corollary 8.2.8). Suppose that A1 and A2 cannot be separated by Borel sets; we will
derive a contradiction.
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Recall (see Example 8.1.6(b)) that for positive integers k and n1, . . . , nk the set
N (n1, . . . ,nk) is defined by

N (n1, . . . ,nk) = {m ∈ N : mi = ni for i = 1, . . . , k}.

Since A1 = ∪m1 f (N (m1)) and A2 = ∪n1 g(N (n1)), assertion (b) above implies
that there are positive integers m1 and n1 such that f (N (m1)) and g(N (n1))
cannot be separated by Borel sets. Likewise, since f (N (m1)) =∪m2 f (N (m1,m2))
and g(N (n1)) = ∪n2g(N (n1,n2)), there are positive integers m2 and n2 such that
f (N (m1,m2)) and g(N (n1,n2)) cannot be separated by Borel sets. By continuing
in this manner we can construct sequences m = {mi} and n = {ni} such that for
each k the sets f (N (m1, . . . ,mk)) and g(N (n1, . . . ,nk)) cannot be separated by
Borel sets. The points f (m) and g(n) must be equal, since otherwise they could
be separated with open sets, which, by the continuity of f and g, would separate
f (N (m1, . . . ,mk)) and g(N (n1, . . . ,nk)) for all large k. However, since f (m) ∈ A1

and g(n) ∈ A2, the equality of f (m) and g(n) contradicts the disjointness of A1 and
A2. So we must conclude that A1 and A2 can be separated with Borel sets, and with
this the proof is complete. �	
Corollary 8.3.2. Let X be a Polish space, and let A1, A2, . . . be disjoint analytic
subsets of X. Then there are disjoint Borel subsets B1, B2, . . . of X such that An ⊆ Bn

holds for each n.

Proof. For each positive integer n the set ∪m�=nAm is analytic, and so we can use
Theorem 8.3.1 and the disjointness of An and ∪m�=nAm to choose a Borel set Cn such
that An ⊆Cn and ∪m�=nAm ⊆Cc

n. Now define the Borel sets B1, B2, . . . by letting Bn

be equal to Cn − (∪m�=nCm). �	
Corollary 8.3.3. Let X be a Polish space, and let A be a subset of X. If both A and
Ac are analytic, then A is Borel.

Proof. According to Theorem 8.3.1 there are disjoint Borel subsets B1 and B2 of X
such that A ⊆ B1 and Ac ⊆ B2. It follows immediately that A = B1 and Ac = B2, and
hence that A is Borel. �	
Proposition 8.3.4. Let X and Y be Polish spaces, let A be a Borel subset of X, and
let f be a function from A to Y . Then f is Borel measurable if and only if its graph
is a Borel subset of X ×Y.

Proof. Proposition 8.1.8 implies that if f is Borel measurable, then gr( f ) is a Borel
subset of A×Y and hence (Lemma 7.2.2) of X ×Y . Now consider the converse.
Suppose that gr( f ) is a Borel subset of X ×Y and that B is a Borel subset of Y .
Then gr( f )∩ (X ×B) and gr( f )∩ (X ×Bc) are Borel, and hence analytic, subsets
of X ×Y . Thus the projections of these sets on X are analytic. But these projections
are f−1(B) and f−1(Bc), respectively. Furthermore the sets f−1(B) and f−1(Bc) are
disjoint, and so, by Theorem 8.3.1, there are Borel sets B1 and B2 that separate them.
It is easy to check that f−1(B) is equal to A∩B1 and so is a Borel set. Since B was
an arbitrary Borel subset of Y , the measurability of f follows. �	
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Proposition 8.3.5. Let X and Y be Polish spaces, let A be a Borel subset of X, let
f : A→Y be Borel measurable, and let B= f (A). If f is injective and if 4 B∈B(Y ),
then f−1 is Borel measurable.

Proof. Note that gr( f−1) is the image of gr( f ) under the homeomorphism (x,y) �→
(y,x) of X ×Y onto Y ×X ; hence gr( f−1) is a Borel subset of Y ×X if and only
if gr( f ) is a Borel subset of X ×Y . Now apply Proposition 8.3.4 twice, once to
conclude that gr( f ) is a Borel subset of X ×Y and once to conclude that f−1 is
Borel measurable. �	

Let (X ,A ) and (Y,B) be measurable spaces. A bijection f : X → Y is an
isomorphism if f is measurable with respect to A and B and f−1 is measurable
with respect to B and A . Equivalently, the bijection f is an isomorphism if the
subsets A of X that belong to A are exactly those for which f (A) belongs to B.
The spaces (X ,A ) and (Y,B) are isomorphic if there exists such an isomorphism.
We will also call subsets X0 and Y0 of X and Y isomorphic if the spaces5 (X0,AX0)
and (Y0,BY0) are isomorphic. In case (X ,B(X)) and (Y,B(Y )) are Polish spaces,
together with their Borel σ -algebras, we will often use the term Borel isomorphism
instead of isomorphism.

The concept of a Borel isomorphism is a natural one; it is especially important
because of the following easy-to-state but nontrivial result.6

Theorem 8.3.6. Let A and B be Borel subsets of Polish spaces. Then A and B
are Borel isomorphic if and only if they have the same cardinality. Furthermore,
the cardinality of each uncountable Borel subset of a Polish space is that of the
continuum.

Proof. If A and B are isomorphic, then they certainly have the same cardinality.
We turn to the converse.

Suppose that A and B have the same cardinality. If these sets are finite or
countably infinite, then each of their subsets is a Borel set, and each bijection
between them is an isomorphism; hence A and B are isomorphic.

Now suppose that A and B are uncountable. Note that we are simply assuming
that A and B are uncountable; we are not assuming that they have the same cardi-
nality. Proposition 8.2.13 says that there are continuous injective maps f : N → A
and g : N → B such that A− f (N ) and B− g(N ) are at most countably infinite.
Since they are countable, the sets A− f (N ) and B− g(N ) are Borel sets; thus
f (N ) and g(N ) are also Borel sets, and (see Proposition 8.3.5) f and g are Borel
isomorphisms of N onto f (N ) and g(N ), respectively. Thus g ◦ f−1 is a Borel
isomorphism of f (N ) onto g(N ). Now let I be a countably infinite subset of
f (N ), and let h be a bijection of the countably infinite set I ∪ (A− f (N )) onto

4We will see (Theorem 8.3.7) that the injectivity and measurability of f imply that B ∈ B(Y ).
5Of course AX0 and BY0 are the traces of A and B on X0 and Y0 (see Exercise 1.5.11).
6See Exercise 5 for a proof of Theorem 8.3.6 that does not depend on Proposition 8.2.13 or 8.3.5.
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the countably infinite set g( f−1(I))∪ (B− g(N )). It is easy to check that the map
that agrees with g ◦ f−1 on f (N )− I and with h on I ∪ (A− f (N )) is a Borel
isomorphism of A onto B.

In particular, each uncountable Borel subset of a Polish space is Borel isomorphic
to R, and so has the cardinality of the continuum. �	

It follows from Theorem 8.3.6 that a Borel subset of a Polish space is Borel
isomorphic to R, to the set N of all positive integers, to the set {1,2, . . . ,n} for some
positive integer n, or to ∅.

