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Examples 9.1.1.

(a) The set R, with its usual topology and with addition as the group operation, is
a locally compact group.

(b) Likewise, Rd , Z, and Z
d are locally compact groups.

(c) The set R∗ of nonzero real numbers, with the topology it inherits as a subspace
of R and with multiplication as the group operation, is a locally compact group.

(d) Let T be the set consisting of those complex numbers z that satisfy |z|= 1. Then
T, with the topology it inherits as a subspace of C and with multiplication as
the group operation, is a compact group.

(e) The set Q of rational numbers, with the topology it inherits as a subspace of R
and with addition as the group operation, is a topological group; it is not locally
compact.

(f) An arbitrary group G, with the topology that makes every subset of G open, is
a locally compact group; it is compact if and only if G is finite. �	

See Exercises 9–11 for some additional examples.
Let X be a topological space, and let x belong to X . Recall that a family U of

subsets of X is a base for the family of neighborhoods of x if

(a) each member of U is an open neighborhood of x, and
(b) for each open neighborhood V of x there is a set that belongs to U and is

included in V .

Let G be a group. If a is an element of G and if B is a subset of G, then the
products aB and Ba are defined by

aB = {ab : b ∈ B}
and

Ba = {ba : b ∈ B}.
Likewise, if B and C are subsets of G, then BC and B−1 are defined by

BC = {bc : b ∈ B and c ∈C},
and

B−1 = {b−1 : b ∈ B}.
The set B is symmetric if B = B−1. Thus B is symmetric if and only if the condition
x ∈ B is equivalent to the condition x−1 ∈ B.

Proposition 9.1.2. Let G be a topological group, let e be the identity element of G,
and let a be an arbitrary element of G.

(a) The functions x �→ ax, x �→ xa, and x �→ x−1 are homeomorphisms of G onto G.
(b) If U is a base for the family of neighborhoods of e, then {aU : U ∈ U } and

{Ua : U ∈ U } are bases for the family of neighborhoods of a.
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(c) If K and L are compact subsets of G, then aK, Ka, KL, and K−1 are compact
subsets of G.

Proof. The definition of a topological group, together with the continuity of the
maps x �→ (x,a) and x �→ (a,x), implies the continuity of the functions in part (a).
Since these functions have continuous inverses (namely the functions that take x to
a−1x, to xa−1, and to x−1), they are homeomorphisms of G onto G.

Part (b) is an immediate consequence of part (a).
Part (c) follows from the fact that the image of a compact set under a continuous

map is compact (as usual, the compactness of the subset K ×L of G×G is given by
Tychonoff’s theorem, Theorem D.20). �	
Proposition 9.1.3. Let G be a topological group, let e be the identity element of G,
and let U be an open neighborhood of e.

(a) There is an open neighborhood V of e such that VV ⊆U.
(b) There is a symmetric open neighborhood of e that is included in U.

Proof. Since the map (x,y) �→ xy is continuous, the set W defined by W = {(x,y) :
xy ∈ U} is an open neighborhood of (e,e) in G × G, and so there are open
neighborhoods V1 and V2 of e that satisfy V1 ×V2 ⊆ W . The set V defined by
V =V1 ∩V2 is then an open neighborhood of e that satisfies VV ⊆U .

We turn to part (b). The continuity of the map x �→ x−1 implies that if U is an
open neighborhood of e, then U−1 is also an open neighborhood of e. Thus U ∩U−1

is a symmetric open neighborhood of e that is included in U . �	
Proposition 9.1.4. Let G be a topological group, let K be a compact subset of
G, and let U be an open subset of G that includes K. Then there are open
neighborhoods VR and VL of e such that KVR ⊆U and VLK ⊆U.

Proof. For each x in K choose open neighborhoodsWx and Vx of e such that xWx ⊆U
and VxVx ⊆ Wx (see Propositions 9.1.2 and 9.1.3). Then {xVx}x∈K is an open cover
of the compact set K, and so there is a finite collection x1, . . . , xn of points in K such
that the sets xiVxi , i = 1, . . . , n, cover K. Let VR = ∩n

i=1Vxi . If x ∈ K, then there is an
index i such that x ∈ xiVxi , and so

xVR ⊆ xiVxiVxi ⊆ xiWxi ⊆U.

Since x was an arbitrary element of K, it follows that KVR ⊆U . The construction of
VL is similar. �	

Let G be a topological group, and let f be a real- or complex-valued function
on G. Then f is left uniformly continuous if for each positive number ε there
is an open neighborhood U of e such that | f (x)− f (y)| < ε holds whenever x
and y belong to G and satisfy y ∈ xU . Likewise, f is right uniformly continuous
if for each positive number ε there is an open neighborhood U of e such that
| f (x)− f (y)| < ε holds whenever x and y belong to G and satisfy y ∈ Ux. Note
that we can replace the neighborhoods of e appearing in this definition with smaller
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symmetric neighborhoods of e (Proposition 9.1.3) and that for such symmetric
neighborhoods U the condition x ∈ yU is equivalent to the condition y ∈ xU and
the condition x ∈ Uy is equivalent to the condition y ∈ Ux. Thus x and y do in fact
enter our definition symmetrically.

Proposition 9.1.5. Let G be a locally compact group. Then each function in K (G)
is left uniformly continuous and right uniformly continuous.

Proof. Let f belong to K (G), and let K be the support of f . Suppose that ε is a
positive number. For each x in K choose first an open neighborhoodUx of e such that
| f (x)− f (y)|< ε/2 holds whenever y belongs to xUx and then an open neighborhood
Vx of e such that VxVx ⊆Ux (see Propositions 9.1.2 and 9.1.3). The family {xVx}x∈K

is an open cover of the compact set K, and so there is a finite collection x1, . . . , xn of
points in K such that the sets xiVxi , i = 1, . . . , n, cover K. Let V be a symmetric open
neighborhood of e that is included in ∩n

i=1Vxi (Proposition 9.1.3). We will show that
if x and y belong to G and satisfy y ∈ xV , then | f (x)− f (y)|< ε .

This inequality certainly holds if neither x nor y belongs to K (for then f (x) =
f (y) = 0). Now suppose that x ∈ K and y ∈ xV . Then there is an index i such that
x ∈ xiVxi and hence such that x and y belong to xiUxi (note that x ∈ xiVxi ⊆ xiUxi and
y ∈ xV ⊆ xiVxiVxi ⊆ xiUxi). It follows that | f (x)− f (xi)|< ε/2 and | f (y)− f (xi)|<
ε/2 and hence that | f (x)− f (y)|< ε . The remaining case to deal with is where y∈K
and y ∈ xV . Since V is symmetric, this is exactly the case where y ∈ K and x ∈ yV ,
and the details we just looked at (with x and y interchanged) handle this. The left
uniform continuity of f follows. The right uniform continuity of f can be proved in
a similar way. �	
Corollary 9.1.6. Let G be a locally compact group, let μ be a regular Borel
measure on G, and let f belong to K (G). Then the functions x �→ ∫

f (xy)μ(dy)
and x �→ ∫

f (yx)μ(dy) are continuous.

Proof. We will check the continuity of x �→ ∫
f (yx)μ(dy) at an arbitrary point x0 in

G; the proof for x �→ ∫
f (xy)μ(dy) is similar.

Let K be the support of f , and let W be an open neighborhood of x0 whose
closure is compact. It is easy to check that for each x in W the function y �→ f (yx)
is continuous and vanishes outside the compact set K(W−)−1. Suppose that ε is a
positive number, choose a positive number ε ′ such that ε ′μ(K(W−)−1)< ε , and use
the left uniform continuity of f (Proposition 9.1.5) to choose an open neighborhood
V of e such that | f (s)− f (t)| < ε ′ holds whenever s and t belong to G and satisfy
s ∈ tV . Then for each x in W ∩ x0V and each y in G we have yx ∈ yx0V , and so

∣
∣
∣
∫

f (yx)μ(dy)−
∫

f (yx0)μ(dy)
∣
∣
∣≤
∫
| f (yx)− f (yx0)|μ(dy)

≤ ε ′μ(K(W−)−1)≤ ε.

Since ε is arbitrary, the proof is complete. �	
The next two results will be used only in Sect. 9.4.
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Proposition 9.1.7. Let G be a topological group, and let H be an open subgroup of
G. Then H is closed.

Proof. The complement of H is the union of the left cosets xH, where x ranges
through the complement of H. Proposition 9.1.2 implies that each of these cosets is
open. It follows that the complement of H is open and hence that H itself is closed.

�	
Proposition 9.1.8. Let G be a locally compact group. Then there is a subgroup H
of G that is open, closed, and σ -compact.

