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A real-valued random variable on a probability space (Ω,A ,P) is an
A -measurable function from Ω to R. Such a variable represents a numerical
observation or measurement whose value depends on the outcome of the random
experiment represented by (Ω,A ,P). More generally, a random variable with
values in a measurable space (S,B) is a measurable function from (Ω,A ,P)
to (S,B). Let X be a random variable with values in (S,B). The distribution
of X is the measure PX−1 defined on (S,B) by (PX−1)(A) = P(X−1(A)) (see
Sect. 2.6). We will often write PX for the distribution of a random variable
X . If X1, . . . , Xd are (S,B)-valued random variables on (Ω,A ,P), then the
formula X(ω) = (X1(ω), . . . ,Xd(ω)) defines an Sd-valued random variable X ;
the distribution of X is called the joint distribution of X1, . . . , Xd .

Example 10.1.2. Let us continue with our coin-tossing example. The number of
heads that appear when our two coins are tossed can be represented with the random
variable X defined by

X(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ω = T T ,

1 if ω = HT or ω = TH, and

2 if ω = HH.

The distribution PX of X is given by PX = 1
4 δ0 +

1
2 δ1 +

1
4 δ2. �	

An abbreviated notation for events is common in probability. We introduce it
with a couple of examples. Suppose that (Ω,A ,P) is a probability space and that X
and Xn, n = 1, 2, . . . , are real-valued random variables on Ω. Then the events

{ω ∈ Ω : X(ω)≥ 0},

{ω ∈ Ω : X(ω) = lim
n

Xn(ω)},
and

{ω ∈ Ω : lim
n

Xn(ω) exists}
are often abbreviated as {X ≥ 0}, {X = limn Xn}, and {limn Xn exists}. Sometimes
one goes a bit further and simply writes P(X ≥ 0) instead of P({X ≥ 0}) or
P({ω ∈ Ω : X(ω)≥ 0}).

If a real-valued random variable X on a probability space (Ω,A ,P) is integrable
with respect to P, then its expected value, or expectation, written E(X), is the
integral of X with respect to P. That is, E(X) =

∫
X dP. If X is integrable, one also

says that X has a finite expected value or that X has an expected value. Note that
Proposition 2.6.8 gives a way to compute the expected value of a real-valued random
variable in terms of its distribution, namely E(X) =

∫
R

xPX(dx). That proposition in
fact gives the more general formula E( f ◦X) =

∫
R

f dPX , by which we can compute
the expected value of a Borel function f of a random variable X in terms of the
distribution of X .
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We often have use for the expected value of the square of a real-valued random
variable X , or the second moment of X . If X has a finite second moment, then it
follows from the inequality |X | ≤ X2+1 that X has a finite expectation. In this case,
one calls the expected value of (X −E(X))2 the variance of X ; it gives a measure
of the amount by which the values of X differ from the expected value of X . The
nonnegative square root of the variance of X is called the standard deviation of X .
One often denotes the expected value of a random variable X with μX or simply μ ,
the variance with var(X) or σ2

X , and the standard deviation with σX .

Lemma 10.1.3. Let X be a random variable with a finite second moment, and let a
and b be real numbers. Then

(a) var(X) = E(X2)− (E(X))2, and
(b) var(aX + b) = a2 var(X).

Proof. The lemma follows from basic algebra and the linearity of the integral. �	
Suppose that X is a real-valued random variable with a discrete distribution—

that is, suppose that there is a countable subset C of R such that P(X ∈C) = 1. Then
X has a finite expected value if and only if ∑x∈C |x|P(X = x) < +∞, and in that
case E(X) = ∑x∈C xP(X = x). Likewise, if the distribution PX of X is absolutely
continuous with respect to Lebesgue measure and if fX is the Radon–Nikodym
derivative of PX with respect to Lebesgue measure, then X has a finite expected value
if and only if

∫
R
|x| fX (x)dx < +∞, and in that case E(X) =

∫
R

x fX (x)dx. As these
remarks may suggest, it turns out that discrete and continuous random variables,1

which receive separate treatments in elementary discussions of probability theory,
can be given a fairly uniform treatment in terms of measure theory.

We have seen (in Propositions 1.3.9 and 1.3.10) that there is a correspondence
between finite Borel measures on R and bounded nondecreasing right-continuous
functions F : R→R for which limx→−∞ F(x) = 0. In the present context, this means
that the distribution PX of a real-valued random variable X is determined by the
function FX : R→R defined by

FX(x) = PX((−∞,x]) = P(X ≤ x).

The function FX is called the cumulative distribution function, or just the distribution
function, of X .

Let {Xi}i∈I be an indexed family of random variables on a probability space
(Ω,A ,P). Then σ(Xi, i ∈ I) is the smallest σ -algebra on Ω that makes all these
variables measurable. Likewise, if {Xn} is a sequence of random variables on
(Ω,A ,P), then one often writes σ(X1,X2, . . . ) for the smallest σ -algebra on Ω that
makes each Xn measurable.

1A real-valued random variable is discrete if its distribution is discrete and is continuous if its
distribution is absolutely continuous with respect to Lebesgue measure.
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Examples 10.1.4.

(a) We begin by returning to coin tossing. Suppose that now our experiment is to
toss a fair coin repeatedly, until we first get a head, and then to stop. It seems
reasonable to define Ω by

Ω = {H, T H, TT H, . . . , T T TT T TT T H, . . .}

and to let A consist of all subsets of Ω. We will (by countable additivity)
determine the probability of all the events in A if we specify the probabilities
of the one-point subsets of Ω. It seems reasonable to let P({H}) = 1/2,
P({TH}) = 1/4, P({TTH}) = 1/8, . . . (the reader should think through this
assignment of probabilities again, after reading the discussion of independence
that occurs later in this section). Note that the sum of the geometric series
∑∞

n=1(1/2)n is 1, and so this assignment of probabilities does give a probability
measure.

(b) Now suppose that we choose a real number from the interval [a,b] in such
a way that the probability that the number chosen lies in a subinterval I of
[a,b] is proportional to the length of I. We can describe this situation with
the probability space ([a,b],B([a,b]),P), where the measure P is given by
P(A) = λ (A)/(b− a). In this case one has a uniform distribution on [a,b]. Of
course, if the interval [a,b] is the unit interval [0,1], then the measure P is just
the restriction of Lebesgue measure to the Borel subsets of [0,1].

(c) Now suppose that f is a nonnegative Borel measurable function on R such that∫
f dλ = 1. Then the formula P(A) =

∫
A f dλ defines a probability measure on

the measurable space (R,B(R)). The function f is called the density of P (or
of a random variable having distribution P). Note that the measures in part (b)
above can be viewed as special cases of the situation here, with the uniform
distribution on [a,b] given by the density function that has value 1/(b− a) on
[a,b] and 0 elsewhere.

(d) In a similar way, a nonnegative Borel measurable function on R
2 such that∫ ∫

f (x,y)λ (dx)λ (dy) = 1 defines a probability measure on the measurable
space (R2,B(R2)).