We now show that the hypothesis that f (A) belongs to B(Y ) can be removed
from Proposition 8.3.5.

Theorem 8.3.7. Let X and Y be Polish spaces, let A be a Borel subset of X, and let
f : A → Y be Borel measurable and injective. Then f (A) is a Borel subset of Y .

The proof of this result will depend on the following lemma.

Lemma 8.3.8. Let X and Y be Polish spaces, let A be a nonempty Borel subset
of X, and let f : A → Y be Borel measurable and injective. Then there is a Borel
measurable function g : Y → X such that g(Y )⊆ A and such that g( f (x)) = x holds
at each x in A.

Proof. Let d be a metric for X , and let x be an element of A (we will hold x fixed
throughout this proof). For each positive integer n we define a function gn : Y → X
as follows. Choose a finite or countably infinite partition {An,k}k of A into nonempty
Borel subsets of diameter at most 1/n, and in each An,k choose a point xn,k. The sets
f (An,k), k = 1, 2, . . . , are disjoint and analytic (Proposition 8.2.6), and so we can
choose disjoint Borel sets Bn,k, k = 1, 2, . . . , such that f (An,k)⊆ Bn,k holds for each
k (Corollary 8.3.2). Now define gn : Y → X by letting gn(y) = xn,k if y ∈ Bn,k and
letting gn(y) = x if y /∈ (∪kBn,k). It is easy to check that each gn is Borel measurable.
Define g : Y → A by letting g(y) = limn gn(y) if the limit exists and belongs to A and
letting g(y) = x otherwise. Proposition 8.1.11 implies that g is Borel measurable.
If x ∈ A, then d(x,gn( f (x))) ≤ 1/n holds for each n, and so g( f (x)) = x. Thus g is
the required function. �	
Proof of Theorem 8.3.7. We can certainly assume that A is not empty. According to
Lemma 8.3.8 there is a Borel measurable function g : Y → X such that g(Y )⊆ A and
such that g( f (x)) = x holds at each x in A. It is easy to check that

f (A) = {y ∈ Y : f (g(y)) = y}.

Thus Exercise 8.1.3, applied to the functions y �→ f (g(y)) and y �→ y, implies that
f (A) ∈ B(Y ). �	
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Exercises

1. Let X and Y be Polish spaces, and let f : X → Y be a function whose graph is an
analytic subset of X ×Y . Show that f is Borel measurable.

2. Let X and Y be uncountable Polish spaces. Show that the cardinality of the
collection of Borel measurable functions from X to Y is that of the continuum.

3. Show that there is a Lebesgue measurable function f : R → R such that no
real-valued (as opposed to [−∞,+∞]-valued) Borel measurable function f1

satisfies f (x)≤ f1(x) at each x in R. Thus the [−∞,+∞]-valued functions f0 and
f1 in Proposition 2.2.5 cannot necessarily be replaced with real-valued functions,
even if the function f is real-valued. (Hint: Let K be the Cantor set. According
to the preceding exercise, we can choose a bijection x �→ gx of K onto the set of
real-valued Borel functions on K. Define f : R→R by

f (x) =

{
gx(x)+ 1 if x ∈ K,

0 otherwise,

and check that f meets the requirements above.)
4. Let X be a Polish space, let μ be a Borel measure on X such that μ(X) = 1, and

let λ be Lebesgue measure on the Borel subsets of [0,1]. Show that there is a
Borel measurable function f : [0,1]→ X such that μ = λ f−1. (Hint: This is easy
if X is finite or countably infinite. Otherwise use Theorem 8.3.6, together with
either Exercise 2.6.6 or Proposition 10.1.15.)

5. Give an alternate proof of the isomorphism theorem for Borel sets (Theorem
8.3.6) by supplying the details missing from the following outline. (This
proof depends neither on the separation theorem and its consequences nor on
Proposition 8.2.13.)

(a) Show that every Borel subset of a Polish space is Borel isomorphic to a Borel
subset of {0,1}N. (Hint: Begin by showing that the interval [0,1] is Borel
isomorphic to a Borel subset of {0,1}N (consider binary expansions). From
this conclude that [0,1]N is Borel isomorphic to a Borel subset of ({0,1}N)N
and hence to a Borel subset of {0,1}N. Finally, use Exercise 8.1.12.)

(b) Show that each uncountable Borel subset of a Polish space has a Borel subset
that is Borel isomorphic to {0,1}N. (Hint: Use Corollary 8.2.14 or, to avoid
Proposition 8.2.13, Exercise 8.2.1.)

(c) (A version of the Schröder–Bernstein theorem for Borel sets—see item A.7
in Appendix A.) Suppose that X and Y are Polish spaces, that A and B are
Borel subsets of X and Y , respectively, that A is Borel isomorphic to a Borel
subset of B, and that B is Borel isomorphic to a Borel subset of A. Show
that A and B are Borel isomorphic to one another. (Hint: Let f and g be
Borel isomorphisms of A and B onto Borel subsets of B and A, respectively.
Define sequences {An}∞

n=0 and {Bn}∞
n=0 inductively by A0 = A, B0 = B,
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An+1 = g(Bn), and Bn+1 = f (An). Show that

h(x) =

{
f (x) if x ∈ ∩∞

0 An or x ∈ ∪∞
0 (A2n −A2n+1),

g−1(x) if x ∈ ∪∞
0 (A2n+1 −A2n+2)

gives a Borel isomorphism h : A → B. See the proof of Proposition G.2
in Appendix G for a more detailed description of the construction of the
function h.)

8.4 The Measurability of Analytic Sets

Let (X ,A ) be a measurable space, and let μ be a measure on (X ,A ). Recall that in
Sect. 1.5 we defined the completion of A under μ to be the collection Aμ of subsets
A of X for which there are sets E and F that belong to A and satisfy the relations
E ⊆ A ⊆ F and μ(F −E) = 0. The sets in Aμ are often called μ-measurable.

We also defined the outer measure μ∗(A) and the inner measure μ∗(A) of an
arbitrary subset A of X by

μ∗(A) = inf{μ(B) : A ⊆ B and B ∈ A } (1)

and

μ∗(A) = sup{μ(B) : B ⊆ A and B ∈ A }. (2)

We saw that a set A such that μ∗(A) < +∞ belongs to Aμ if and only if μ∗(A) =
μ∗(A), that Aμ is a σ -algebra on X , and that the restriction of μ∗ (or of μ∗) to Aμ
is a measure on Aμ , which is called the completion of μ and is denoted by μ . It is
easy to see that μ is the only measure on Aμ that agrees on A with μ .

We can now state the main result of this section.

Theorem 8.4.1. Let X be a Polish space, and let μ be a finite Borel measure on X.
Then every analytic subset of X is μ-measurable.

For the proof we need the following lemma.

Lemma 8.4.2. Let (X ,A ) be a measurable space, let μ be a finite measure on
(X ,A ), and let μ∗ be defined by Eq. (1). If {An} is an increasing sequence of subsets
of X, then

μ∗
(⋃

n

An

)
= lim

n
μ∗(An).