Proof. Since G is locally compact, we can choose an open neighborhood U of
e whose closure is compact. Use Proposition 9.1.3 to choose a symmetric open
neighborhoodV of e that is included in U . Of course V− is compact. Define sets V n,
n = 1, 2, . . . , inductively by means of the equations V 1 = V and V n = V n−1V , and
then define H by H = ∪nV n. If x ∈ V m and y ∈ V n, then xy ∈ V m+n and x−1 ∈ V m

(recall that V is symmetric); hence H is a subgroup of G. It is clear that H is open
and so also closed (see Exercise 4 and Proposition 9.1.7). Since V− is compact and
H is closed, the closure of each V n is compact and included in H; the σ -compactness
of H follows. �	

Exercises

1. Suppose that G is a group and a topological space. Show that G is a topological
group if and only if the map (x,y) �→ xy−1 from G×G to G is continuous.

2. Let G be R, with addition as the group operation and with the weakest topology
that makes each interval of the form (a,b] open. Show that (x,y) �→ x+ y is
continuous, but that x �→ −x is not continuous. Thus G is not a topological
group.

3. Let G be R, with addition as the group operation and with the topology
for which the open sets are those that either are empty or have a countable
complement (check that these sets do form a topology on G). Show that

(a) x �→ −x is continuous,
(b) (x,y) �→ x+ y is continuous in x when y is held fixed and continuous in y
when x is held fixed, and
(c) (x,y) �→ x+ y is not continuous.

Thus G is not a topological group.
4. Let G be a topological group, let U be an open subset of G, and let A be an

arbitrary subset of G. Show that AU and UA are open subsets of G. (Hint: Note
that AU = ∪a∈AaU .)

5. Show that if G1 and G2 are topological groups, then G1 ×G2, with the product
topology and with the operation defined by (x1,x2)(y1,y2) = (x1y1,x2y2), is a
topological group.
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6. Let G be a topological group. Show that the following conditions are equiva-
lent:

(i) The topology of G is Hausdorff.
(ii) For each a in G the set {a} is closed.

(iii) For some a in G the set {a} is closed.

7. Find all closed subgroups of R. In other words, find all subgroups of the additive
group R that are closed in the usual topology for R.

8. Let G be a Hausdorff topological group, and let E and F be subsets of G.

(a) Show that if E is compact and F is closed, then EF is closed.
(b) Show by example that if E and F are closed (but not compact), then EF

can fail to be closed. (Hint: Such examples can be found in the case where
G =R.)

9. Let G consist of the 2 by 2 matrices of the form

(
a b
0 1

)

, where a is a positive

real number and b is an arbitrary real number. Show that G, with the operation
of matrix multiplication and with the topology it inherits as a subspace of R4,
is a locally compact group.

10. Let GL(d,R) be the collection of all invertible d by d matrices with real entries.
Show that GL(d,R), with the operation of matrix multiplication and with the
topology it inherits as a subspace of Rd2

, is a locally compact group (it is called
the general linear group). (Hint: See Lemma 6.1.2, and recall how Cramer’s
rule for the solution of systems of linear equations gives an explicit formula for
the inverse of a matrix.)

11. Let O(d) be the collection of all orthogonal1 d by d matrices. Show that O(d),
with the operation of matrix multiplication and with the topology it inherits as
a subspace of Rd2

, is a compact group (it is called the orthogonal group).
12. Let G be the locally compact group introduced in Exercise 9. Construct a real-

valued function on G that is right uniformly continuous, but not left uniformly
continuous. (Hint: Consider

(
a b
0 1

)

�→ ϕ(b),

where ϕ is a suitable function from R to R.)
13. Derive Proposition 9.1.5 from Proposition 9.1.4. (Hint: Suppose that f belongs

to K (G). Consider the group G×G and the sets K and U defined by K =
{(x,x) : x ∈ supp( f )} and U = {(x,y) : | f (x)− f (y)| < ε}.)

1Recall that a square matrix with real entries is orthogonal if the product of it with its transpose is
the identity matrix.
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9.2 The Existence and Uniqueness of Haar Measure

Let G be a locally compact group, and let μ be a nonzero regular Borel measure on
G. Then μ is a left Haar measure (or simply a Haar measure) if it is invariant under
left translations (or simply translation invariant), in the sense that μ(xA) = μ(A)
holds for each x in G and each A in B(G). Likewise, μ is a right Haar measure
if μ(Ax) = μ(A) holds for each x in G and each A in B(G). (Lemma 7.2.1 and
Proposition 9.1.2 imply that if x ∈ G and if A is a Borel subset of G, then xA and
Ax are Borel subsets of G; hence the expressions μ(xA) and μ(Ax) appearing in the
preceding definition are meaningful.)

In this section we prove that there is a left Haar measure on each locally compact
group and that it is unique up to multiplication by a constant. A few properties of
Haar measures, plus the relationship between left and right Haar measures, will be
dealt with in Sect. 9.3. In Sect. 9.4 we will use these results to discuss some measure-
theoretic tools for harmonic analysis.

Examples 9.2.1.

(a) Lebesgue measure on R (or on R
d) is a left and a right Haar measure; see

Proposition 1.4.4.
(b) If G is a group with the discrete topology (that is, with the topology that makes

every subset of G open), then counting measure on G is a left and a right Haar
measure; in particular, counting measure on the group Z of integers is a Haar
measure.

(c) Let T be the set of complex numbers z such that |z|= 1, made into a topological
group as in Example 9.1.1(d) in the previous section. Then linear Lebesgue
measure on T is a Haar measure. More precisely, if λ0 is Lebesgue measure on
R, restricted to the Borel subsets of the interval [0,2π), and if F : [0,2π)→T is
defined by F(θ ) = eiθ , then λ0F−1 is a left and a right Haar measure on T. �	

See Exercises 3 and 5 below and also Exercises 4 and 6 in Sect. 9.3, for additional
examples of Haar measures.

We need a bit of notation. Let G be a group, let x be an element of G, and let f
be a function on G. The left translate of f by x, written x f , is defined by x f (t) =
f (x−1t), and the right translate of f by x, written fx, is defined by fx(t) = f (tx−1).
The function f̌ (or f ˇ) is defined by f̌ (t) = f (t−1). Note that if x, y, and t belong to
G, then

xy f (t) = f ((xy)−1t) = f (y−1x−1t) = y f (x−1t) = x(y f )(t);

hence

xy f = x(y f ).

A similar argument shows that

fxy = ( fx)y.
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If A is a subset of G, then the characteristic functions of the sets A, xA, and Ax are
related by the identities

(χA)x = χAx

and

x(χA) = χxA.

This gives one reason for defining x f (t) and fx(t) to be f (x−1t) and f (tx−1), rather
than f (xt) and f (tx). (The definitions of x f and fx are not entirely standard; some
authors use f (xt) and f (tx) where we used f (x−1t) and f (tx−1).)

If G is a locally compact group and if μ is a left Haar measure on G, then
∫

x f dμ =

∫

f dμ (1)

holds for each Borel function f that is either nonnegative or μ-integrable (note that∫
x f dμ = μ(xA) = μ(A) =

∫
f dμ holds if f is the characteristic function of the

Borel set A, and then use the linearity of the integral and the monotone convergence
theorem).

Theorem 9.2.2. Let G be a locally compact group. Then there is a left Haar
measure on G.

Proof. Let K be a compact subset of G, and let V be a subset of G whose interior
V o is nonempty. Then {xV o}x∈G is an open cover of the compact set K, and so there
are finite sequences {xi}n

i=1 of elements of G such that K ⊆ ∪n
i=1xiV . Let #(K : V )

be the smallest nonnegative integer n for which such a sequence {xi}n
i=1 exists. Of

course, #(K : V ) = 0 if and only if K =∅.
Let us choose a compact set K0 whose interior is nonempty; it will serve as

a standard for measuring the sizes of various subsets of G and will remain fixed
throughout this proof. Roughly speaking, we will measure the size of an arbitrary
compact subset K of G by computing the ratio #(K : U)/#(K0 : U) for each open
neighborhoodU of e and then finding a sort of limit of this ratio as the neighborhood
U becomes smaller. We will use this “limit” to construct an outer measure μ∗ on G,
and then we will show that the restriction of μ∗ to B(G) is the required measure.

We turn to the details. Let C be the family of all compact subsets of G, and let U
be the family of all open neighborhoods of e. For each U in U define hU : C → R

by hU(K) = #(K : U)/#(K0 : U).