(e) Let us now look at normal, or Gaussian, distributions, which are given by the
familiar bell-shaped curves. We begin by evaluating the integral

∫
R

e−x2/2 dx.
Let us denote the value of this integral by A for a moment. If we interpret A2 as
an integral over R2 and evaluate the integral using polar coordinates, we find

A2 =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2 dxdy =

∫ 2π

0

∫ ∞

0
re−r2/2 dr dθ = 2π .

Thus A =
√

2π , and so the function x �→ 1√
2π e−x2/2 is a probability density

function on R (that is, it is nonnegative and its integral over R is 1).
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Now suppose that X is a random variable whose distribution has density x �→
1√
2π e−x2/2. It is easy to check that

1√
2π

∫

R

xe−x2/2 dx = 0

and hence that E(X) = 0. If in the following calculation we use integration by
parts to convert the first integral into the second, whose value we know, we find
that

1√
2π

∫

R

x2e−x2/2 dx =
1√
2π

∫

R

e−x2/2 dx = 1

and hence that E(X2) = 1. Thus X has expected value 0 and variance 1.

It is easy to check that if X is as above and if μ and σ are constants, with
σ > 0, then the random variable σX + μ has mean μ and variance σ2 (see
Lemma 10.1.3). Furthermore, according to Lemma 10.1.5, σX + μ has density
gμ,σ 2 given by

gμ,σ 2(x) =
1√

2πσ
e−(x−μ)2/2σ 2

.

With this we have the densities of the normal or Gaussian random variables
with mean μ and variance σ2.

One often writes N(0,1) for the distribution of a normal random variable
with mean 0 and variance 1 and N(μ ,σ2) for the distribution of a normal
random variable with mean μ and variance σ2. Thus N(0,1) is the measure
on (R,B(R)) with density x �→ 1√

2π e−x2/2, and N(μ ,σ2) is the measure on

(R,B(R)) with density gμ,σ 2 . �	
Lemma 10.1.5. Let X be a real-valued random variable with density fX , let a and
b be real constants with a > 0, and let Y = aX + b. Then Y is a continuous random
variable whose density fY is given by

fY (t) =
1
a

fX

(
t − b

a

)

.

Proof. Define a function T : R→R by T (t) = at+b. Then λ (T (A)) = aλ (A) holds
for each subinterval A of R and consequently for each Borel subset A of R. Thus

a
∫

hdλ =

∫

h ◦T−1 dλ

holds for each nonnegative measurable h (check this first in the case where h is the
indicator function of a Borel set), and so we have
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PY (A) = PX(T
−1(A)) =

∫

T−1(A)
fX dλ

= (1/a)
∫

(χT−1(A) ◦T−1)( fX ◦T−1)dλ

= (1/a)
∫

A
fX

(
t − b

a

)

λ (dt).

Thus PY can be calculated by integrating the function t �→ 1
a fX (

t−b
a ), and the proof

is complete. �	
We will need the following fact about normal distributions.

Lemma 10.1.6. Let Z be a normal random variable with mean 0 and variance 1.
Then

P(Z ≥ A)≤ 1√
2πA

e−A2/2

holds for each positive real number A.

Proof. We have

P(Z ≥ A) =
1√
2π

∫ ∞

A
e−x2/2 dx ≤ 1√

2π

∫ ∞

A

x
A

e−x2/2 dx =
1√
2πA

e−A2/2.

�	
Let us turn to a few definitions and results involving independence.
Let (Ω,A ,P) be a probability space, and let {Ai}i∈I be an indexed family of

events. The events2 Ai, i ∈ I, are called independent if for each finite subset I0 of I
we have

P(∩i∈I0 Ai) = ∏
i∈I0

P(Ai).

Let {Xi}i∈I be an indexed family of random variables, defined on (Ω,A ,P) and
with values in the measurable space (S,B). The random variables Xi, i ∈ I, are
called independent if for each choice of sets Ai in B, i ∈ I, the events X−1

i (Ai) are
independent.

Finally, let (Ω,A ,P) be a probability space and let {Ai}i∈I be an indexed family
of sub-σ -algebras of A . The σ -algebras Ai, i∈ I, are independent if for each choice
of sets Ai in Ai, i ∈ I, the events Ai are independent.

Note that if {Xi}i∈I is an indexed family of random variables on a probability
space (Ω,A ,P), then the random variables Xi, i ∈ I, are independent if and only if
the σ -algebras σ(Xi), i ∈ I, are independent.

2Although the independence of Ai, i ∈ I, depends on the relationship between the events Ai, rather
than on the events individually, it is standard to call the events, rather than the indexed family,
independent.
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Proposition 10.1.7. Let (Ω,A ,P) be a probability space, let {Ai}i∈I be an indexed
family of independent sub-σ -algebras of A , let {S j} j∈J be a partition of I, and for
each j in J let B j = σ(∪i∈S j Ai). Then the σ -algebras B j are independent.

Proof. For each j in J let P j consist of all finite intersections of sets in ∪i∈S j Ai.
Note that each P j is a π-system such that B j = σ(P j). Let J0 be a nonempty finite
subset of J, and for each j in J0 let A j be a member of P j. The relation

P(∩ j∈J0 A j) = ∏
j∈J0

P(A j) (1)

follows from the independence of the Ai’s. Now suppose that the elements of J0 are
j1, j2, . . . , jn, and let D be the class of all A in B jn such that

P(A j1 ∩·· ·∩A jn−1 ∩A) = P(A j1) · · ·P(A jn−1)P(A)

holds for all A ji in P ji , i = 1, . . . , n−1. Then D is a Dynkin class (i.e., a d-system)
that includes P jn , and so Theorem 1.6.2 implies that D = B jn . Similar arguments,
n− 1 of them, show that (1) holds for all A j in B j, j ∈ J0. Since the independence
of the B j, j ∈ J depends only on the independence of finite subfamilies, the proof
is complete. �	
Example 10.1.8. Proposition 10.1.7 may look overly abstract, but it allows simple
proofs of some results for which a rigorous proof might otherwise be awkward.
For example, suppose that {Xn}∞

n=1 is a sequence of independent random variables
on a probability space (Ω,A ,P). Then it is an immediate consequence of Propo-
sition 10.1.7 that the random variables X2i−1 + X2i, i = 1, 2, . . . are independent.
Proving this independence in other ways would probably take more work. �	
Proposition 10.1.9. Let (Ω,A ,P) be a probability space, let (S,B) be a measur-
able space, let X1, X2, . . . , Xd be S-valued random variables on Ω, and let X be the
Sd-valued random variable with components X1, X2, . . . , Xd. Let PX1 , PX2 , . . . , PXd ,
and PX be the distributions of X1, X2, . . . , Xd, and X, respectively. Then X1, X2, . . . ,
Xd are independent if and only if the joint distribution PX is equal to the product
measure PX1 ×PX2 ×·· ·×PXd .