Proof. The monotonicity of μ∗ implies that the limit limn μ∗(An) exists and satisfies
limn μ∗(An) ≤ μ∗(∪nAn). We need to verify the reverse inequality. Let ε be a
positive number, and for each positive integer n use (1) to choose a set Bn that
belongs to A , includes An, and satisfies μ(Bn) ≤ μ∗(An) + ε . By replacing Bn
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with ∩∞
j=nB j, we can assume that the sequence {Bn} is increasing. Proposition 1.2.5

implies that μ(∪nBn) = limn μ(Bn), and so we have

μ∗
(⋃

n

An

)
≤ μ
(⋃

n

Bn

)
= lim

n
μ(Bn)≤ lim

n
μ∗(An)+ ε.

Since ε is arbitrary, the proof of the lemma is complete. �	
Proof of Theorem 8.4.1. Let A be an analytic subset of X . We will show that A is
μ-measurable by showing that μ∗(A) = μ∗(A), and we will do this by producing,
for an arbitrary positive ε , a compact subset K of A such that μ(K)≥ μ∗(A)− ε .

We can certainly assume that A is nonempty. Thus we can choose a continuous
function f : N → X such that f (N ) =A (Corollary 8.2.8). We need some notation.
For positive integers k and n1, . . . , nk let L (n1, . . . ,nk) be the set of those elements
m of N that satisfy mi ≤ ni for i = 1, . . . , k. We will construct an element n = {ni}
of N such that

μ∗( f (L (n1, . . . ,nk)))> μ∗(A)− ε (3)

holds for each k. We begin by choosing the first term n1 of the sequence n.
Note that {L (n1)}∞

n1=1 is an increasing sequence of sets whose union is N , and
so { f (L (n1))}∞

n1=1 is an increasing sequence of sets whose union is A. Thus
μ∗(A) = limn1 μ∗( f (L (n1))) (Lemma 8.4.2), and so we can pick a positive integer
n1 such that μ∗( f (L (n1))) > μ∗(A)− ε . Since L (n1) = ∪n2L (n1,n2), a similar
argument produces a positive integer n2 such that μ∗( f (L (n1,n2))) > μ∗(A)− ε .
Continuing in this way we obtain a sequence n = {nk} of positive integers such
that (3) holds for each k. Now let L = ∩kL (n1, . . . ,nk). Then L is equal to

{m ∈ N : mi ≤ ni for each i}
and so is compact (see D.20 or D.42); it follows that the set K defined by K = f (L)
is a compact subset of A. We will show that μ(K)≥ μ∗(A)− ε .

Let us begin by showing that

K =
⋂

k

f (Lk)
−, (4)

where for each k we have abbreviated L (n1, . . . ,nk) by Lk. Since it is clear that
K ⊆ ∩k f (Lk)

−, we turn to the reverse inclusion. Let d be a metric for the topology
of X . Suppose that x is a member of∩k f (Lk)

−. For each k we can choose an element
mk of Lk such that d( f (mk),x) ≤ 1/k. Note that for each i the ith components of
the terms of {mk} form a bounded subset of N; hence the terms of {mk} form a
relatively compact7 subset of N , and we can choose a convergent subsequence of
{mk}. Let m be the limit of this subsequence. It is easy to check that m ∈ ∩kLk and
that f (m) = x. Hence ∩k f (Lk)

− ⊆ K, and (4) is proved.

7A subset of a Hausdorff space is relatively compact if its closure is compact.
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For each k the set f (Lk)
− is closed and includes f (Lk); hence (see (3))

μ( f (Lk)
−)≥ μ∗( f (Lk))> μ∗(A)− ε. (5)

Furthermore the sequence { f (Lk)
−} is decreasing, and so (4), (5), and Proposi-

tion 1.2.5 imply that

μ(K) = lim
k

μ( f (Lk)
−)≥ μ∗(A)− ε. (6)

Thus μ∗(A)≥ μ∗(A)− ε and so, since ε was arbitrary, the proof is complete. �	
Let (X ,A ) be a measurable space. A subset of X is universally measurable (with

respect to (X ,A )) if it is μ-measurable for every finite measure μ on (X ,A ). Let A∗
be the family of all universally measurable subsets of X . Then A∗ = ∩μAμ , where
μ ranges over the family of finite measures on (X ,A ); hence A∗ is a σ -algebra. It
is easy to check that for each finite measure μ on (X ,A ) there is a unique measure
on (X ,A∗) that agrees on A with μ .

Now assume that X is a Polish space. The universally measurable subsets of X
are those that are universally measurable with respect to (X ,B(X)).

Theorem 8.4.1 can now be reformulated as follows.

Corollary 8.4.3. Every analytic subset of a Polish space is universally measurable.

Proof. This corollary is simply a restatement of Theorem 8.4.1. �	
Let X be an uncountable Polish space. Corollary 8.4.3 implies that the σ -

algebra of universally measurable subsets of X includes the σ -algebra generated
by the analytic subsets of X . These σ -algebras contain the complements of the
analytic sets, and so contain some nonanalytic sets; thus the collection of universally
measurable subsets of X is larger than the collection of analytic subsets of X , which
in turn is larger than B(X).

Suppose that X and Y are Polish spaces. Note that if C is a Borel (or even analytic)
subset of X ×Y , then the projection of C on X is analytic and so is universally
measurable. This fact has the following useful generalization, in which the space X
is not required to be Polish.

Proposition 8.4.4. Let (X ,A ) be a measurable space, let Y be a Polish space, and
let C be a subset of X ×Y that belongs to the product σ -algebra A ×B(Y ). Then
the projection of C on X is universally measurable with respect to (X ,A ).

The proof depends on the following two lemmas; they will allow us to replace X
with a suitable Polish space.

Lemma 8.4.5. Let (X ,A ), Y , and C be as in Proposition 8.4.4, and let Z = {0,1}N.
Then there exist a function h : X → Z and a subset D of Z ×Y such that

(a) h is measurable with respect to A and B(Z),
(b) D ∈ B(Z ×Y ), and
(c) C = H−1(D), where H : X ×Y → Z ×Y is the map that takes (x,y) to (h(x),y).
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Proof. Recall that A ×B(Y ) is generated by the family of all rectangles A× B
such that A ∈ A and B ∈ B(Y ). It follows from Exercise 1.1.7 that this family of
rectangles has a countable subfamily C such that C ∈ σ(C ). Let A1 ×B1, A2 ×B2,
. . . be the rectangles belonging to C , and define h : X → Z by letting h(x) be the
sequence {χAn(x)}. Since the subsets E1, E2, . . . of Z defined by

Ek = {{ni} ∈ Z : nk = 1}
generate B(Z) (see Proposition 8.1.7) and since h−1(Ek) = Ak holds for each k,
Proposition 2.6.2 implies that h is measurable with respect to A and B(Z). Define
H : X ×Y → Z ×Y by H(x,y) = (h(x),y), and let

F = {H−1(D) : D ∈ B(Z ×Y )}.
Then F is a σ -algebra on X ×Y that contains each Ai ×Bi. Hence σ(C )⊆ F , and
so C ∈ F . With this the lemma is proved. �	
Lemma 8.4.6. Let (X ,A ) and (Y,B) be measurable spaces, and let f : X → Y be
measurable with respect to A and B. Then f is measurable with respect to the
σ -algebras A∗ and B∗ of universally measurable sets.