Lemma 9.2.3. The relations

(a) 0 ≤ hU(K)≤ #(K : K0),
(b) hU(K0) = 1,
(c) hU(xK) = hU(K),
(d) hU(K1)≤ hU(K2) if K1 ⊆ K2,
(e) hU(K1 ∪K2)≤ hU(K1)+ hU(K2), and
(f) hU(K1 ∪K2) = hU(K1)+ hU(K2) if K1U−1 ∩K2U−1 =∅

hold for all U, K, K1, K2, and x.
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Proof. The relation

#(K : U)≤ #(K : K0)#(K0 : U) (2)

holds for all K and U , as we can see by noting that if {xi}m
i=1 and {y j}n

j=1 are se-
quences in G such that K ⊆∪m

i=1xiK0 and K0 ⊆∪n
j=1y jU , then K ⊆∪m

i=1 ∪n
j=1 xiy jU .

Dividing both sides of (2) by #(K0 : U) gives assertion (a). Assertions (b), (c), (d),
and (e) are clear. In view of (e), we can prove (f) by checking that

#(K1 ∪K2 : U)≥ #(K1 : U)+ #(K2 : U) (3)

holds whenever

K1U−1 ∩K2U−1 =∅. (4)

So suppose that (4) holds and that {xi}n
i=1 is a sequence of points such that n =

#(K1 ∪K2 : U) and K1 ∪K2 ⊆ ∪n
i=1xiU . Then each set xiU meets at most one of K1

and K2 (for if xiU met both K1 and K2, then xi would belong to K1U−1 ∩K2U−1),
and so we can partition the sequence {xi}n

i=1 into sequences {yi} j
i=1 and {zi}k

i=1

such that K1 ⊆ ∪ j
i=1yiU and K2 ⊆ ∪k

i=1ziU . Relation (3) and part (f) of the lemma
follow. �	

We now turn to the “limit” of the ratios #(K : U)/#(K0 : U)—that is, of the
functions {hU}U∈U . We will find this “limit” by constructing a certain product space
that contains all the functions hU and then using a compactness argument to produce
the “limit” function.

For each K in C let IK be the subinterval [0,#(K : K0)] of R. Let X be
the product space ∏K∈C IK , endowed with the product topology. Since each
interval IK is compact, Tychonoff’s theorem (Theorem D.20) implies that X is
compact. According to part (a) of Lemma 9.2.3, each function hU belongs to
X . For each open neighborhood V of e let S(V ) be the closure in X of the set
{hU : U ∈ U and U ⊆V}. If V1, . . . , Vn belong to U (that is, if they are open
neighborhoods of e) and if V is defined by V = ∩n

i=1Vi, then hV ∈ ∩n
i=1S(Vi); since

V1, . . . , Vn were arbitrary, this implies that the closed sets {S(V)}V∈U satisfy the
finite intersection property. The compactness of X now implies that ∩V∈U S(V)
is nonempty. Let us choose, once and for all, an element h• of ∩V∈U S(V ). This
function h• is our “limit” of the functions hU .

Lemma 9.2.4. The function h• satisfies

(a) 0 ≤ h•(K),
(b) h•(∅) = 0,
(c) h•(K0) = 1,
(d) h•(xK) = h•(K),
(e) h•(K1)≤ h•(K2) if K1 ⊆ K2,
(f) h•(K1 ∪K2)≤ h•(K1)+ h•(K2), and
(g) h•(K1 ∪K2) = h•(K1)+ h•(K2) if K1 ∩K2 =∅

for all x in G and all K, K1, and K2 in C .
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Proof. Let us begin with part (f). Recall that X , as the product space ∏K∈C IK , is
a certain set of functions on C , with its topology defined so that for each compact
subset K of G (i.e., for each element K of the index set C ) the projection from X to
R defined by h �→ h(K) is continuous. Hence for each choice of compact subsets K1

and K2 of G the map from X to R defined by

h �→ h(K1)+ h(K2)− h(K1 ∪K2) (5)

is continuous. Since this map is, in addition, nonnegative at each hU (see part (e)
of Lemma 9.2.3), it is nonnegative at each point in each set S(V ). In particular, it is
nonnegative at h•, and so part (f) is proved.

Property (a) is clear, and properties (b) through (e) can be proved with arguments
similar to the one given above for part (f). We turn to part (g). Suppose that K1

and K2 are disjoint compact subsets of G. According to Proposition 7.1.2 there are
disjoint open sets U1 and U2 such that K1 ⊆ U1 and K2 ⊆ U2, and according to
Proposition 9.1.4 there are open neighborhoods V1 and V2 of e such that K1V1 ⊆U1

and K2V2 ⊆U2. Let V =V1 ∩V2. Then K1V and K2V are disjoint, and so for each U
that belongs to U and satisfies U ⊆V−1 we have

hU(K1 ∪K2) = hU(K1)+ hU(K2)

(see part (f) of Lemma 9.2.3). Consequently the map defined by (5) vanishes at each
element of S(V−1). Since h• ∈ S(V−1), part (g) follows. �	

Let us return to the proof of Theorem 9.2.2. We are now in a position to construct
the promised outer measure on G. Define μ∗ on the collection of open subsets of
G by

μ∗(U) = sup{h•(K) : K ⊆U and K ∈ C }, (6)

and extend it to the collection of all subsets of G by

μ∗(A) = inf{μ∗(U) : A ⊆U and U is open}. (7)

It is clear that μ∗ is nonnegative, that it is monotone, and that μ∗(∅) = 0.
In view of (7), we can verify the countable subadditivity of μ∗ by checking that

each sequence {Ui} of open subsets of G satisfies

μ∗
(⋃

i

Ui

)
≤ ∑

i

μ∗(Ui). (8)

So suppose that {Ui} is a sequence of open subsets of G. Let K be a compact subset
of ∪iUi. Then there is a positive integer n such that K ⊆ ∪n

i=1Ui, and there are
compact subsets K1, . . . , Kn of U1, . . . , Un such that K = ∪n

i=1Ki (use Lemma 7.1.10
and mathematical induction). It follows that
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h•(K)≤
n

∑
i=1

h•(Ki)≤
n

∑
i=1

μ∗(Ui)≤
∞

∑
i=1

μ∗(Ui)

(see Lemma 9.2.4 and Eq. (6)); since K was an arbitrary compact subset of ∪iUi,
another application of (6) gives (8).

We can prove that each Borel subset of G is μ∗-measurable by verifying that if
U and V are open subsets of G and if μ∗(V )<+∞, then

μ∗(V )≥ μ∗(V ∩U)+ μ∗(V ∩Uc) (9)

(see the proof of Proposition 7.2.9). We proceed to check this inequality. Let ε be a
positive number. Choose a compact subset K of V ∩U such that

h•(K)> μ∗(V ∩U)− ε, (10)

and then choose a compact subset L of V ∩Kc such that h•(L) > μ∗(V ∩Kc)− ε .
Then K and L are disjoint, and, since V ∩Uc ⊆V ∩Kc, L satisfies

h•(L)> μ∗(V ∩Uc)− ε. (11)

It follows from these inequalities and Lemma 9.2.4 that

h•(K ∪L) = h•(K)+ h•(L)≥ μ∗(V ∩U)+ μ∗(V ∩Uc)− 2ε.

Since ε is arbitrary and h•(K ∪ L) ≤ μ∗(V ), inequality (9) follows. Consequently
B(G) is included in the σ -algebra of μ∗-measurable sets, and the restriction of μ∗
to B(G) is a measure (Theorem 1.3.6). Call this measure μ .

We turn to the regularity of μ . Note that if K is compact, if U is open, and if
K ⊆U , then h•(K)≤ μ(U). It follows from this and (7) that

h•(K)≤ μ(K). (12)

Furthermore, if K is a compact set and U is an open set that includes K and has a
compact closure (see Proposition 7.1.4), then

h•(L)≤ h•(U−)

holds for each compact subset L of U , and so

μ(K)≤ μ(U)≤ h•(U−).

It follows that μ is finite on the compact subsets of G. The outer regularity of μ
follows from (7), and the inner regularity follows from (6) and (12).

It is easy to check that μ is nonzero and translation-invariant (use Lemma 9.2.4
and Eqs. (6) and (7)). Thus μ is the required measure. �	

The following lemma gives a fundamental elementary property of Haar meas-
ures; we will need it for our proof of Theorem 9.2.6.
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Lemma 9.2.5. Let G be a locally compact group, and let μ be a left Haar measure
on G. Then each nonempty open subset U of G satisfies μ(U) > 0, and each
nonnegative function f that belongs to K (G) and is not identically zero satisfies∫

f dμ > 0.