Proof. If we rewrite the definition of independence, we find that X1, . . . , Xd are
independent if and only if

PX(A1 ×·· ·×Ad) = ∏
i

PXi(Ai)

holds for each choice of sets Ai in B, i = 1, . . . , d. Thus if PX is equal to the product
of the measures PXi , then X1, X2, . . . , Xd are independent. The converse follows
from the uniqueness of product measures (see Theorem 5.1.4 and the discussion at
the end of Sect. 5.2). �	
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Proposition 10.1.10. Let (Ω,A ,P) be a probability space and let X1, X2, . . . , Xn

be independent real-valued random variables on (Ω,A ,P), each of which has a
finite expectation. Then the product ∏i Xi has a finite expectation, and E(∏i Xi) =

∏i E(Xi).

Proof. Let X be the R
n-valued random variable with components X1, . . . , Xn, and

let PX and PX1 , . . . , PXn be the distributions of X and X1, . . . , Xn. We will use
these distributions for the calculation of E(∏i Xi) and ∏i E(Xi). Since the random
variables Xi, . . . , Xn are independent, PX is the product of the measures PX1 , . . . , PXn

(Proposition 10.1.9). Thus we can use Proposition 5.2.1 and Theorem 5.2.2, together
with the finiteness of the expectations E(Xi) and the remarks at the end of Sect. 5.2,
to conclude that ∏i Xi has a finite expectation and that E(∏i Xi) = ∏i E(Xi). �	
Corollary 10.1.11. Let X1, X2, . . . , Xn be independent real-valued random vari-
ables with finite second moments, and let S = X1 + · · · + Xn. Then var(S) =

∑i var(Xi).

Proof. By the independence of Xi and Xj (where i �= j), the expectation of the
product (Xi −E(Xi))(Xj −E(Xj)) is the product of the expectations of Xi −E(Xi)
and Xj −E(Xj), namely 0. Thus

var(S) = E
((

∑
i
(Xi −E(Xi))

)2)
= ∑

i
∑

j
E
(
(Xi −E(Xi))(Xj −E(Xj))

)

= ∑
i

E
(
(Xi −E(Xi))

2)= ∑
i

var(Xi). �	

Now suppose that X1 and X2 are independent real-valued (or Rd-valued) random
variables with distributions PX1 and PX2 . In view of Proposition 10.1.9, we can use
the product measure PX1 ×PX2 to compute the distribution PX1+X2 of X1 +X2:

PX1+X2(A) = (PX1 ×PX2)({(x1,x2) : x1 + x2 ∈ A}). (2)

One defines the convolution ν1 ∗ν2 of finite measures ν1 and ν2 on (Rd ,B(Rd)) by

(ν1 ∗ν2)(A) = (ν1 ×ν2)({(x1,x2) : x1 + x2 ∈ A});

thus (2) says that the distribution of the sum of two independent random variables
is the convolution of their distributions: PX1+X2 = PX1 ∗PX2.

Note that convolution satisfies the associative law ν1 ∗ (ν2 ∗ν3) = (ν1 ∗ν2)∗ν3,
since if X1, X2, and X3 are independent random variables with distributions ν1,
ν2, and ν3, then both ν1 ∗ (ν2 ∗ ν3) and (ν1 ∗ ν2) ∗ ν3 give the distribution of
X1 +X2 +X3. More generally, the convolution of the distributions of n independent
random variables gives the distribution of their sum.
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We can compute convolutions as follows.

Proposition 10.1.12. Let ν1 and ν2 be probability measures on (Rd ,B(Rd)).

(a) The convolution ν1 ∗ν2 satisfies

(ν1 ∗ν2)(A) =
∫

ν1(A− y)dν2(y) =
∫

ν2(A− x)dν1(x)

for each A in B(Rd).
(b) If ν1 is absolutely continuous (with respect to Lebesgue measure), with density

f , then ν1 ∗ν2 is absolutely continuous, with density x �→ ∫
f (x− y)ν2(dy).

(c) If ν1 and ν2 are absolutely continuous, with densities f and g, then ν1 ∗ ν2 is
absolutely continuous, with density x �→ ∫

f (x− y)g(y)λ (dy).

Proof. Since the sections of the set {(x,y) : x+ y ∈ A} are equal to A− x and A− y,
part (a) is an immediate consequence of Theorem 5.1.4. Part (b) follows from the
calculation

ν1 ∗ν2(A) =
∫ ∫

χA(x+ y) f (x)λ (dx)ν2(dy)

=

∫ ∫

χA(x) f (x− y)λ (dx)ν2(dy)

=

∫

χA(x)
∫

f (x− y)ν2(dy)λ (dx).

(The finiteness of
∫

f (x−y)ν2(dy) for almost every x follows from this calculation,
applied in the case where A = R.) Part (c) follows from part (b), since in this case
we have

∫
f (x− y)ν2(dy) =

∫
f (x− y)g(y)λ (dy) (recall Exercise 4.2.3). �	

In the remainder of this section we look at some random variables that arise when
we consider the binary expansions of the values of certain uniformly distributed
random variables. The techniques discussed here will give us a way to construct
arbitrary sequences of independent (real-valued) random variables.

It will be convenient to have a bit of standard terminology. A random variable X
is said to have a Bernoulli distribution with parameter p if the possible values3 of X
are 0 and 1, with 1 having probability p and 0 having probability 1− p.

So let us suppose that (Ω,A ,P) is a probability space and that X is a random
variable on (Ω,A ,P) that is uniformly distributed on [0,1]. By redefining X on a
null set, if necessary, we can assume that every value of X belongs to [0,1). Define a
sequence {Yn} on (Ω,A ,P) by letting Yn(ω) be the nth bit in the binary expansion4

3Actually, we are only assuming that P(X ∈ {0,1}) = 1 and not that X(ω) ∈ {0,1} for every ω in
Ω.
4In case the value X(ω) has two binary expansions, take the one that ends in an infinite sequence
of 0’s. See B.9 in Appendix B.
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of X(ω). Then Y1(ω) is 0 if X(ω) belongs to the interval [0,1/2) and is 1 if X(ω)
belongs to [1/2,1). Likewise Y2(ω) is 0 if X(ω) belongs to [0,1/4)∪ [1/2,3/4) and
is 1 if X(ω) belongs to [1/4,1/2)∪ [3/4,1). In general, Yn(ω) is 0 if X(ω) satisfies
2i/2n ≤ X(ω)< (2i+1)/2n for some i and is 1 otherwise; from that it is not difficult
to check that the variables {Yn} are measurable and independent, with each having
a Bernoulli distribution with parameter 1/2.

Proposition 10.1.13. Let (Ω,A ,P) be a probability space.

(a) Suppose that X is a random variable on (Ω,A ,P) that is uniformly distributed
on [0,1], and define a sequence {Yn} on (Ω,A ,P) by letting {Yn(ω)} be
the sequence of 0’s and 1’s in the binary expansion of X(ω). Then {Yn} is
a sequence of independent random variables, each of which has a Bernoulli
distribution with parameter 1/2.

(b) Conversely, suppose that {Yn} is a sequence of independent random variables
on (Ω,A ,P), each of which has a Bernoulli distribution with parameter 1/2.
Then the random variable X defined by X = ∑n Yn/2n is uniformly distributed
on the interval [0,1].