Proof. Suppose that B∗ ∈ B∗. We need to show that f−1(B∗) ∈ A∗. Let μ be a
finite measure on A . Recall that μ f−1 is the measure on B defined by μ f−1(B) =
μ( f−1(B)). Since B∗ belongs to B∗, it belongs to Bμ f−1 , and so there are sets

B0 and B1 in B that satisfy B0 ⊆ B∗ ⊆ B1 and μ f−1(B1 − B0) = 0. Then the
sets f−1(B0) and f−1(B1) belong to A and satisfy f−1(B0)⊆ f−1(B∗) ⊆ f−1(B1)
and μ( f−1(B1)− f−1(B0)) = 0. Hence f−1(B∗) ∈ Aμ . Since μ was arbitrary, we
conclude that f−1(B∗) belongs to A∗, and the proof is complete. �	
Proof of Proposition 8.4.4. Let (X ,A ), Y , and C be as in the statement of
Proposition 8.4.4, and construct h, H, and D as in Lemma 8.4.5. Let πX be
the projection of X ×Y onto X , and let πZ be the projection of Z ×Y onto Z.
Corollary 8.4.3 implies that πZ(D) is a universally measurable subset of Z, and
so Lemma 8.4.6 implies that h−1(πZ(D)) is a universally measurable subset of X .
Thus, in view of the easily verified relation

πX(C) = πX(H
−1(D)) = h−1(πZ(D)),

πX(C) is universally measurable. �	

Exercises

1. Let (X ,A ) be a measurable space.

(a) Show that a function f : X → [−∞,+∞] is A∗-measurable if and only if
for each finite measure μ on (X ,A ) there are A -measurable functions
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f0, f1 : X → [−∞,+∞] that satisfy f0 ≤ f ≤ f1 everywhere on X and
are equal to one another μ-almost everywhere on X . (Hint: See Proposi-
tion 2.2.5.)

(b) Show that if f : X → [−∞,+∞] is A∗-measurable and if the functions f0 and
f1 in part (a) can be chosen independently of μ , then f is A -measurable.

2. Let (X ,A ) be a measurable space.

(a) Show that (A∗)∗ = A∗.
(b) Show that if μ is a finite measure on (X ,A ), then (Aμ)∗ = Aμ .

3. Show that there is a Lebesgue measurable subset of R that is not universally
measurable.

4. Show that each uncountable Polish space has a subset that is not universally
measurable. (Hint: Use Theorem 8.3.6.)

5. Show by example that Lemma 8.4.2 would not be valid if μ∗ were allowed to be
an arbitrary outer measure on X .

6. Let (X ,A ) and (Y,B) be measurable spaces, and let K be a kernel from (X ,A )
to (Y,B) such that sup{K(x,Y ) : x ∈ X} is finite (see Exercise 2.4.7). For
each x in X let B �→ K(x,B) be the restriction to B∗ of the completion of the
measure B �→ K(x,B). Finally, for each finite measure μ on (X ,A ) let μK be
the measure on (Y,B) defined by (μK)(B) =

∫
K(x,B)μ(dx) (see part (a) of

Exercise 2.4.7).

(a) Show that (x,B) �→ K(x,B) is a kernel from (X ,A∗) to (Y,B∗). (Hint: Use
Exercise 1. Let B belong to B∗, and let μ be a finite measure on (X ,A ).
Choose sets B0 and B1 that belong to B and satisfy the conditions B0 ⊆ B ⊆
B1 and (μK)(B1 −B0) = 0; then consider the functions x �→ K(x,B0) and
x �→ K(x,B1).)

(b) Suppose that μ is a finite measure on (X ,A ) and that μ and μK are the
restrictions to A∗ and B∗ of the completions of μ and μK. Show that μK =
μK (that is, show that

μK(B) =
∫

K(x,B)μ(dx)

holds for each B in B∗.)

7. Let X be a Hausdorff space. A capacity on X is a function I : P(X)→ [−∞,+∞]
such that

(i) if A ⊆ B ⊆ X , then I(A)≤ I(B),
(ii) each increasing sequence {An} of subsets of X satisfies I(∪nAn) =

limn I(An), and
(iii) each decreasing sequence {Kn} of compact subsets of X satisfies I(∩nKn) =

limn I(Kn).

A subset A of X is I-capacitable if

I(A) = sup{I(K) : K ⊆ A and K is compact}.
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Show that if the Hausdorff space X is Polish and if I is a capacity on X , then
every relatively compact analytic subset of X is I-capacitable. (Hint: Modify the
proof of Theorem 8.4.1.)

8.(a) Show that the space I of irrational numbers in the interval (0,1) is not σ -
compact.

(b) Let X be a Polish space that is not σ -compact, and define I : P(X) →
[−∞,+∞] by letting I(A) be 0 if A is included in some σ -compact set and
letting I(A) be 1 otherwise. Show that

(i) I is a capacity on X , and
(ii) there is an analytic subset of X that is not I-capacitable.

8.5 Cross Sections

Let X and Y be Polish spaces, let A be a Borel or analytic subset of X ×Y , and let
A0 be the projection of A on X . It is sometimes useful to have a measurable function
from A0 to Y whose graph is a subset of A. Of course, the axiom of choice guarantees
the existence of a function from A0 to Y whose graph is a subset of A, but it asserts
nothing about the measurability of that function. We will see below, however, that
the theory of analytic sets allows one to construct such a function in a way that
makes it measurable with respect to the σ -algebra of universally measurable subsets
of X .

One should note that this construction does not always produce a Borel measur-
able function. In fact, there is a Borel subset A of [0,1]× [0,1] such that

(a) the image of A under the projection (x,y) �→ x is all of [0,1], and
(b) there is no Borel function from [0,1] to [0,1] whose graph is a subset of A

(see Blackwell [10] or Novikoff [94]).
We will need a few more facts about N for our proof of Theorem 8.5.3. Let ≤

be lexicographic order on N . In other words, we define a relation < on N by
declaring that m < n holds if

(a) m �= n and
(b) mi0 < ni0 , where i0 is the smallest of those positive integers i for which mi �= ni;

then we declare that m ≤ n means that m < n or m = n. It is easy to check that ≤ is
a linear order on N .

Recall also (see Example 8.1.6(b)) that N (n1, . . . ,nk) is the set of all elements
of N whose first k elements are n1, . . . , nk.

Lemma 8.5.1. Each nonempty closed subset of N has a smallest element.

Proof. Let C be a nonempty closed subset of N . We define a sequence {n j} of
positive integers as follows. Let

n1 = inf{k ∈ N : k = m1 for some m in C}.
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Next suppose that n1, . . . , n j have been chosen, and let

n j+1 = inf{k ∈ N : k = m j+1 for some m in C∩N (n1, . . . ,n j)}.