Proof. Since μ is regular and not the zero measure, we can choose a compact set
K such that μ(K) > 0. Let U be a nonempty open subset of G. Then {xU}x∈G is
an open cover of the compact set K, and so there is a finite collection, say x1, . . . ,
xn, of elements of G such that the sets xiU , i = 1, . . . , n, cover K. The relation
μ(K) ≤ ∑i μ(xiU) and the translation invariance of μ imply that μ(K) ≤ nμ(U)
and hence that μ(U)> 0. Thus the first half of the lemma is proved.

Now suppose that f is a nonnegative function that belongs to K (G) and does
not vanish identically. Then there is a positive number ε and a nonempty open set U
such that f ≥ εχU . It follows that

∫
f dμ ≥ εμ(U)> 0. �	

Theorem 9.2.6. Let G be a locally compact group, and let μ and ν be left Haar
measures on G. Then there is a positive real number c such that ν = cμ .

Proof. Let g be a nonnegative function that belongs to K (G) and does not
vanish identically (g will be held fixed throughout this proof), and let f be an
arbitrary function in K (G). Since

∫
gdμ �= 0 (Lemma 9.2.5), we can form the ratio∫

f dμ /
∫

gdμ . We will show that this ratio depends only on the functions f and g
and not on the particular Haar measure μ used in its computation. It follows that the
Haar measure ν satisfies

∫
f dν

∫
gdν

=

∫
f dμ

∫
gdμ

and hence satisfies
∫

f dν = c
∫

f dμ ,where c is defined by c=
∫

gdν /
∫

gdμ . Since
this holds for each f in K (G), Theorem 7.2.8 implies that ν = cμ .

We turn to the ratio
∫

f dμ /
∫

gdμ . If h ∈ K (G×G), then Proposition 7.6.4
implies that the iterated integrals

∫ ∫
h(x,y)μ(dx)ν(dy) and

∫ ∫
h(x,y)ν(dy)μ(dx)

exist and are equal. If in the second of these integrals we reverse the order of
integration, use the translation invariance of the Haar measure μ to replace x with
y−1x (see (1)), again reverse the order of integration, and finally replace y with xy,
we find that

∫ ∫

h(x,y)ν(dy)μ(dx) =
∫ ∫

h(y−1x,y)μ(dx)ν(dy)

=

∫ ∫

h(y−1,xy)ν(dy)μ(dx). (13)

Let us apply this identity to the function h defined by

h(x,y) =
f (x)g(yx)
∫

g(tx)ν(dt)
.
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(Note that h does belong to K (G×G): Corollary 9.1.6 and Lemma 9.2.5 imply that
x �→ ∫

g(tx)ν(dt) is continuous and never vanishes; furthermore, if K = supp( f ) and
L = supp(g), then supp(h) ⊆ K ×LK−1.) For this function h we have h(y−1,xy) =
f (y−1)g(x)/

∫
g(ty−1)ν(dt), and so Eq. (13) implies that

∫

f (x)μ(dx) =
∫

g(x)μ(dx)
∫

f (y−1)
∫

g(ty−1)ν(dt)
ν(dy).

Thus the ratio of
∫

f dμ to
∫

gdμ depends on f and g, but not on μ , and the proof
is complete. �	

The reader should note that if the locally compact group G is commutative (and
if, for convenience, the group operation is written additively), then a simpler proof
of Theorem 9.2.6 can be given. In fact, it is easy to check that if f and g belong to
K (G), then

∫

f dμ
∫

gdν =

∫ ∫

f (x)g(y)μ(dx)ν(dy)

=

∫ ∫

f (x+ y)g(y)μ(dx)ν(dy)

=

∫ ∫

f (y)g(y− x)ν(dy)μ(dx)

=

∫ ∫

f (y)g(−x)μ(dx)ν(dy)

=

∫

f dν
∫

ǧdμ .

Thus if we let g be a nonnegative function that belongs to K (G) and does not vanish
identically and if we define c by c =

∫
gdν/

∫
ǧ dμ , then

∫
f dν = c

∫
f dμ holds for

each f in K (G). It follows that ν = cμ .

Exercises

1. Let G be the set of rational numbers, with addition as the group operation and
with the topology inherited from R. Show that there is no nonzero translation-
invariant regular Borel measure on G.

2. Let G be a locally compact group, let μ be a left Haar measure on G, and let f
and g be continuous real-valued functions on G. Show that if f and g are equal
μ-almost everywhere, then they are equal everywhere.
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3. Let G be the multiplicative group of positive real numbers, with the topology it
inherits as a subspace of R. Show that the formula

μ(A) =
∫

A

1
x

λ (dx)

defines a Haar measure on G.
4. Let G be a locally compact group that is homeomorphic to an open subset (say

U) of Rd , and let ϕ be a homeomorphism of G onto U .

(a) Show that if for each a in G the function u �→ ϕ(aϕ−1(u)) is the restriction
to U of an affine2 map La : Rd →R

d , then the formula

μ(A) =
∫

ϕ(A)

1
|det(Lϕ−1(u)|

λ (du)

defines a left Haar measure on G.
(b) Likewise, show that if for each a in G the function u �→ ϕ(ϕ−1(u)a) is the

restriction to U of an affine map Ra : Rd →R
d , then the formula

μ(A) =
∫

ϕ(A)

1
|det(Rϕ−1(u)|

λ (du)

defines a right Haar measure on G.

5. Let G be the group defined in Exercise 9.1.9. Suppose that we identify G with

the right half-plane in R
2 by associating the point (a,b) with the matrix

(
a b
0 1

)

.

Show that the formula

μ(A) =
∫∫

A

1
a2 dadb

defines a left Haar measure on G and that the formula

μ(A) =
∫∫

A

1
a

dadb

defines a right Haar measure on G. (Hint: Use the preceding exercise.)
6. Let G be a locally compact group, and let μ be a left Haar measure on G. Show

that the topology of G is discrete if and only if μ({x}) �= 0 holds for some
(and hence for each) x in G.

2A map F : Rd →R
d is affine if there exist a linear map G : Rd →R

d and an element b of Rd such
that F(x) = G(x)+ b holds for each x in R

d . If F is affine, then G and b are uniquely determined
by F , and we will (for simplicity) denote by det(F) the determinant of the linear part G of F (see
Sect. 6.1).
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9.3 Properties of Haar Measure

Let G be a locally compact group, and let μ be a regular Borel measure on G.
The map x �→ x−1 is a homeomorphism of G onto itself (Proposition 9.1.2), and so
the subsets A of G that belong to B(G) are exactly those for which A−1 belongs to
B(G) (Lemma 7.2.1). Define a function μ̌ on B(G) by μ̌(A) = μ(A−1). It is easy
to check that μ̌ is a regular Borel measure on G. The relation

∫

f dμ̌ =

∫

f̌ dμ (1)

holds if f is a Borel function that is nonnegative or μ̌-integrable; this is clear if f is
a characteristic function and follows in general from the linearity of the integral and
the monotone convergence theorem.

Proposition 9.3.1. Let G be a locally compact group, and let μ be a regular Borel
measure on G. Then μ is a left Haar measure if and only if μ̌ is a right Haar
measure, and is a right Haar measure if and only if μ̌ is a left Haar measure.

Proof. The identity (Ax)−1 = x−1A−1 implies that μ̌(Ax) = μ̌(A) holds for each x
in G and each A in B(G) if and only if μ(x−1A−1) = μ(A−1) holds for each x in
G and each A in B(G). The first half of the proposition follows. We can derive the
second half from the first by replacing μ with μ̌ and noting that ˇ̌μ = μ . �	
Corollary 9.3.2. Let G be a locally compact group. Then there is one and, up to a
constant multiple, only one right Haar measure on G.

Proof. In view of Proposition 9.3.1, this is an immediate consequence of Theorems
9.2.2 and 9.2.6. �	
Proposition 9.3.3. Let G be a locally compact group, and let μ be a left Haar
measure on G. Then μ is finite if and only if G is compact.