Proof. A proof for part (a) was given just before the statement of the proposition.
We turn to part (b). By modifying the variables Yn on a null set if necessary, we
can assume that for every ω the sequence {Yn(ω)} contains only 0’s and 1’s and
does not end with an infinite string of 1’s. Consider the dyadic rational i/2n, where
i satisfies 0 ≤ i < 2n. Then i/2n has an n-bit binary expansion, say 0.b1b2 . . .bn, and
X(ω) belongs to the interval [i/2n,(i+ 1)/2n) if and only if Yj(ω) = b j holds for
j = 1, . . . , n. Thus PX(I) = λ (I) holds for intervals I of the form [i/2n,(i+ 1)/2n)
and hence (see Lemma 1.4.2) for all open subsets I of (0,1). In view of the regularity
of PX and λ (Proposition 1.5.6), the proof is complete. �	
Corollary 10.1.14. There is an infinite sequence of independent random variables,
each of which is uniformly distributed on [0,1]. Such a sequence can be constructed
on the probability space ([0,1],B([0,1]),λ ).

Proof. Let X be a random variable that is uniformly distributed on [0,1]; such a ran-
dom variable can of course be defined on the probability space ([0,1],B([0,1]),λ ).
Let {Yn} be the sequence of random variables constructed in part (a) of Propo-
sition 10.1.13. Since the set N of positive integers has the same cardinality as
the set N×N of pairs of positive integers, we can reindex the sequence {Yn},
obtaining a doubly indexed sequence {Y

′
m,n}. For each n define a random variable

Zn by Zn = ∑mY
′
m,n/2m. Then part (b) Proposition 10.1.13 implies that each Zn is

uniformly distributed on [0,1], while Proposition 10.1.7 implies that the variables
{Zn} are independent. �	

It is possible to use uniformly distributed random variables to construct random
variables having arbitrary distributions on (R,B(R)). This can be done as follows:

Proposition 10.1.15. Let μ be a probability measure on (R,B(R)) with cumu-
lative distribution function F, and let X be a random variable that is uniformly
distributed on the interval (0,1). Then the function F−1 : (0,1)→ R defined by
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F−1(t) = inf{x ∈R : t ≤ F(x)}

is Borel measurable, and F−1 ◦X has distribution μ .

Proof. The function F satisfies limx→−∞ F(x) = 0 and limx→+∞ F(x) = 1, from
which it follows that for each t in (0,1) the set {x ∈ R : t ≤ F(x)} is nonempty
and bounded below and hence that each F−1(t) is finite. If t1 < t2, then

{x ∈ R : t2 ≤ F(x)} ⊆ {x ∈ R : t1 ≤ F(x)},

and taking the infima of these sets gives F−1(t1)≤ F−1(t2). In other words, F−1 is
nondecreasing, and so it is Borel measurable.

Let us check that

F−1(t)≤ x (3)

holds if and only if
t ≤ F(x). (4)

It is immediate from the definition of F−1 that (4) implies (3). On the other hand,
if (3) holds, then there is a sequence {xn} that decreases to x and is such that t ≤
F(xn) holds for each n. Since F is right continuous, (4) follows and the proof of the
equivalence of (3) and (4) is complete.

Finally, the equivalence of (3) and (4) implies that for each x in R we have

P(F−1 ◦X ≤ x) = P(X ≤ F(x)) = F(x);

thus F−1 ◦X has distribution function F and distribution μ . �	
Corollary 10.1.16. Let μ be a probability distribution on (R,B(R)). Then there
is an infinite sequence of independent random variables, each of which has
distribution μ . Such a sequence of random variables can be constructed on the
probability space ([0,1],B([0,1]),λ ).

Proof. This is an immediate consequence of Corollary 10.1.14 and Proposition
10.1.15. �	

Given a source of independent and uniformly distributed random numbers (for
instance, a table of random numbers or a random number generator on a computer),
one can use the techniques of Proposition 10.1.15 and Corollary 10.1.16 to simulate
a sequence of observations from an arbitrary distribution.

Exercises

1. Let (Ω,A ,P) be a probability space, and let A1, A2, . . . , An be a finite indexed
family of events in A . Show that the conditions
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(i) the events A1, A2, . . . , An are independent,
(ii) the equation

P(B1 ∩B2 ∩·· ·∩Bn) = P(B1)P(B2) · · ·P(Bn)

holds for every choice of B1, B2, . . . , Bn, where for each i the event Bi is
either Ai or Ac

i ,
(iii) the events Ac

1, Ac
2, . . . , Ac

n are independent, and
(iv) the random variables χA1 , χA2 , . . . , χAn are independent

are equivalent.
2. Let (Ω,A ,P) be a probability space, let X1, . . . , Xd be real-valued random

variables on Ω, and let X be the Rd-valued random vector whose components are
X1, . . . , Xd . Suppose that FX1 , . . . , FXd are the cumulative distribution functions
of X1, . . . , Xd and that FX is the cumulative distribution function of X , defined by

FX(t1, . . . , td) = P(Xi ≤ ti for all i).

Show that X1, . . . , Xd are independent if and only if

FX(t1, . . . , td) = FX1(t1) · · ·FXd (td)

holds for all (t1, . . . , td) in R
d . (Hint: Use Theorem 1.6.2.)

3. Let (Ω,A ,P) be a probability space, let X1, . . . , Xd be real-valued random
variables on Ω, and let X be the R

d-valued random vector whose components
are X1, . . . , Xd . Let μ1, . . . , μd be the distributions of X1, . . . , Xd , and let μ be the
distribution of X .

(a) Show that if μ is absolutely continuous (with respect to Lebesgue measure),
then μ1, . . . , μd are absolutely continuous.

(b) Show by example that the absolute continuity of μ does not follow from the
absolute continuity of μ1, . . . , μd .

4. Let (Ω,A ,P) be a probability space, let X1, . . . , Xd be real-valued random
variables on Ω, and let X be the R

d-valued random vector whose components
are X1, . . . , Xd . Suppose that the distributions of X1, . . . , Xd are absolutely
continuous, with densities f1, . . . , fd . Show that X1, . . . , Xd are independent if
and only if the random vector X is an absolutely continuous random variable
whose density is given by (t1, . . . , td) �→ f1(t1) . . . fd(td).

5. Let X1, X2, . . . , Xn be independent random variables, each of which has a
Bernoulli distribution with parameter p, and let S = X1 +X2 + · · ·+Xn.

(a) Show that S has a binomial distribution with parameters n and p—that is,
that it is concentrated on the set {0,1, . . . ,n}, with P(S = k) being given by(n

k

)
pk(1− p)n−k for each k in {0,1, . . . ,n}.

(b) Show that E(S) = np and var(S) = np(1− p).
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6. A real-valued random variable has a Poisson distribution with parameter λ if its
values are nonnegative integers, with P(X = k) = λ ke−λ/k! for each nonnegative
integer k.

(a) Check that the formula above indeed defines a probability measure on
(R,B(R)).

(b) Verify that if the random variable X has a Poisson distribution with parameter
λ , then E(X) = λ and var(X) = λ .