It is easy to check that the sequence n = {n j} produced by continuing in this way is
the required element of C. �	
Lemma 8.5.2. Each subset of N that has the form

{m ∈ N : m < n} (1)

for some n in N is open. The collection of all subsets of N of the form (1) generates
B(N ).

Proof. Note that {m ∈ N : m < n} is equal to
⋃∞

k=1
⋃

j<nk
N (n1, . . . ,nk−1, j), and

so, as the union of a collection of open sets, is open.
Let F be the σ -algebra generated by the sets of the form (1). Since each set of

the form (1) is open, F is included in B(N ). On the other hand, it is easy to check
that for each k and each n1, . . . , nk the set N (n1, . . . ,nk) is the intersection of

{m ∈ N : m < (n1,n2, . . . ,nk−1,nk + 1,1,1, . . .)}

with the complement of

{m ∈ N : m < (n1,n2, . . . ,nk−1,nk,1,1, . . .)}
and so belongs to F . Since the sets N (n1, . . . ,nk) form a countable base for N
(see Example 8.1.6(b)), they generate B(N ), and it follows that B(N ) ⊆ F .
Thus B(N ) = F . �	

For the following theorem we will, as usual, let B(X)∗ denote the σ -algebra of
universally measurable subsets of the Polish space X ; we will also let A (X) denote
the σ -algebra generated by the analytic subsets of X .

Theorem 8.5.3. Let X and Y be Polish spaces, let A be an analytic subset of X ×Y,
and let A0 be the projection of A on X. Then there is a function f : A0 → Y such
that

(a) the graph of f is a subset of A, and
(b) f is measurable with respect to A (X) and B(Y ) and with respect to B(X)∗

and B(Y ).

Proof. We can assume that A is not empty, and so we can choose a continuous
function g : N → X ×Y such that g(N ) = A (Corollary 8.2.8). Let πX and πY

be the projections of X ×Y onto X and Y , respectively. Then πX ◦ g : N → X is
continuous, and (πX ◦g)(N ) = πX(A) = A0. Hence if x ∈ A0, then (πX ◦g)−1({x})
is a nonempty closed subset of N , and so has a smallest member (Lemma 8.5.1).
Define h : A0 → N by letting h(x) be this smallest member of (πX ◦ g)−1({x}).
Let f = πY ◦ g ◦ h. It is easy to check that f is a function from A0 to Y whose
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graph is included in A. Since g and πY are continuous and since A (X) ⊆ B(X)∗
(Corollary 8.4.3), the measurability of f will follow if we prove that h is measurable
with respect to A (X) and B(N ).

Note that if for each n in N we let

Un = {m ∈ N : m < n},
then h−1(Un) is equal to (πX ◦ g)(Un), and so, as the image of the open set Un
under the continuous map πX ◦ g, is analytic. Since the sets Un generate B(N )
(Lemma 8.5.2), the measurability of h with respect to A (X) and B(N ) follows
(Proposition 2.6.2). Thus f is measurable, and the proof is complete. �	

Theorem 8.5.3 implies the following result, in which X is no longer required to
be Polish. Recall that if (X ,A ) is an arbitrary measurable space, then A∗ is the
σ -algebra of sets that are universally measurable with respect to (X ,A ).

Corollary 8.5.4. Let (X ,A ) be a measurable space, let Y be a Polish space, let C
be a subset of X ×Y that belongs to the σ -algebra A ×B(Y ), and let C0 be the
projection of C on X. Then there is a function f : C0 → Y such that

(a) the graph of f is a subset of C, and
(b) f is measurable with respect to A∗ and B(Y ).

Proof. Let Z, h, H, and D be as in Lemma 8.4.5, and let D0 be the projection of
D on Z. Note that C0 = h−1(D0). According to Theorem 8.5.3 there is a function
f0 : D0 → Y that is measurable with respect to B(Z)∗ and B(Y ) and whose graph
is a subset of D. Define f : C0 → Y by f (x) = f0(h(x)). The fact that C = H−1(D)
implies that the graph of f is included in C, and Lemma 8.4.6 implies that h is
measurable with respect to A∗ and B(Z)∗ and hence that f is measurable with
respect to A∗ and B(Y ). �	

Exercises

1. Show by example that the Polish space Y in Proposition 8.4.4 and Corollary 8.5.4
cannot be replaced with an arbitrary measurable space (Y,B). (Hint: Let (X ,A )
be (R,B(R)), let Y be a subset of R that is not Lebesgue measurable, and let B
be the trace of B(R) on Y . For Proposition 8.4.4 consider the subset {(x,y) : x =
y} of X ×Y .)

2. Let (X ,A ) be a measurable space, let Y be a Polish space, and let C be a subset
of X ×Y such that

(i) for each x in X the section Cx is closed and nonempty, and
(ii) for each open subset U of Y the set {x ∈ X : Cx ∩U �=∅} belongs to A .

Show that there is a function f : X → Y such that
(a) f is measurable with respect to A and B(Y ), and
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(b) the graph of f is included in C.
(Hint: Let d be a complete metric for Y , and let D be a countable dense subset
of Y . Choose a sequence { fn} of A -measurable functions from X to D such that
d( fn(x),Cx)< 1/2n and d( fn(x), fn+1(x))< 1/2n hold for all n and x; then define
f by f (x) = limn fn(x).)

3. Let (X ,A ), Y , and C be as in Exercise 2. Show that there is a sequence { fn} of
functions from X to Y such that
(a) each fn is measurable with respect to A and B(Y ), and
(b) for each x in X the section Cx is the closure of the set { fn(x) : n ∈N}.
(Hint: Let {Un} be an enumeration of the nonempty sets in some countable base
for Y . Define sets X1, X2, . . . by letting Xn be the set of x’s for which Cx ∩Un

is not empty; then use Exercise 2 to construct for each n a measurable function
gn : Xn → Un whose graph is included in C ∩ (Xn ×Un). Construct the fn’s by
extending the gn’s to X in a suitable way.)

4. Let X be a Polish space, let (Y,A ) be a measurable space, and let f : X → Y be
a function such that

(i) if y ∈ Y , then f−1({y}) is a nonempty closed subset of X , and
(ii) if U is an open subset of X , then f (U) belongs to A .

Use Exercise 2 to show that there is a function g : Y → X that is measurable with
respect to A and B(X) and that satisfies y = f (g(y)) for each y in Y .

5. Use Exercise 8.2.4, together with ideas from the proof of Theorem 8.5.3, to give
an alternate construction of the function g in Exercise 4.

8.6 Standard, Analytic, Lusin, and Souslin Spaces

A measurable space (X ,A ) is standard if there is a Polish space Z such that (X ,A )
is isomorphic to (Z,B(Z)), and is analytic if there is a Polish space Z and an analytic
subset A of Z such that (X ,A ) is isomorphic to (A,B(A)) (recall that B(A) is the
Borel σ -algebra of the subspace A, and so, according to Lemma 7.2.2, is the family
of subsets of A that have the form A∩B for some Borel subset B of Z).