Proof. The regularity of μ implies that μ is finite if G is compact.
We turn to the converse. Suppose that μ is finite. Let K be a compact subset

of G such that μ(K) > 0 (for instance, K can be a compact set whose interior is
nonempty; see Lemma 9.2.5). The finiteness of μ(G) implies that there is an upper
bound, for instance μ(G)/μ(K), for the lengths of those finite sequences {xi}n

1 for
which the sets xiK, i = 1, . . . , n, are disjoint. Thus we can choose a positive integer
n and points x1, . . . , xn such that the sets xiK, i = 1, . . . , n, are disjoint, but such that
for no choice of xn+1 are the sets xiK, i = 1, . . . , n+ 1, disjoint. It follows that if
x ∈ G, then xK meets ∪n

i=1xiK, and so x belongs to (∪n
i=1xiK)K−1; hence G is equal

to the compact set (∪n
i=1xiK)K−1. �	

It follows that each compact group G has a Haar measure μ such that μ(G) = 1.
In dealing with compact groups one often assumes that the corresponding Haar
measures have been “normalized” in this way.
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Let G be a locally compact group, and let μ be a left Haar measure on G. The
maps u �→ ux are homeomorphisms of G onto itself (Proposition 9.1.2), and so for
each x in G the formula μx(A) = μ(Ax) defines a regular Borel measure μx on G.
The translation invariance of μ implies that μx satisfies μx(yA) = μ(yAx)= μ(Ax) =
μx(A) for each y in G and each A in B(G). Thus μx is a left Haar measure, and so
Theorem 9.2.6 implies that for each x there is a positive number, say Δ(x), such
that μx = Δ(x)μ . The function Δ : G → R defined in this way is called the modular
function of G. See Exercises 2 and 4 for some examples.

If ν is another left Haar measure on G, then there is a positive constant c such that
ν = cμ , and so νx = cμx = cΔ(x)μ = Δ(x)ν holds for each x in G. Thus the modular
function Δ is determined by the group G and does not depend on the particular left
Haar measure used in its definition.

Recall that (χA)x = χAx holds for each member x and subset A of G. It follows that
∫

fx dμ = Δ(x)
∫

f dμ (2)

holds if f is the characteristic function of a Borel subset of G and hence if f is a
Borel function that is nonnegative or μ-integrable.

Proposition 9.3.4. Let G be a locally compact group, and let Δ be the modular
function of G. Then

(a) Δ is continuous, and
(b) Δ(xy) = Δ(x)Δ(y) holds for each x and y in G.

Proof. Let μ be a left Haar measure on G, and let f be a nonnegative function that
belongs to K (G) and does not vanish identically. Then

∫
f dμ �= 0 (Lemma 9.2.5),

and so Corollary 9.1.6 and Eq. (2) imply the continuity of Δ. The relation Δ(xy) =
Δ(x)Δ(y) follows from the calculation

Δ(xy)μ(A) = μ(Axy) = Δ(y)μ(Ax) = Δ(y)Δ(x)μ(A).
�	

A locally compact group G is unimodular if its modular function satisfies
Δ(x) = 1 at each x in G. Thus a locally compact group G is unimodular if and
only if each left Haar measure on G is a right Haar measure and so if and only if
the collection of all left Haar measures on G coincides with the collection of all
right Haar measures on G. Of course every commutative locally compact group is
unimodular.

Proposition 9.3.5. Every compact group is unimodular.

Proof. Let G be a compact group, and let Δ be its modular function. The relation
Δ(xn) = (Δ(x))n holds for each positive integer n and each element x of G
(Proposition 9.3.4); hence Δ is unbounded if there is an element x of G that satisfies
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Δ(x)> 1 or that satisfies 0 < Δ(x)< 1 (for then x−1 satisfies Δ(x−1)> 1). However
the continuity of Δ and the compactness of G imply that Δ is bounded; thus Δ(x) = 1
must hold at each x in G. �	

The remaining results in this section will be needed only for a few exercises and
for the definition and study of Ma(G) in Sect. 9.4; they can be omitted on a first
reading.

Proposition 9.3.6. Let G be a locally compact group, and let μ be a left Haar
measure on G. Then each Borel subset A of G satisfies

μ̌(A) =
∫

A
Δ(x−1)μ(dx).

Proof. Define a measure ν on B(G) by

ν(A) =
∫

A
Δ(x−1)μ(dx).

We will show that ν is regular, that ν is a right Haar measure, and finally that ν = μ̌ .
We begin with the regularity of ν . For each positive integer n let Gn be the open

subset of G defined by

Gn =

{

x ∈ G :
1
n
< Δ(x−1)< n

}

.

Let U be an open subset of G. Since ν(U) = limn ν(U ∩Gn) (Proposition 1.2.5), we
can show that

ν(U) = sup{ν(K) : K ⊆U and K is compact}
by checking that

ν(U ∩Gn) = sup{ν(K) : K ⊆U ∩Gn and K is compact}
holds for each n. However this last equation is an easy consequence of the regularity
of μ and the fact that 1/n < Δ(x−1) < n holds at each x in Gn (consider the cases
where μ(U ∩Gn) =+∞ and where μ(U ∩Gn)<+∞ separately). Now suppose that
A is an arbitrary Borel subset of G. We need to show that

ν(A) = inf{ν(U) : A ⊆U and U is open}. (3)

We can certainly restrict our attention to the case where ν(A) is finite. Let ε be
a positive number. Then for each n we can choose an open subset Un of Gn that
includes A∩ Gn and satisfies ν(Un) < ν(A∩ Gn) + ε/2n (use the regularity of μ
and the fact that 1/n < Δ(x−1) < n holds at each x in Gn). The set U defined by
U = ∪nUn then includes A and satisfies ν(U)< ν(A)+ ε; since ε is arbitrary, (3) is
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proved. It is easy to see that each compact subset K of G satisfies ν(K)<+∞ (note
that μ(K) is finite and that the function x �→ Δ(x−1) is bounded on K). With this the
proof of the regularity of ν is complete.

Since ν is regular and nonzero, the calculation

ν(Ay) =
∫

χAy(x)Δ(x
−1)μ(dx)

=

∫

χAy(x)Δ(y
−1)Δ((xy−1)−1)μ(dx)

= Δ(y−1)

∫

(χA)y(x)Δ((xy−1)−1)μ(dx)

= Δ(y−1)Δ(y)
∫

χA(x)Δ(x−1)μ(dx)

= ν(A)

(here we used (2) and part (b) of Proposition 9.3.4) implies that ν is a right Haar
measure.

Thus there is a positive number c such that ν = cμ̌ (see Proposition 9.3.1 and
Corollary 9.3.2), and so

c =
ν(A)
μ̌(A)

=
ν(A)

μ(A−1)
=

1
μ(A−1)

∫

A
Δ(x−1)μ(dx)

holds whenever A is a Borel set that satisfies 0 < μ̌(A)<+∞. Since Δ is continuous
and has value 1 at e, we can make the right side of the equation arbitrarily close to
1 by letting A be a sufficiently small symmetric neighborhood of e. Thus c = 1, and
so ν = μ̌ . �	
Corollary 9.3.7. Let G be a locally compact group, let μ be a left Haar measure
on G, and let ν be a right Haar measure on G. Then a Borel subset A of G satisfies
μ(A) = 0 if and only if it satisfies ν(A) = 0.

Proof. The formula A �→ ∫
A Δ(t−1)μ(dt) defines a right Haar measure on G

(Proposition 9.3.6), and so there is a positive constant c such that for each A in B(G)
we have ν(A) = c

∫
A Δ(t−1)μ(dt). Since Δ is positive everywhere on G, it follows

that A satisfies ν(A) = 0 if and only if it satisfies μ(A) = 0 (see Corollary 2.3.12).
�	

Exercises

1. Let G be a locally compact group, and let μ be a right Haar measure on G. Show
that μ(xA) = Δ(x−1)μ(A) holds for each x in G and each A in B(G).
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2. Let G be the group considered in Exercises 9.1.9 and 9.2.5, and let Δ be the

modular function of G. Show that Δ
(

a b
0 1

)

= 1/a holds for each

(
a b
0 1

)

in G.

3. Let G be as in the preceding exercise. Find a Borel subset of G that has finite
measure under the left Haar measures on G but infinite measure under the right
Haar measures on G.

4. Show that the formula

μ(A) =
∫

A

1
|det(u)|d λ (du),

where λ is Lebesgue measure on R
d2

, defines a left and a right Haar measure
on GL(d,R). Hence GL(d,R) is unimodular (note, however, that it is neither
compact nor abelian). (Hint: See Exercise 9.2.4.)

5. Let G be a locally compact group and let μ be a left Haar measure on G. Show
that G is unimodular if and only if μ = μ̌ .

6. Let H be {0,1}, with the discrete topology and with addition modulo 2 as the
group operation. Let G be HN, with the product topology and with the group
operation defined component-by-component in terms of the operation on H.

(a) Show that G is a compact group.
(b) Let μ be the Haar measure on G for which μ(G) = 1 (see Proposition 9.3.3

and the remark following it). Show that

μ({{a j} ∈ G : ani = bi for i = 1, . . . , k}) = 1
2k

holds for each sequence n1, . . . , nk of distinct positive integers and each
sequence b1, . . . , bk of elements of {0,1}.

(c) Show that there are compact subsets K and L of G such that μ(K) = μ(L) =
0, but KL = G.