(c) Show that if X1 and X2 are independent random variables that have Poisson
distributions with parameters λ1 and λ2, respectively, then X1 + X2 has a
Poisson distribution with parameter λ1 +λ2.

7. Let X1 and X2 be independent random variables, each of which is uniformly
distributed on the interval [0,1]. Find the density function of X1 +X2.

8. Let X and Y be independent normal random variables with mean 0 and variance
1, and let R and Θ be random variables with values in [0,+∞) and [0,2π) that
correspond to writing (X ,Y ) in polar coordinates.

(a) Show that R and Θ are independent, that R has distribution function given
by t �→ 1− e−t2/2 for nonnegative t, and that Θ has a uniform distribution.

(b) Derive from this a way to use Proposition 10.1.15 to simulate values for
normally distributed random variables by using easily available functions,
rather than by using the inverse of the distribution function of a normal
distribution.

10.2 Laws of Large Numbers

This section contains an introduction to the laws of large numbers.
Let X and X1, X2, . . . be random variables on the probability space (Ω,A ,P).

Then {Xn} is said to converge in probability to X if

lim
n

P(|Xn −X |> ε) = 0

holds for each positive number ε and to converge almost surely to X (or to converge
a.s. to X) if

P(X = lim
n

Xn) = 1.

In other words, {Xn} converges to X in probability if it converges to X in measure,
and {Xn} converges to X almost surely if it converges to X almost everywhere.5

Thus a number of relationships between convergence in probability and almost sure
convergence can be found in Chap. 3.

5More generally, an arbitrary (probabilistic) assertion holds almost surely if it holds almost
everywhere.
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Random variables Xi, i ∈ I, are said to be identically distributed if they all have
the same distribution—that is, if PXi = PXj for all i, j in I. Sequences {Xn} of random
variables that are independent and identically distributed occur frequently, and one
often abbreviates a little and calls such sequences i.i.d.

Theorem 10.2.1 (Weak Law of Large Numbers). Let {Xn} be a sequence of
independent identically distributed real-valued random variables with finite second
moments. For each n let Sn = X1 + · · ·+ Xn. Then Sn/n converges to E(X1) in
probability.

Proof. Let ε be a positive number. Since var(Sn/n) = (1/n)var(X1) (see
Corollary 10.1.11 and Lemma 10.1.3), Proposition 2.3.10 implies that

P

(∣
∣
∣
∣
Sn

n
−E(X1)

∣
∣
∣
∣> ε

)

= P

(∣
∣
∣
∣
Sn −E(Sn)

n

∣
∣
∣
∣

2

> ε2
)

≤ 1
ε2 var(Sn/n) =

var(X1)

nε2 .

Thus limn P(| Sn
n −E(X1)|> ε) = 0, and so Sn/n converges to E(X1) in probability.

�	
Suppose that (Ω,A ,P) is a probability space and that {An} is a sequence of

events in A . Then

{ω ∈ Ω : ω ∈ An for infinitely many n}
is equal to ∩∞

m=1 ∪∞
n=m An; it is the event that infinitely many of the events An occur,

and it is often written as {An i.o.} (“i.o.” is an abbreviation for “infinitely often”).
For example, if we are dealing with an infinite sequence of tosses of a coin, and if
for each n we let An be the event that a head appears on the nth toss, then {An i.o.}
is the event that a head appears on infinitely many of the tosses.

Proposition 10.2.2 (Borel–Cantelli Lemmas). Let (Ω,A ,P) be a probability
space, and let {An} be a sequence of events in A .

(a) If ∑n P(An)<+∞, then P({An i.o.}) = 0.
(b) If the events An, n = 1, 2, . . . , are independent and if ∑n P(An) = +∞, then

P({An i.o.}) = 1.

Note that part (b) of Proposition 10.2.2 implies that if the events {An} are
independent and satisfy P({An i.o.}) = 0, then ∑n P(An) < +∞. Combining this
with part (a) of the proposition, we see that for independent events the conditions
P({An i.o.}) = 0 and ∑n P(An)<+∞ are equivalent.

Proof. Since {An i.o.}= ∩∞
m=1 ∪∞

n=m An, we have

P({An i.o.})≤ P(∪∞
n=mAn)≤

∞

∑
n=m

P(An)
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for each m. Thus if ∑n P(An) < +∞, then P({An i.o.})≤ limm ∑∞
n=m P(An) = 0 and

so P({An i.o.}) = 0; with this, part (a) is proved.
To prove part (b), let us look at the complement of {An i.o.}. We have

{An i.o.}c = ∪∞
m=1 ∩∞

n=m Ac
n,

and so we can prove that P({An i.o.}) = 1 by checking that P(∩∞
n=mAc

n) = 0 holds
for each m. Since the events Ac

n, Ac
n+1, . . . are independent (see Exercise 10.1.1), we

have

P(∩∞
n=mAc

n) =
∞

∏
n=m

(1−P(An)).

We can now derive the relation

∞

∏
n=m

(1−P(An)) = 0 (1)

from the hypothesis that ∑n P(An) =+∞: If P(An) = 1 for some n that is greater than
or equal to m, or if there is a positive ε such that P(An)≥ ε holds for infinitely many
n, then (1) certainly holds. Otherwise, log(1−P(An)) is asymptotic to −P(An), and
so ∑∞

n=m log(1−P(An)) =−∞, from which (1) follows. �	
Proposition 10.2.3 (Kolmogorov’s Zero–One Law). Suppose that {Xn} is a se-
quence of independent random variables. Then each event that belongs to the
σ -algebra ∩nσ(Xn,Xn+1, . . .) has probability 0 or 1.

The intersection of the σ -algebras σ(Xn,Xn+1, . . . ) is, of course, a σ -algebra. It
is called the tail σ -algebra of the sequence {Xn}, and its members are called tail
events. Thus Kolmogorov’s zero–one law can be rephrased so as to say that each
tail event of a sequence of independent random variables has probability 0 or 1.

Proof. Let T be the tail σ -algebra for the sequence {Xn}. Proposition 10.1.7
implies that for each n the σ -algebras σ(X1), . . . , σ(Xn−1), and σ(Xn,Xn+1, . . .)
are independent and hence that σ(X1), . . . , σ(Xn−1), and T are independent. Since
this is true for every n, it follows that the collection consisting of σ(Xn), n = 1,
2, . . . , together with T , is independent. Applying Proposition 10.1.7 once more
shows that σ(X1,X2, . . . ) and T are independent. Since T is a sub-σ -algebra of
σ(X1,X2, . . . ), T must be independent of T . Thus each A in T satisfies P(A) =
P(A∩A) = P(A)P(A), from which it follows that P(A) = 0 or P(A) = 1. �	
Example 10.2.4. Suppose that {Xn} is a sequence of independent random vari-
ables, and for each n let Sn = X1+ · · ·+Xn. For each k the convergence or divergence
of the sequence {Sn(ω)} does not depend on the values X1(ω), . . . , Xk(ω) but only
on the later terms in the sequence {Xn(ω)}. Thus the event {limn Sn exists} is a
tail event and so by Kolmogorov’s zero–one law has probability 0 or 1. A similar
argument shows that the event {limn Sn/n exists} has probability 0 or 1. �	
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Theorem 10.2.5 (Strong Law of Large Numbers). Let {Xn} be a sequence of
independent identically distributed random variables with finite expected values.
For each n let Sn = X1 + · · ·+Xn. Then {Sn/n} converges to E(X1) almost surely.