Of course, the earlier sections of this chapter contain a number of properties
of standard and analytic measurable spaces. (For example, Theorem 8.3.6 implies
that if (X ,A ) is a standard measurable space, then either X is countable and A
contains all the subsets of X or else (X ,A ) is isomorphic to (R,B(R)).) This
section contains a few more such properties, plus some techniques for verifying
that a measurable space is standard or analytic.

We need to define a few more terms. Let (X ,A ) be a measurable space.
A subfamily C of A generates A if σ(C ) = A . The σ -algebra A , or the
measurable space (X ,A ), is countably generated if A has a countable subfamily
that generates it. A family C of subsets of X separates the points of X if for each
pair x, y of distinct points in X there is a member of C that contains exactly one of x
and y. The space (X ,A ), or the σ -algebra A , is separated if A separates the points
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of X , and is countably separated if A has a countable subfamily that separates the
points of X .

See Exercises 1, 2, and 4 for some information about the relationships among the
concepts just defined.

Let us begin with a couple of general facts about analytic measurable spaces
(Lemma 8.6.1 and Proposition 8.6.2), and then turn to ways of recognizing the ana-
lytic and standard spaces among the countably generated spaces (Propositions 8.6.5
and 8.6.6).

Lemma 8.6.1. Let (X ,A ) be an analytic measurable space, let Y be a Polish space,
and let f : X → Y be measurable with respect to A and B(Y ). Then the images
under f of the sets in A are analytic.

Proof. Since (X ,A ) is an analytic measurable space, we can choose a Polish space
Z, an analytic subset A0 of Z, and an isomorphism g of (A0,B(A0)) onto (X ,A ).
Suppose that A ∈ A . Then g−1(A) ∈ B(A0), and so there is a set B in B(Z) such
that g−1(A) = B∩A0 (Lemma 7.2.2). Consequently f (A), as the image of g−1(A)
under the measurable map f ◦ g, is analytic (Proposition 8.2.6). �	
Proposition 8.6.2. Each bijective measurable map between analytic measurable
spaces is an isomorphism.

Proof. Suppose that (X ,A ) and (Y,B) are analytic measurable spaces and that
f : X →Y is a measurable bijection. We need to show that if A ∈A , then f (A) ∈B.
Since (Y,B) is analytic, there is a Polish space Z, an analytic subset A0 of Z, and an
isomorphism g of (Y,B) onto (A0,B(A0)). Of course g is measurable with respect
to B and B(Z) (Lemma 7.2.2). Now suppose that A∈A . The measurability of g◦ f
with respect to A and B(Z) implies that g( f (A)) and g( f (Ac)) are analytic subsets
of Z (Lemma 8.6.1), while the injectivity of g◦ f implies that g( f (A)) and g( f (Ac))
are disjoint; hence the separation theorem for analytic sets (Theorem 8.3.1) provides
a Borel subset B of Z such that g( f (A)) ⊆ B and g( f (Ac)) ⊆ Bc. It is easy to check
that f (A) is equal to g−1(B), and so belongs to B. Since A was an arbitrary set in
A , the measurability of f−1 follows. �	

We need the following elementary construction for our proof of Proposi-
tion 8.6.5.

Lemma 8.6.3. Let (X ,A ) be a countably generated measurable space, and sup-
pose that the sets A1, A2, . . . generate A . Define F : X → {0,1}N by letting F take
x to the sequence {χAn(x)}. Then

A = {B ⊆ X : B = F−1(C) for some C in B({0,1}N)}. (1)

Proof. Let us denote the set on the right-hand side of (1) by AF . Since the sets E1,
E2, . . . defined by

Ek = {{ni} ∈ {0,1}N : nk = 1}
generate B({0,1}N) (Proposition 8.1.7) and since Ak = F−1(Ek) holds for each k,
Proposition 2.6.2 implies that F is measurable with respect to A and B({0,1}N),
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and hence that AF ⊆ A . On the other hand, AF is a σ -algebra on X that contains
each Ak, and hence includes the σ -algebra these sets generate, namely A . Thus
A = AF . �	
Corollary 8.6.4. Let (X ,A ) be a separated and countably generated measurable
space. Then there is a subset A of {0,1}N such that (X ,A ) is isomorphic to
(A,B(A)).

Proof. Use Lemma 8.6.3 to construct a map F : X →{0,1}N such that

A = {B ⊆ X : B = F−1(C) for some C in B({0,1}N)}. (2)

Let A = F(X). Since A was assumed to separate the points of X , (2) implies first
that F is injective and then that F is an isomorphism between (X ,A ) and (A,B(A))
(note that if B = F−1(C), then F(B) =C∩A; also see Lemma 7.2.2). �	
Proposition 8.6.5. Let (X ,A ) be an analytic measurable space, let (Y,B) be
a separated and countably generated measurable space, and let f : X → Y be
surjective and measurable. Then (Y,B) is analytic.

Proof. Use Corollary 8.6.4 to construct a function F : Y → {0,1}N that induces an
isomorphism of (Y,B) onto (F(Y ),B(F(Y ))). Lemma 8.6.1, applied to the map
F ◦ f , implies that F(Y ) is an analytic subset of {0,1}N. Thus (Y,B), since it is
isomorphic to (F(Y ),B(F(Y ))), is an analytic space. �	
Proposition 8.6.6. Let (X ,A ) be a standard measurable space, let (Y,B) be a
separated and countably generated measurable space, and let f : X →Y be bijective
and measurable. Then (Y,B) is standard.

Proof. Proposition 8.6.5 implies that (Y,B) is analytic, and Proposition 8.6.2 then
implies that (Y,B) is isomorphic to (X ,A ). Since (X ,A ) is standard, (Y,B) must
also be standard. �	

We turn to an important result due to Blackwell and to some of its consequences.
For this we need to define the atoms of a σ -algebra. Let (X ,A ) be a measurable
space, and let x be an element of X . The atom of A determined by x is the
intersection of those sets that belong to A and contain x. Note that a point y belongs
to the atom determined by x if and only if x and y belong to exactly the same sets
in A . It is easy to check that the atoms of A form a partition of X , that an atom of
A does not necessarily belong to A (see Exercise 5), and that an atom of A can
contain more than one point (see Exercise 3).

Theorem 8.6.7 (Blackwell). Let (X ,A ) be an analytic measurable space, and let
A0 be a countably generated sub-σ -algebra of A . Then a subset of X belongs to
A0 if and only if it belongs to A and is the union of a family of atoms of A0.

Proof. Certainly every set that belongs to A0 also belongs to A and is the union of
a family of atoms of A0. We need to prove the converse.

Use Lemma 8.6.3 to choose a function F : X →{0,1}N such that
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A0 = {B ⊆ X : B = F−1(C) for some C in B({0,1}N)}. (3)

Note that F is measurable with respect to A0 and B({0,1}N) and so with respect
to A and B({0,1}N), and that the atoms of A0 are the nonempty subsets of X that
are inverse images under F of one-point subsets of {0,1}N. Now suppose that A
belongs to A and is the union of a family of atoms of A0. Then F(A) and F(Ac) are
disjoint analytic subsets of {0,1}N (use Lemma 8.6.1 and the assumption that A is
the union of a collection of atoms of A0). Hence the separation theorem for analytic
sets provides a Borel subset C of {0,1}N such that F(A)⊆C and F(Ac)⊆Cc. Then
A is equal to F−1(C) and so in view of (3) belongs to A0. With this the proof is
complete. �	
Corollary 8.6.8. Let (X ,A ) be an analytic measurable space, and let A0 be a
separated and countably generated sub-σ -algebra of A . Then A0 = A .