(d) Let f : G → [0,1] be the map that takes the sequence {ai} to the number
∑∞

i=1 ai2−i. Show that λ (B) = μ( f−1(B)) holds for each Borel subset B of
[0,1].

7. Let G be a locally compact group, and let μ be a left Haar measure on G. Show
that μ is σ -finite if and only if G is σ -compact.

8. Let G be a locally compact group that is not unimodular, let μ be a left Haar
measure on G, and let ν be a right Haar measure on G. Show that there is
a Borel subset A of G such that μ(A) < +∞ and ν(A) = +∞. (Hint: See
Proposition 9.3.6 or Exercise 9.3.1.)

9. Let G be a locally compact group, let μ be a left Haar measure on G, and let
ν be a right Haar measure on G. Suppose that outer measures μ∗ and ν∗ and
measures μ1 and ν1 are associated to μ and ν as in Sect. 7.5.

(a) Show that Mμ∗ = Mν∗ .
(b) Show that a subset of G is locally μ1-null if and only if it is locally ν1-null.
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9.4 The Algebras L1(G) and M(G)

Since most of the topics dealt with in this section involve measures and integrals on
products of locally compact groups, we begin by recalling some of the necessary
facts.

Suppose that X and Y are locally compact Hausdorff spaces and that μ and ν are
regular Borel measures on X and Y , respectively. If X and Y have countable bases
for their topologies, then B(X ×Y ) is equal to B(X)×B(Y ), μ and ν are σ -finite,
and the product measure μ × ν (as defined in Sect. 5.1) is a regular Borel measure
(see Proposition 7.6.2). Thus the theory of product measures contained in Chap. 5 is
adequate for the study of products of regular Borel measures on second countable
locally compact Hausdorff spaces.3

We dealt with products of arbitrary locally compact Hausdorff spaces in Sect. 7.6;
there we showed that if μ and ν are regular Borel measures on X and Y , then

∫ ∫

f (x,y)μ(dx)ν(dy) =
∫ ∫

f (x,y)ν(dy)μ(dx)

holds for each f in K (X ×Y ), and we used the Riesz representation theorem
(applied to the functional f �→ ∫ ∫

f (x,y)μ(dx)ν(dy)) to construct a regular Borel
measure μ ×ν on X ×Y such that

∫
f d(μ ×ν) =

∫ ∫
f (x,y)μ(dx)ν(dy) =

∫ ∫
f (x,y)ν(dy)μ(dx) (1)

holds for each f in K (X ×Y ). We proved that (1) also holds for many other
functions on X ×Y (see Theorem 7.6.7 and Exercises 7.6.3 and 7.6.4).

Now let G be an arbitrary locally compact group, let μ be a left Haar measure
on G, and let f and g belong to L 1(G,B(G),μ). The convolution of f and g is the
function f ∗ g from G to R (or to C) defined by

( f ∗ g)(t) =

{∫
f (s)g(s−1t)μ(ds) if s �→ f (s)g(s−1t) is integrable,

0 otherwise.

Some basic properties of convolutions are given by the following propositions.

Proposition 9.4.1. Let G be a locally compact group, let μ be a left Haar measure
on G, and let f and g belong to L 1(G,B(G),μ).

(a) The function s �→ f (s)g(s−1t) belongs to L 1(G,B(G),μ) for μ-almost every t
in G.

(b) The convolution f ∗ g of f and g belongs to L 1(G,B(G),μ) and satisfies
‖ f ∗ g‖1 ≤ ‖ f‖1‖g‖1.

3In particular, the reader who is interested only in second countable locally compact groups can
ignore the references to Sect. 7.6 in what follows.
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We need the following two lemmas for the proof of Proposition 9.4.1.

Lemma 9.4.2. Let G be a locally compact group, let μ be a left Haar measure on
G, and let f belong to L 1(G,B(G),μ). Then there is a sequence {Kn} of compact
subsets of G such that f vanishes outside

⋃
n Kn.

Proof. We can use Corollary 2.3.11 and the regularity of μ to produce a sequence
{Un} of open subsets of G that have finite measure under μ and are such that f
vanishes outside

⋃
n Un. Let H be a subgroup of G that is open and σ -compact (see

Proposition 9.1.8). Since each nonempty open subset of G has nonzero measure
under μ (Lemma 9.2.5), it follows that each Un meets at most countably many left
cosets of H and hence that

⋃
n Un is included in the union of a countable collection

of left cosets of H. Since H, along with each of its cosets, is σ -compact, the lemma
follows. �	
Lemma 9.4.3. Let G be a locally compact group, let μ be a left Haar measure on G,
and let F : G×G → G×G be defined by F(s, t) = (s,s−1t). Then F is a measure-
preserving homeomorphism of G×G onto itself. That is, F is a homeomorphism
such that each Borel subset A of G×G satisfies (μ × μ)(A) = (μ × μ)(F−1(A)).

Proof. The inverse of F is given by F−1(s, t) = (s,st); thus F and F−1 are both
continuous, and F is a homeomorphism. The regularity of the measure (μ ×μ)F−1

follows. Now suppose that U is an open subset of G × G. For each s in G the
sections Us and (F−1(U))s are related by (F−1(U))s = sUs, and so Proposition 7.6.5
and the translation invariance of μ imply that (μ × μ)(U) = (μ × μ)(F−1(U)). It
follows from this and the regularity of the measures μ × μ and (μ × μ)F−1 that
(μ × μ)(A) = (μ × μ)(F−1(A)) holds for each A in B(G×G). �	
Proof of Proposition 9.4.1. It follows from Exercise 7.6.4 that the function (s, t) �→
f (s)g(t) belongs to L 1(G×G,B(G×G),μ ×μ) and then from Lemma 9.4.3 that
the function (s, t) �→ f (s)g(s−1t) belongs to L 1(G × G,B(G × G),μ × μ) (see
Sect. 2.6). Since in addition (s, t) �→ f (s)g(s−1t) vanishes outside a σ -compact set
(apply Lemma 9.4.2 to f and g, and then use Lemma 9.4.3), Theorem 7.6.7 implies
part (a) and the first half of part (b). The second half of part (b) follows from the
calculation

∫

|( f ∗ g)(t)|μ(dt)≤
∫ ∫

| f (s)g(s−1t)|μ(ds)μ(dt)

=

∫ ∫

| f (s)g(t)|μ(dt)μ(ds) = ‖ f‖1‖g‖1.

�	
Note that if f1, f2, g1, and g2 belong to L 1(G,B(G),μ), if f1 = f2 μ-a.e., and

if g1 = g2 μ-a.e., then f1 ∗ g1 = f2 ∗ g2 μ-a.e.; this follows, for example, from the
calculation

‖ f1 ∗ g1 − f2 ∗ g2‖1 ≤ ‖ f1 ∗ (g1 − g2)‖1 + ‖( f1 − f2)∗ g2‖1

≤ ‖ f1‖1‖g1 − g2‖1 + ‖ f1 − f2‖1‖g2‖1 = 0
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(see also Exercise 4). Thus convolution on L 1(G,B(G),μ) induces an operation
on L1(G,B(G),μ); this operation is also denoted by ∗ and called convolution.

We will show that L1(G,B(G),μ), with convolution as multiplication, is a
Banach algebra. (This Banach algebra is often denoted by L1(G).) Recall that
an algebra is a vector space A on which there is defined an operation · (called
multiplication) for which the identities

u · (v ·w) = (u · v) ·w,
u · (v+w) = u · v+ u ·w,
(u+ v) ·w = u ·w+ v ·w, and

α(u · v) = (αu) · v = u · (αv)

hold for all u, v, and w in A and all scalars α . A Banach algebra is an algebra for
which

(a) the underlying vector space has the structure of a Banach space, say with norm
‖ · ‖, and

(b) the relation ‖u · v‖ ≤ ‖u‖‖v‖ holds for all u and v in A.

Proposition 9.4.4. Let G be a locally compact group, and let μ be a left Haar
measure on G. Then L1(G,B(G),μ), with convolution as multiplication, is a
Banach algebra.

Proof. With the exception of the associative law for convolutions, the conditions
that define a Banach algebra are either immediate or given by Theorem 3.4.1 and
Proposition 9.4.1.

We turn to the associative law. Suppose that f , g, and h belong to K (G) (or
to K C(G)) and that x belongs to G. Then the functions involved in computing
f ∗ (g ∗ h) and ( f ∗ g)∗ h are all integrable, and these convolutions are given by

( f ∗ (g ∗ h))(x) =
∫

f (s)(g ∗ h)(s−1x)μ(ds)

=
∫ ∫

f (s)g(t)h(t−1s−1x)μ(dt)μ(ds)

and

(( f ∗ g)∗ h)(x) =
∫

( f ∗ g)(t)h(t−1x)μ(dt)

=

∫ ∫

f (s)g(s−1t)h(t−1x)μ(ds)μ(dt).