We will need the following two results for the proof of the strong law of large
numbers.

Proposition 10.2.6 (Kolmogorov’s Inequality). Let X1, X2, . . . , Xn be independent
random variables, each of which has mean 0 and a finite second moment, and for
each i let Si = X1 + · · ·+Xi. Then

P(max
1≤i≤n

|Si|> ε)≤ (1/ε2)
n

∑
i=1

E(X2
i )

holds for each positive ε .

Proof. Define events A and A1, . . . , An by A = {maxi |Si|> ε} and

Ai = {|Si|> ε and |S j| ≤ ε for j = 1, 2, . . . , i− 1}.

Let us check that for each i we have
∫

Ai

S2
i dP ≤

∫

Ai

S2
n dP. (2)

To see this, note that the random variables χAiSi and Sn − Si are independent, while
E(Sn − Si) = 0, and so Proposition 10.1.10 implies that

∫
Ai

Si(Sn − Si) = 0. Hence,
if we write S2

n as (Si +(Sn − Si))
2 and expand, we find

∫

Ai

S2
n dP =

∫

Ai

S2
i dP+ 2

∫

Ai

Si(Sn − Si)dP+

∫

Ai

(Sn − Si)
2 dP

=
∫

Ai

S2
i dP+

∫

Ai

(Sn − Si)
2 dP

≥
∫

Ai

S2
i dP,

and (2) follows. Using Proposition 2.3.10 and relation (2), we find

ε2P(A) = ∑
i

ε2P(Ai)≤ ∑
i

∫

Ai

S2
i ≤ ∑

i

∫

Ai

S2
n ≤

∫

S2
n;

since the variables Xi are independent and have mean 0, we have E(S2
n) = ∑E(X2

i ),
and the proof is complete. �	
Proposition 10.2.7. Let {Xn} be a sequence of independent random variables that
have mean 0 and satisfy ∑n E(X2

n )<+∞. Then ∑n Xn converges almost surely.
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Proof. For each n define Sn by Sn = X1 +X2 + · · ·+Xn. If for each m and n such
that m > n we apply Kolmogorov’s inequality (Proposition 10.2.6) to the sequence
Xn+1, . . . , Xm and then let m approach infinity, we find

P({sup
i>n

|Si − Sn|> ε})≤ 1
ε2

∞

∑
i=n+1

E(X2
i ).

Choose a sequence {εk} of positive numbers that decreases to 0, and for each k
choose a positive integer nk such that ∑∞

i=nk+1 E(X2
i )< ε2

k /2k. For each k define Ak

by Ak = {supi>nk
|Si − Snk |> εk}. Then

∑
k

P(Ak)< ∑
k

1

ε2
k

ε2
k

2k = ∑
k

1/2k <+∞,

and so P({Ak i.o.}) = 0. However, for each ω outside {Ak i.o.} the sequence
{Sn(ω)} is a Cauchy sequence, and so {Sn} converges almost surely. �	
Proof of Strong Law of Large Numbers. For each i let Yi be the truncated version of
Xi defined by

Yi(ω) =

{
Xi(ω) if |Xi(ω)| ≤ i, and

0 otherwise.

Of course, the variables {Yi} are independent and have finite expected values.

Claim. The series ∑i
Yi−E(Yi)

i converges almost surely.

Since E((Yi −E(Yi))
2) ≤ E(Y 2

i ), the claim will follow from Proposition 10.2.7
if we verify that ∑i E(Y 2

i /i2) < +∞. Let μ be the common distribution of the Xi’s,
and for each positive integer j define I j by I j = {x ∈R : j−1 < |x| ≤ j}. There is a
constant C such that ∑∞

i= j 1/i2 ≤C/ j holds for each j (use basic calculus), and so

∑
i

E(Y 2
i /i2) = ∑

i

1
i2

∫

[−i,i]
x2 μ(dx)

= ∑
i

∑
j≤i

1
i2

∫

Ij

x2 μ(dx) = ∑
j

∑
i≥ j

1
i2

∫

Ij

x2 μ(dx)

≤ ∑
j

C
∫

Ij

x2

j
μ(dx)≤C

∫

R

|x|μ(dx) =CE(|X1|)<+∞.

With this the claim is proved.
For each n let Tn be ∑n

i=1
Yi−E(Yi)

i , the nth partial sum of ∑i
Yi−E(Yi)

i . The plan is to
relate the partial sums of ∑i(Yi −E(Yi)) to the Tn’s and to {Sn/n}; this will give us
the information that we need about the sequence {Sn/n}. We begin by noting that
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n

∑
i=1

(Yi −E(Yi)) =
n

∑
i=1

i(Ti −Ti−1)

= nTn −
n−1

∑
i=1

Ti.

Since (by the claim above) limn Tn exists almost surely, if we divide both sides of
the preceding equation by n and use item B.7 in Appendix B, we find

lim
n

1
n

n

∑
i=1

(Yi −E(Yi)) = lim
n

(

Tn − 1
n

n−1

∑
i=1

Ti

)

= 0 a.s. (3)

As preparation for the final step we check that

lim
n

1
n

n

∑
i=1

(Xi −Yi) = 0 a.s. (4)

and that

lim
n

1
n

n

∑
i=1

E(Yi) = E(X1). (5)

Let us begin with Eq. (4). Note that the finiteness of E(|X1|) and Exercise 2.4.6
imply that ∑i P({Xi �= Yi}) = ∑i P(|Xi|> i)<+∞; from this and the Borel–Cantelli
lemma, we conclude that P({Xi �= Yi i.o.})= 0 and hence that (4) holds. Equation (5)
follows from the fact that limi E(Yi) = E(X1), plus another use of B.7. Finally,
Eqs. (3) and (5) imply that

lim
n

1
n

n

∑
i=1

Yi = E(X1)

holds almost surely, and from this, together with (4), we conclude that limn Sn/n =
E(X1) holds almost surely. With this the proof of the strong law is complete. �	
Theorem 10.2.8 (Converse to the Strong Law of Large Numbers). Let {Xn} be
a sequence of independent identically distributed random variables that do not have
finite expected values. For each n let Sn = X1 + · · ·+Xn. Then limsupn |Sn/n|=+∞
almost surely.