Proof. Since A0 is separated, each of its atoms contains only one point, and so each
subset of X is the union of a family of atoms of A0. Thus Theorem 8.6.7 implies
that a subset of X belongs to A0 if and only if it belongs to A . �	

The following strengthened versions of Propositions 8.6.5 and 8.6.6 now follow.
They will be useful for the study of Lusin and Souslin spaces later in this section.

Corollary 8.6.9. Let (X ,A ) be an analytic measurable space, let (Y,B) be a
countably separated measurable space, and let f : X → Y be surjective and
measurable. Then (Y,B) is analytic.

Proof. We begin by showing that B is countably generated. Choose a countable
subfamily C of B that separates the points of Y . We will show that B is equal
to the countably generated σ -algebra σ(C ). Let B be an arbitrary element of B,
and let B0 = σ(C ∪{B}). Then B0 is separated and countably generated, and f is
measurable with respect to A and B0; hence (Y,B0) is analytic (Proposition 8.6.5).
Furthermore, σ(C ) is a separated and countably generated sub-σ -algebra of B0,
and so Corollary 8.6.8 implies that σ(C ) = B0. Thus B ∈ σ(C ). Since B was an
arbitrary member of B, it follows that B = σ(C ).

Now that we have proved that B is countably generated, we can use Proposi-
tion 8.6.5 to conclude that (Y,B) is analytic. �	
Corollary 8.6.10. Let (X ,A ) be a standard measurable space, let (Y,B) be
a countably separated measurable space, and let f : X → Y be bijective and
measurable. Then (Y,B) is standard.

Proof. This follows from Corollary 8.6.9 in the same way that Proposition 8.6.6
follows from Proposition 8.6.5. �	



274 8 Polish Spaces and Analytic Sets

Let us turn to the study of some not necessarily metrizable topological spaces
that are closely related to the Polish spaces. A Lusin space is a Hausdorff space that
is the image of a Polish space under a continuous bijection, and a Souslin space is
a Hausdorff space that is the image of a Polish space under a continuous surjection.
Of course, every Lusin space is a Souslin space.

Examples 8.6.11.

(a) It is clear that the Souslin subspaces of a Polish space X are exactly the analytic
subsets of X . Proposition 8.2.10 (or Exercise 8.2.5) and Theorem 8.3.7 imply
that the Lusin subspaces of a Polish space X are exactly the Borel subsets of X .

(b) Now suppose that X is a Polish space, and let X0 be constructed by replacing
the topology of X with a weaker Hausdorff topology. The function f : X → X0

defined by f (x) = x is continuous, and so X0 is a Lusin space. In particular, if X
is a separable Banach space, then X with its weak topology8 is a Lusin space.
Likewise, if the dual X∗ of the Banach space X is separable, then X∗ with its
weak∗ topology is a Lusin space. Furthermore, if the Banach space X is infinite
dimensional, then the weak topology on X and the weak∗ topology on X∗ are
not metrizable.9 Thus non-metrizable Lusin spaces arise in a natural way. �	

The rest of this section is devoted to some basic measure-theoretic facts about
Lusin and Souslin spaces. We will prove that if X is a Lusin space, then (X ,B(X))
is a standard measurable space, that if X is a Souslin space, then (X ,B(X)) is an
analytic measurable space, and that if X is a Souslin space, then every finite Borel
measure on X is regular.

Lemma 8.6.12. If X is a Souslin space, then B(X) is countably separated.

Proof. Choose a Polish space Z and a continuous surjection f : Z → X . Define
F : Z × Z → X × X by F(z1,z2) = ( f (z1), f (z2)). Let Δ be the subset of X × X
defined by

Δ = {(x1,x2) ∈ X ×X : x1 = x2},
and let U be the collection of those open rectangles in X ×X that are included in
the complement of Δ. Then F is continuous, Δ is closed, and Δc = ∪U . Hence

F−1(Δc) =
⋃
{F−1(U) : U ∈ U },

8This example assumes more Banach space theory than is developed in this book.
9Suppose that X is an infinite-dimensional Banach space. If the weak topology on X is metrizable,
then there is an infinite sequence { fi} in X∗ such that each f in X∗ is a linear combination of f1,
. . . , fn for some n (choose { fi} so that for each weakly open neighborhood U of 0 there is a positive
integer n and a positive number ε such that x ∈U holds whenever x satisfies | fi(x)| < ε for i = 1,
. . . , n; then use Lemma V.3.10 in [42]). Thus X∗ is the union of a sequence of finite-dimensional
subspaces of X∗. Since this is impossible (use Exercise 3.5.6, Corollary IV.3.2 in [42], and the
Baire category theorem), we have a contradiction, and the weak topology on X is not metrizable.
A similar argument shows that the weak∗ topology on X∗ is not metrizable.
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and D.11, applied to {F−1(U) : U ∈ U }, implies that there is a countable
subcollection U0 of U such that

F−1(Δc) =
⋃
{F−1(U) : U ∈ U0}.

This and the surjectivity of F imply that

Δc =
⋃

U0.

Thus for each pair x, y of distinct points in X there is a set V ×W in U0 such that
(x,y) ∈ V ×W and hence (recall that (V ×W )∩Δ = ∅) such that x ∈ V , y ∈ W ,
and V ∩W = ∅. Consequently the sides of the rectangles in U0 form a countable
subfamily of B(X) that separates the points of X . �	
Proposition 8.6.13. If X is a Souslin space, then (X ,B(X)) is an analytic measur-
able space, while if X is a Lusin space, then (X ,B(X)) is a standard measurable
space.

Proof. Let X be a Souslin space, and choose a Polish space Z and a continuous
surjection f : Z → X . Since f is Borel measurable and B(X) is countably separated
(Lemma 8.6.12), Corollary 8.6.9 implies that (X ,B(X)) is analytic. A similar
argument, based on Lemma 8.6.12 and Corollary 8.6.10, shows that if X is a Lusin
space, then (X ,B(X)) is standard. �	
Theorem 8.6.14. Every finite Borel measure on a Souslin space is regular.

Proof. Let X be a Souslin space, and let μ be a finite Borel measure on X . We will
show that

μ(B) = sup{μ(K) : K ⊆ B and K is compact} (4)

holds for each B in B(X). This gives the inner regularity of μ . It also implies the
outer regularity of μ , since for each B in B(X) we can use (4), applied to Bc, to
approximate Bc from below by compact sets and hence to approximate B from above
by open sets.