Consider the last of these integrals; in it reverse the order of integration and use
the translation invariance of μ to replace t with st. It follows that ( f ∗ (g ∗ h))(x) =
(( f ∗g)∗h)(x). Thus the associative law holds for those elements of L1(G,B(G),μ)
that are determined by functions in K (G) (or in K C(G)); since these elements
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are dense in L1(G,B(G),μ) (Proposition 7.4.3), the associative law follows (see
Exercise 2). �	

Let us turn to the convolution of measures. We begin with the following lemma.

Lemma 9.4.5. Let G be a locally compact group. If μ and ν are finite positive
regular Borel measures on G and if μ ×ν is the regular Borel product of μ and ν ,
then the formula

(μ ∗ν)(A) = (μ ×ν)({(x,y) ∈ G×G : xy ∈ A})
defines a regular Borel measure on G. Furthermore,

(μ ∗ν)(A) =
∫

ν(x−1A)μ(dx) =
∫

μ(Ay−1)ν(dy) (2)

holds for each A in B(G).

Note that Corollary 7.6.6 implies that the functions appearing on the right side
of (2) are Borel measurable.

Proof. Let F : G× G → G be the group operation (in other words, define F by
F(x,y) = xy). Then μ ∗ ν is given by the equation (μ ∗ ν)(A) = (μ × ν)(F−1(A)),
and so is a measure on B(G) (see Sect. 2.6). Corollary 7.6.6 implies that each A in
B(G) satisfies (2). We need to check the regularity of μ ∗ν .

We begin by checking that an arbitrary Borel subset A of G satisfies

(μ ∗ν)(A) = sup{(μ ∗ν)(K) : K ⊆ A and K is compact}. (3)

Suppose that ε is a positive number, that K0 is a compact subset of F−1(A) such that
(μ × ν)(K0) > (μ × ν)(F−1(A))− ε (see Proposition 7.2.6), and that K = F(K0).
Then K is a compact subset of A such that F−1(K) ⊇ K0 and hence such that
(μ ∗ν)(K)> (μ ∗ν)(A)− ε . Since ε is arbitrary, (3) follows. In particular, μ ∗ν is
inner regular. Since for each A in B(G) we can use (3), applied to Ac, to approximate
Ac from below by compact sets and hence to approximate A from above by open sets,
the outer regularity of μ ∗ν follows. �	

Recall that Mr(G,R) is the Banach space of all finite signed regular Borel
measures on G (the norm of μ is the total variation of μ). Likewise, Mr(G,C) is
the Banach space of all complex regular Borel measures on G. Here we will denote
each of those spaces by M(G).

Let μ and ν belong to M(G). We define their convolution μ ∗ν by

(μ ∗ν)(A) =
∫

ν(x−1A)μ(dx) =
∫

μ(Ay−1)ν(dy). (4)

It follows from the preceding lemma and the Jordan decomposition theorem that the
two integrals appearing in (4) exist and are equal, and that μ ∗ ν is regular. Thus
μ ∗ν ∈ M(G).
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It is easy to check that if μ and ν belong to M(G) and if f is a bounded Borel
function on G, then

∫

f d(μ ∗ν) =
∫ ∫

f (xy)μ(dx)ν(dy) =
∫ ∫

f (xy)ν(dy)μ(dx) (5)

(first check (5) for characteristic functions, and then use the linearity of the integral
and the dominated convergence theorem).

Proposition 9.4.6. Let G be a locally compact group. Then M(G), with convolution
as multiplication, is a Banach algebra.

Proof. Let ν1, ν2, and ν3 belong to M(G). Then each Borel subset A of G satisfies

(ν1 ∗ (ν2 ∗ν3))(A) =
∫

(ν2 ∗ν3)(x
−1A)ν1(dx)

=
∫ ∫

ν3(y
−1x−1A)ν2(dy)ν1(dx)

and

((ν1 ∗ν2)∗ν3)(A) =
∫

ν3(u
−1A)(ν1 ∗ν2)(du)

=

∫ ∫

ν3((xy)−1A)ν2(dy)ν1(dx)

(in the last step of this calculation we used (5)). The associativity of convolution
follows.

We turn to the inequality ‖μ ∗ν‖ ≤ ‖μ‖‖ν‖. Let {Ai}n
1 be a finite partition of G

into Borel sets. Then Exercise 4.2.8 implies that

∑
i
|(μ ∗ν)(Ai)|= ∑

i

∣
∣
∣
∣

∫

μ(Aiy
−1)ν(dy)

∣
∣
∣
∣

≤
∫

∑
i
|μ(Aiy

−1)| |ν|(dy) ≤
∫

‖μ‖d|ν|= ‖μ‖‖ν‖.

Since the partition {Ai} was arbitrary, the inequality ‖μ ∗ν‖≤ ‖μ‖‖ν‖ follows. The
remaining conditions in the definition of a Banach algebra are clearly satisfied. �	

Let us consider the relationship between the convolution of functions and the
convolution of measures. Corollary 9.3.7 implies that an element of M(G) is
absolutely continuous with respect to the left Haar measures on G if and only if
it is absolutely continuous with respect to the right Haar measures on G. Thus
we can define Ma(G) to be the collection of elements of M(G) that are absolutely
continuous with respect to some (and hence every) Haar measure on G.

Recall that an ideal in an algebra A is a linear subspace I of A such that u · v and
v ·u belong to I whenever u belongs to I and v belongs to A.



9.4 The Algebras L1(G) and M(G) 303

Proposition 9.4.7. Let G be a locally compact group. Then

(a) Ma(G) is an ideal in the algebra M(G),
(b) if μ is a left Haar measure on G, then the map f �→ ν f (where ν f is defined

by ν f (A) =
∫

A f dμ) induces a norm-preserving algebra homomorphism of
L1(G,B(G),μ) into M(G), and

(c) the image of L1(G,B(G),μ) under this homomorphism is Ma(G).

Proof. It is clear that Ma(G) is a linear subspace of M(G). Suppose that μ is a left
Haar measure on G, that ν1 ∈ M(G), and that ν2 ∈Ma(G). Let A be a Borel subset of
G that satisfies μ(A) = 0. The translation invariance of μ implies that μ(x−1A) = 0
holds for each x in G; since ν2 � μ , the relation ν2(x−1A) = 0 also holds for each
x in G. The definition of ν1 ∗ν2 now implies that (ν1 ∗ν2)(A) = 0. Hence ν1 ∗ν2 ∈
Ma(G). The proof that ν2 ∗ ν1 ∈ Ma(G) is similar (use Corollary 9.3.7 to conclude
that if μ(A) = 0, then μ(Ay−1) = 0 holds for each y in G). Thus Ma(G) is an ideal
in M(G).

We already know that the map f �→ ν f induces a norm-preserving linear map
whose image is Ma(G) (Proposition 7.3.10). The calculation

ν f∗g(A) =
∫

χA(t)
∫

f (s)g(s−1t)μ(ds)μ(dt)

=

∫ ∫

χA(st) f (s)g(t)μ(dt)μ(ds)

=
∫ ∫

χA(st)νg(dt)ν f (ds)

= (v f ∗νg)(A)

shows that it preserves convolutions. �	
Proposition 9.4.7 provides a “coordinate-free” description of L1(G,B(G),μ): it

is isomorphic to the algebra Ma(G), whose definition depends only on the existence
of Haar measures and not on the choice of a particular left or right Haar measure.

Let us close this section by returning to the map T constructed in Sect. 3.5 (see
also Theorem 4.5.1, Example 4.5.2, Theorem 7.5.4, and the remarks following the
proof of Theorem 7.5.4).

Theorem 9.4.8. Let G be a locally compact group, and let μ be a regular Borel
measure on G. Then the map T constructed in Sect. 3.5 is an isometric isomorphism
of L∞(G,B(G),μ) onto the dual of L1(G,B(G),μ).

Proof. According to Proposition 3.5.5 we need only show that T is surjective. So
suppose that F belongs to (L1(G,B(G),μ))∗.