Proof. Let K be a positive integer, fixed for a moment, and for each n let An be the
event {|Xn| ≥ Kn}. Since the variables {Xi} have a common distribution, but do not
have a finite expected value, it follows from Exercise 2.4.6 that ∑n P(An) =+∞. The
second part of the Borel–Cantelli lemmas implies that P({An i.o.}) = 1 and hence
that

P

(

limsup
n

|Xn|
n

≥ K

)

= 1.
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This is true for each positive integer K, and so it follows that limsupn |Xn/n|= +∞
almost surely. However,

Xn

n
=

Sn

n
− n− 1

n
Sn−1

n− 1
,

from which it follows that limsupn |Xn/n| ≤ 2limsupn |Sn/n|; thus limsup |Sn/n| is
also almost surely infinite. �	

Exercises

1. The Weierstrass approximation theorem says that every continuous function on a
closed bounded subinterval of R can be uniformly approximated by polynomials.
This exercise is devoted to a derivation of the Weierstrass approximation theorem
for functions on [0,1] from the weak law of large numbers.

Let f be a continuous real-valued function on [0,1], let {Xn} be a sequence of
independent random variables, each of which has a Bernoulli distribution with
parameter p, and for each n let Sn = X1 + · · ·+Xn and Yn = Sn/n. For each p in
[0,1] let gn(p) be Ep( f ◦Yn), the expected value of f ◦Yn in the case where the
underlying Bernoulli distribution has parameter p. Then (see Exercise 10.1.5)

gn(p) =
n

∑
k=0

f (k/n)

(
n
k

)

pk(1− p)n−k,

and so gn is a polynomial in p. Show that the sequence {gn} converges uniformly
to f . (Hint: The weak law of large numbers says that for each ε we have
limn P(|Sn/n− p|> ε) = 0; check that this convergence is uniform in p. Use this
and the uniform continuity of f to conclude that the convergence of Ep( f ◦Yn) to
f (p) is uniform in p.)

2. Suppose that {Xn} is a sequence of independent random variables and that T is
the σ -algebra of tail events of {Xn}. Show that every [−∞,+∞]-valued random
variable that is T -measurable is almost surely constant.

3. Let b be an integer such that b≥ 2. The digits that can occur in a base b expansion
of a number are, of course, 0, 1, . . . , b−1. A number x in [0,1] is normal to base
b if each value in {0,1, . . . ,b− 1} occurs the expected fraction (namely 1/b) of
the time in the base b expansion of x—that is, if

lim
n

number of times k occurs among the first n digits of x
n

=
1
b

holds for k = 0, 1, . . . , b− 1. The value x is normal if it is normal to base b for
every b.
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(a) For a given b, show that almost every number in [0,1] is normal to base b.
(Hint: Modify part (a) of Proposition 10.1.13 and use the strong law of large
numbers.)

(b) Conclude that almost every number in [0,1] is normal.
4. (The Glivenko–Cantelli Theorem) Let (Ω,A ,P) be a probability space, let μ

be a probability distribution on (R,B(R)), let F be its distribution function,
and let {Xn} be a sequence of independent random variables on (Ω,A ,P), each
of which has distribution μ . For each ω in Ω, {Xn(ω)} is a sequence of real
numbers, and we can define a sequence {μω

n }∞
n=1 of measures on (R,B(R)) by

letting μω
n = (1/n)∑n

k=1 δXk(ω). Also, let Fω
n be the distribution function of the

measure μω
n ; thus,

Fω
n (x) = (1/n)

n

∑
1

χ(−∞,x] ◦Xk(ω)

=
number of k in {1,2, . . . ,n} for which Xk(ω)≤ x

n

holds for all n, ω , and x. (Such functions Fω
n are called empirical distribution

functions.) Since μ describes the distribution of values of the Xn’s, it seems
plausible that for a typical ω , the measures μω

n might approach μ as n becomes
large. This is in fact true, and the Glivenko–Cantelli theorem makes a rather
strong version of this precise, namely that for all ω outside some set of
probability zero, the sequence {Fω

n (x)}∞
n=1 converges to F(x), uniformly in x.

(a) As a first step, show that if x ∈ R, then F(x) = limn Fω
n (x) and F(x−) =

limn Fω
n (x−) hold for almost every ω in Ω.

(b) Show that if ε is a positive number, if x1, x2, . . . , xk are real numbers such that
x1 < x2 < · · ·< xk and such that the intervals (−∞,x1), (x1,x2), . . . , (xk,+∞)
all have measure less than ε under μ , and if ω is such that limn Fω

n (xi) =
F(xi) and limn Fω

n (xi−)= F(xi−) hold for i= 1, 2, . . . , k, then supx |Fω
n (x)−

F(x)| ≤ ε holds for all large n.
(c) Use parts (a) and (b) to prove the Glivenko–Cantelli theorem.

5. Let {Xn} be a sequence of independent identically distributed random variables
that are nonnegative and satisfy E(Xn) =+∞ for each n. Show that limn

Sn
n =+∞

almost surely.
6. (a) Let X1, X2, . . . , Xn be independent random variables on (Ω,A ,P), each of

which has mean 0, for each i let Si = X1 +X2 + · · ·+Xi, let c be a positive
constant such that |Xi| ≤ c holds almost surely for each i, and for each i let
σ2

i be the variance of Xi. Show that for each positive number a,

P(max
i

|Si|> a)≥ 1− (a+ c)2

∑i σ2
i

.

(Hint: Start by using ideas from the proof of Kolmogorov’s inequality to
show that
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E(S2
n)≤ a2(1−P(A))+ (a+ c)2P(A)+∑

i

(σ2
i+1 + · · ·σ2

n )P(Ai),

where A1, . . . , An are given by

Ai = {|Si|> a and |S j| ≤ a for j = 1, 2, . . . , i− 1}

and A = ∪iAi.)
(b) Let X1, X2, . . . be independent random variables on (Ω,A ,P), each of which

has mean 0, and for each i let σ2
i be the variance of Xi. Show that if there is

a constant c such that |Xi| ≤ c holds almost surely for each i and if the series
∑i Xi is almost surely convergent, then ∑i σ2

i <+∞.
(c) Show that part (b) remains true if the assumption that each Xi has mean

0 is omitted. (Hint: Define random variables Y1, Y2, . . . on the product of
(Ω,A ,P) with itself by letting Yi(ω1,ω2) = Xi(ω1)−Xi(ω2), and apply part
(b) to the series ∑i Yi.)

7. Let {Xn} be a sequence of independent random variables such that P(Xn = 1) =
P(Xn = −1) = 1

2 holds for each n, and let {an} be a sequence of real numbers.
Show that the series ∑n anXn converges almost surely if and only if {an} ∈ �2.
(Hint: See Exercise 6.)

8. Let X1, X2, . . . be independent random variables on (Ω,A ,P), let c be a positive

constant, and for each i define a new random variable, the truncation X (c)
i of Xi

by c, as follows:

X (c)
i (ω) =

{
Xi(ω) if |Xi(ω)| ≤ c, and

0 otherwise.

The three series theorem says that the series ∑i Xi converges almost surely if and
only if the series

(i) ∑i P(|Xi|> c),

(ii) ∑i E(X (c)
i ), and

(iii) ∑i var(X (c)
i )

all converge. Prove the three series theorem. (Hint: Use the Borel–Cantelli
lemma, Proposition 10.2.7, and Exercise 6.)