So suppose that B belongs to B(X). We can assume that B is not empty. Let us
begin by producing a continuous function f : N → X such that f (N ) = B. For this
choose a Polish space Z and a continuous surjection g : Z → X , note that g−1(B) is
a Borel and hence analytic subset of Z, choose a continuous function h : N → Z
such that h(N ) = g−1(B), and let f = g ◦ h.

For each positive number ε we can use the constructions in the proof of
Theorem 8.4.1 to choose sets L (n1, . . . ,nk) (to be abbreviated as Lk) such
that μ∗( f (Lk)) > μ(B)− ε holds for each k. Arguments used in the proof of
Theorem 8.4.1 show that the sets L and K defined by L = ∩kLk and K = f (L)
are compact, that μ(∩k f (Lk)

−)≥ μ(B)− ε , and that K ⊆ ∩k f (Lk)
−.

Our earlier proof of the reverse inclusion works only if X is metrizable; hence it
must be replaced. Suppose that x ∈ ∩k f (Lk)

− and that U is an open neighborhood
of x. For each k choose an element mk of Lk such that f (mk) ∈ U . As before,
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the sequence {mk} has a convergent subsequence, say with limit m. Then m ∈ L,
and the continuity of f implies that f (m) ∈ U− and hence that U− meets K. Since
this is valid for each open neighborhood U of x, it follows that x ∈ K (otherwise,
since K is compact, Proposition 7.1.2 would provide disjoint open sets U0 and V0

such that x ∈ U0 and K ⊆ V0, and U0 would be an open neighborhood of x such
that U0 ∩K = ∅). Since x was an arbitrary element of ∩k f (Lk)

−, it follows that
∩k f (Lk)

− ⊆ K and hence that K = ∩k f (Lk)
−. With this we have constructed a

compact subset K of B such that μ(K)≥ μ(B)− ε , and (4) is proved. �	

Exercises

1. Let (X ,A ) be a measurable space. Show that if A is separated and countably
generated, then A is countably separated.

2. Give a σ -algebra on R that is included in B(R) and is separated but not
countably separated.

3. Let (X ,A ) be a measurable space. Show that each atom of A contains only
one point if and only if A separates the points of X .

4. Give an example of a measurable space that is countably separated but not
countably generated.

5. Let X = {0,1}R and let A be the smallest σ -algebra on X that makes each
coordinate projection of X onto {0,1} measurable (of course, {0,1} is to have
the σ -algebra consisting of all of its subsets).
(a) Show that for each A in A there is a countable subset S of R such that if

x ∈ A, if y ∈ X , and if x(s) = y(s) holds at each s in S, then y ∈ A. (Hint:
See Exercise 1.1.7.)

(b) Show that the atoms of A do not belong to A .
6. Show by example that the hypothesis that A0 is countably generated cannot be

removed from Theorem 8.6.7.
7. Show by example that the hypothesis that (X ,A ) is analytic cannot be removed

from Theorem 8.6.7. (Hint: Let X = R, let A be a subset of R that is not Borel,
and let A = σ(B(R)∪{A}).)

8. Let X be a Souslin space. Show that if U is a collection of open subsets of
X , then there is a countable subcollection U0 of U such that ∪U0 = ∪U .
(Hint: Study the proof of Lemma 8.6.12.)

9. Show that if X and Y are Souslin spaces, then B(X ×Y ) = B(X)×B(Y ).
(Hint: Apply Exercise 8 to the space X ×Y .)

10. Show that each compact Souslin space is metrizable.
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Notes

The classical theory of analytic sets was developed by the Polish and Russian
schools of mathematics between the First and Second World Wars. See, for example,
Kuratowski [77]. In the mid-1950s Blackwell [11] noted that the theory of analytic
sets can be applied profitably to probability theory, while Mackey [86] noted that
it is useful for the study of group representations; their work has done much to
stimulate interest in the subject. Rather thorough recent treatments of analytic sets
have been given by Kechris [68] and Srivastava [112]. See also [29,62,83,101,107].

Analytic and Borel subsets of non-separable spaces have been studied by A.H.
Stone and his students. See Stone [113] for a survey and for further references.

Exercise 8.1.14 is due to Dudley [39].
The reader who wants to see additional (and more explicit) examples of

analytic sets that are not Borel should see Mazurkiewicz [88] and Dellacherie
[35]. For example, Mazurkiewicz shows that the subset A of C[0,1] consisting of
the differentiable functions (that is, of the continuous functions on [0,1] that are
differentiable at each point in [0,1]) is the complement of an analytic set, but is not
itself analytic (thus Ac is analytic but not Borel).

The proof of Theorem 8.3.6 given in the text was suggested by Kuratowski and
Mostowski [78], while that in Exercise 8.3.5 is taken from Parthasarathy [96]. The
proof given here for Theorem 8.3.7 is due to Dellacherie [36].

Theorems 8.4.1 and 8.5.3 are classical. That they imply Proposition 8.4.4
and Corollary 8.5.4 has been noticed (independently) by a number of people.
See Castaing and Valadier [26] and Wagner [121] (and of course [62, 68, 101, 112])
for further information and references. The concepts of capacity and capacitability
are due to Choquet [28].

The results in the first part of Sect. 8.6 are due to Blackwell [11] and Mackey [86].
Bourbaki (see Chapter IX of [17]) introduced the terms Lusin space and Souslin
space for metrizable spaces that are images of Polish spaces under continuous
bijections and surjections; Cartier [25] noted that the assumption of metrizability
is not needed.



Chapter 9
Haar Measure

We saw in Chap. 1 that Lebesgue measure on R
d is translation invariant, in the sense

that λ (A+ x) = λ (A) holds for each A in B(Rd) and each x in R
d . Furthermore,

we saw that Lebesgue measure is essentially the only such Borel measure on R
d :

if μ is a nonzero Borel measure on R
d that is finite on the compact subsets of Rd

and satisfies μ(A+ x) = μ(A) for each A in B(Rd) and each x in R
d , then there is a

positive number c such that μ(A) = cλ (A) holds for every Borel subset A of Rd .
It turns out that very similar results hold for every locally compact group

(see Sect. 9.1 for the definition of such groups); the role of Lebesgue measure is
played by what is called Haar measure. This chapter is devoted to an introduction to
Haar measure.

Section 9.1 contains some basic definitions and facts about topological groups.
Section 9.2 contains a proof of the existence and uniqueness of Haar measure,
and Sect. 9.3 contains additional basic properties of Haar measures. In Sect. 9.4 we
construct two algebras, L1(G) and M(G), which are fundamental for the study of
harmonic analysis on a locally compact group G.

9.1 Topological Groups

A topological group is a set G that has the structure of a group (say with group
operation (x,y) �→ xy) and of a topological space and is such that the operations
(x,y) �→ xy and x �→ x−1 are continuous. Note that (x,y) �→ xy is a function from the
product space G×G to G and that we are requiring that it be continuous with respect
to the product topology on G×G; thus xy must be “jointly continuous” in x and y and
not merely continuous in x with y held fixed and continuous in y with x held fixed
(see Exercise 3). A locally compact topological group, or simply a locally compact
group, is a topological group whose topology is locally compact and Hausdorff. A
compact group is a topological group whose topology is compact and Hausdorff.
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