Let H be a subgroup of G that is open and σ -compact (see Proposition 9.1.8),
and let H be the family of left cosets of H. For each C in H let B(C) be the
σ -algebra of Borel subsets of C, let μC be the restriction of μ to B(C), and let
FC be the linear functional on L1(C,B(C),μC) defined by FC(〈 f 〉) = F(〈 f ′〉) (here
f ′ is the function on G that agrees with f on C and vanishes on Cc). Since μC is
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σ -finite (recall that C, as a coset of H, is σ -compact), we can choose a bounded
Borel measurable function gC on C such that FC(〈 f 〉) = ∫ f gC dμC holds for each
f in L 1(C,B(C),μC) (see Theorem 4.5.1). By modifying gC on a μC-null set if
necessary, we can assume that |gC(x)| ≤ ‖FC‖ ≤ ‖F‖ holds at each x in C. Now
choose a sequence {gn} of continuous functions on G such that

(a) |gn(x)| ≤ ‖F‖ holds at each x in G, and
(b) for each C in H the sequence {gn} converges to gC μ-almost everywhere on C

(construct the functions gn on each C separately, using Lusin’s theorem (Theorem
7.4.4) and the σ -compactness of the sets in H ; see also D.6). Finally, define4 g
by g = limsupn gn (in case we are dealing with complex-valued functions, define
the real and imaginary parts of g separately). Then g is a bounded Borel function,
and the relation F(〈 f 〉) = ∫ f gdμ holds for each f in L 1(G,B(G),μ). Thus T is
surjective, and the proof is complete. �	

Exercises

Note: In the following exercises G is a locally compact group with identity element
e, and μ is a left Haar measure on G.

1. Show that if f and g belong to K (G), then f ∗ g belongs to K (G).
2. Show that if f and g belong to L 1(G,B(G),μ) and if { fn} and {gn}

are sequences in L 1(G,B(G),μ) such that limn ‖ fn − f‖1 = 0 and
limn ‖gn − g‖1 = 0, then limn ‖ fn ∗ gn − f ∗ g‖1 = 0.

3. Suppose that f and g belong to L 1(G,B(G),μ). Show that in the definition of
f ∗ g the expression f (s)g(s−1t) can be replaced
(a) with f (ts)g(s−1),
(b) with f (s−1)g(st)Δ(s−1), and
(c) with f (ts−1)g(s)Δ(s−1).

4. Show that if f1, f2, g1, and g2 belong to L 1(G,B(G),μ), if f1 = f2 μ-
almost everywhere, and if g1 = g2 μ-almost everywhere, then f1 ∗ g1 = f2 ∗ g2

everywhere.
5. Show that G is commutative if and only if convolution is a commutative

operation on L1(G). (Hint: To show that the commutativity of L1(G) implies
that of G, consider f ∗ g and g ∗ f for suitable nonnegative functions f and g in
K (G).)

6. (a) Suppose that the locally compact group G has a countable base for its
topology. Show that there is a sequence {ϕn} of nonnegative functions in
L 1(G,B(G),μ) (or even in K (G)) such that

∫
ϕn dμ = 1 holds for each

n and such that

4The function g cannot be defined simply be requiring that its restriction to each C in H be gC ;
see Exercise 12.
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lim
n
‖ f ∗ϕn − f‖1 = lim

n
‖ϕn ∗ f − f‖1 = 0 (6)

holds for each f in L 1(G,B(G),μ). Such a sequence is called an
approximate identity. (Hint: Let {Un} be a decreasing sequence of open
neighborhoods of e such that each open neighborhood of e includes some
Un. For each n let ϕn be a nonnegative function that belongs to K (X),
vanishes outside Un, and satisfies the relations ϕn = (ϕn)̌ and

∫
ϕn dμ = 1.

In verifying (6) it might be convenient to begin with the case where
f ∈ K (G).)

(b) Now omit the assumption that G has a countable base for its topology.
Show that there is a net5 {ϕα}α∈A of nonnegative functions in K (G) such
that

∫
ϕα dμ = 1 holds for each α and such that limα ‖ f ∗ ϕα − f‖1 =

limα ‖ϕα ∗ f − f‖1 = 0 holds for each f in L 1(G,B(G),μ). (Hint: Let
the directed set A be the collection of all open neighborhoods of e, and
declare that U ≤V holds if and only if V ⊆U .)

7. Show that δe, the point mass concentrated at e, is an identity for the algebra
M(G).

8. Show that G is commutative if and only if convolution is a commutative
operation on M(G).

9. Suppose that ν ∈ M(G), that f ∈ L 1(G,B(G),μ), and that μ f is the finite
signed or complex regular Borel measure defined by μ f (A) =

∫
A f dμ (see

Proposition 7.3.8). Define functions g and h on G by

g(t) =

{∫
f (s−1t)ν(ds) if s �→ f (s−1t) is |ν|-integrable,

0 otherwise,

and

h(s) =

{∫
f (st−1)Δ(t−1)ν(dt) if t �→ f (st−1)Δ(t−1) is |ν|-integrable,

0 otherwise.

Show that g and h belong to L 1(G,B(G),μ) and that (ν ∗ μ f )(A) =
∫

A gdμ
and (μ f ∗ν)(A) =

∫
A hdμ hold for each A in B(G).

10. Let ν , f , and μ f be as in Exercise 9. Show that ν ∗ μ f = 0 holds for each f in
L 1(G,B(G),μ) if and only if ν = 0. (Hint: Use Exercise 9 and Corollary 9.1.6

5Recall that a directed set is a partially ordered set A (say ordered by ≤) such that for each α and
β in A, there is an element γ of A that satisfies α ≤ γ and β ≤ γ . A net is a family indexed by a
directed set. A net {xα}α∈A in a topological space X is said to converge to a point x of X if for
each open neighborhood U of x there is an element α0 of A such that xα ∈U holds whenever α
satisfies α ≥ α0. Thus limα ‖ f ∗ϕα − f ‖1 = 0 holds if and only if for each positive ε there is an
element α0 of A such that ‖ f ∗ϕα − f ‖1 < ε holds whenever α satisfies α ≥ α0. See Kelley [69]
for an extended treatment of nets.
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to show that if f belongs to K (G) and satisfies ν ∗ μ f = 0, then
∫

f̌ dν = 0;
then use Theorem 7.3.6.)

11. Show that L1(G) has an identity if and only if the topology of G is discrete.
(Hint: Use Exercise 6 in Sect. 9.2 and Exercises 7 and 10.)

12. Let G be R
2, with the usual group operation but with the topology defined in

Exercise 7.2.4. Show that
(a) G is a locally compact group,
(b) {0}×R is an open, closed, and σ -compact subgroup of G, and
(c) there is a function f : G → R that is not Borel measurable, but for which

each section fx is Borel measurable. (Hint: See Exercises 8.2.7 and 8.2.9.)
This explains the footnote in the proof of Theorem 9.4.8.

Notes

The history of Haar measure is summarized in the notes at the ends of Sections 15
and 16 of Hewitt and Ross [58].

The reader can find a more extensive introduction to topological groups in
Pontryagin [98] or in Hewitt and Ross [58].

The proof given here for the existence of Haar measure (which is a modification
of Halmos’s modification of Weil’s [126] proof) depends on the axiom of choice.
Proofs that do not depend on this axiom have been given by Cartan [24] and Bredon
[19]. Cartan’s proof is given by Hewitt and Ross [58] and by Nachbin [93]. Hewitt
and Ross and Nachbin also give calculations of Haar measure for a number of
groups.



Chapter 10
Probability

This chapter is devoted to an introduction to probability theory. It contains some
of the fundamental results of probability theory—the strong law of large numbers,
the central limit theorem, the martingale convergence theorem, the construction of
Brownian motion processes, and Kolmogorov’s consistency theorem.

One purpose of this chapter is to give the reader a chance to work through some
applications of measure theory and thereby to get some practice with the techniques
presented earlier. Another, perhaps more significant, goal is to give the reader a
broader picture of how σ -algebras, measures, measurable functions, and integrals
arise.

10.1 Basics

In probability theory one describes and analyzes random situations, often called
experiments. Let us look at how such situations can be modeled using measure
theory. We begin with some terminology.

A probability space is a measure space (Ω,A ,P) such that P(Ω) = 1. The
elements of Ω are called the elementary outcomes or the sample points of our
experiment, and the members of A are called events. If A ∈ A , then P(A) is the
probability of the event A.

Example 10.1.1. We illustrate these concepts with a very simple example. Suppose
we toss a fair coin (one for which a head has probability 1/2) twice. There are four
possible outcomes: we get two heads, we get a head and then a tail, we get a tail and
then a head, or we get two tails. So we can let our set Ω of elementary outcomes
be {HH,HT,TH,T T}. It is natural in this case to let A contain all the subsets of
Ω. For example, {HT,TH} is one of the subsets of Ω; it corresponds to the real-
world event in which we get a head on exactly one of the tosses. Finally, in this
situation each elementary outcome has probability 1/4 of occurring, and so we let
the probability of an event A be 1/4 times the number of elements of A. �	
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