10.3 Convergence in Distribution and the Central Limit
Theorem

In this section we look at circumstances under which probability distributions on
(R,B(R)), or on (Rd ,B(Rd)), give good approximations to one another. As a
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rather trivial example, if n is large, then the point mass δ1/n concentrated at 1/n
should be considered to be close to the point mass δ0 concentrated at 0. As a
somewhat less trivial example, for large values of n the measure (1/n)∑n

i=1 δi/n
would seem to give a reasonable approximation to the uniform distribution on [0,1].
More significantly, we will see in Theorem 10.3.16 (the central limit theorem)
that the distributions of certain normalized sums of random variables are well
approximated by Gaussian distributions.

We should note that for our current purposes the total variation norm (defined in
Sect. 4.1) does not lead to a reasonable criterion for closeness. For example, the total
variation distance between δ1/n and δ0 is 2, however large n is. We need a definition
that, for large n, will classify these measures as close.

We will deal with such questions in terms of convergence of sequences of
probability measures (for a bit about an approach using distances, see Exercise 12
and the notes at the end of the chapter). Let μ and μ1, μ2, . . . be probability
measures on (Rd ,B(Rd)). The sequence {μn} is said to converge in distribution, or
to converge weakly, to μ if

∫

f dμ = lim
n

∫

f dμn

holds for each bounded continuous f on R
d .

Before doing anything else, we should verify that limits in distribution of
sequences of probability measures are unique. In other words, we should check
that if the sequence {μn} converges in distribution to μ and to ν , then μ = ν . This,
however, is an immediate consequence of the following lemma.

Lemma 10.3.1. Let μ and ν be probability measures on (Rd ,B(Rd)). If
∫

f dμ =∫
f dν holds for each bounded continuous f on R

d, then μ = ν .

Lemma 10.3.1 is an immediate consequence of the Riesz representation theorem
(Theorem 7.2.8). The following proof, however, does not depend on the Riesz
representation theorem and so avoids unnecessary dependence on Chap. 7.

Proof. Since μ and ν are regular (see Proposition 1.5.6), it is enough to prove
that each compact subset K of Rd satisfies μ(K) = ν(K). So let K be a nonempty
compact subset ofRd . Recall that the distance d(x,K) between the point x and the set
K is continuous as a function of x (see D.27) and is equal to 0 exactly when x ∈ K.
For each k define a function fk : Rd → R by fk(x) = max(0,1− kd(x,K)). These
functions are bounded (by 0 and 1) and continuous, and they form a sequence that
decreases to the indicator function χK of K. Furthermore

∫
fk dμ =

∫
fk dν holds

for each k, and so we can use the dominated convergence theorem (or the monotone
convergence theorem) to conclude that

μ(K) = lim
k

∫

fk dμ = lim
k

∫

fk dν = ν(K).
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With this the proof of the lemma is complete. �	
Proposition 10.3.2. Suppose that μ and μn, n = 1, 2, . . . , are probability measures
on (Rd ,B(Rd)). Then the conditions

(a) the sequence {μn} converges in distribution to μ ,
(b) each bounded uniformly continuous f on R

d satisfies
∫

f dμ = limn
∫

f dμn,
(c) each closed subset F of Rd satisfies limsupn μn(F)≤ μ(F),
(d) each open subset U of Rd satisfies μ(U)≤ liminfn μn(U), and
(e) each Borel subset B of Rd whose boundary has measure 0 under μ satisfies

μ(B) = limn μn(B)

are equivalent.

Proof. Since every uniformly continuous function is continuous, condition (b) is an
immediate consequence of condition (a). Now assume that condition (b) holds. If
F is a nonempty closed subset of Rd , then the functions fk : Rd → R defined by
fk(x) = max(0,1− kd(x,F)) are bounded (by 0 and 1) and uniformly continuous
(again see D.27). Since these functions decrease to the indicator function of F , it
follows that μ(F) = limk

∫
fk dμ . Now suppose that ε is a positive constant, and

choose k such that
∫

fk dμ < μ(F)+ε . Then, since μn(F)≤
∫

fk dμn holds for each
n, we have

limsup
n

μn(F)≤ lim
n

∫

fk dμn =

∫

fk dμ < μ(F)+ ε,

and condition (c) follows. It is easy to check that condition (d) is equivalent to
condition (c). Now suppose that conditions (c) and (d) hold, and let B be a Borel
set whose boundary has μ-measure 0. Let F and U be the closure and interior of
B. Then F −U is the boundary of B, and so μ(F) = μ(U) = μ(B), from which it
follows that

μ(B) = μ(U)≤ liminf
n

μn(U)

≤ liminf
n

μn(B)≤ limsup
n

μn(B)

≤ limsup
n

μn(F)≤ μ(F) = μ(B).

Thus, condition (e) follows from conditions (c) and (d).
Finally, we derive condition (a) from condition (e). So suppose that condition

(e) holds, and let f be a bounded continuous function on R
d . Suppose that ε is a

positive number. Let B be a positive number such that −B ≤ f (x) < B holds for all
x, and let c0, c1, . . . , ck be numbers such that

−B = c0 < c1 < · · ·< ck = B
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(we still need to look at the details of how the ci’s are to be chosen). For i = 1, . . . , k
let Ck = {x ∈R

d : ck−1 ≤ f (x)< ck}. The continuity of f implies that the boundary
of Ck is included in the set of points x such that f (x) is equal to ck−1 or ck. Since the
sets {x ∈ R

d : f (x) = c}, where c ranges over R, are disjoint and Borel, at most a
countable number of them can have positive measure under μ . It follows that we can
choose our points ci so that the boundaries of the sets Ci have μ-measure 0 and so
that each interval [ci−1,ci) has length less than ε . If we define g by g = ∑k

i=1 ciχCi ,
then f ≤ g ≤ f + ε , and so, if we apply condition (e) to the sets Ci, we find

limsup
n

∫

f dμn ≤ lim
n

∫

gdμn =

∫

gdμ ≤
∫

f dμ + ε.

A similar calculation shows that
∫

f dμ − ε ≤ liminfn
∫

f dμn. Since ε is arbitrary,
condition (a) follows, and with that the proof of the proposition is complete. �	

As we have seen, probability measures on (R,B(R)) can be identified with
distribution functions. Here is a characterization of convergence in distribution on R

in terms of distribution functions (in fact, convergence in distribution seems to have
first been defined in terms of distribution functions).

Proposition 10.3.3. Suppose that μ and μn, n = 1, 2, . . . , are probability measures
on (R,B(R)), with distribution functions F and Fn, n = 1, 2, . . . . Then the
conditions

(a) {μn} converges in distribution to μ ,
(b) F(t) = limn Fn(t) holds at each t at which F is continuous, and
(c) F(t) = limn Fn(t) holds at each t in some dense subset of R

are equivalent.

Proof. It follows from Proposition 10.3.2 that condition (a) implies condition
(b) and from the fact that a monotone function has at most countably many
discontinuities (see Lemma 6.3.2) that condition (b) implies condition (c). To
show that condition (c) implies condition (a), we will assume that condition (c)
holds and prove that each open subset U of R satisfies μ(U) ≤ liminfn μn(U)
(see Proposition 10.3.2). So suppose that U is a nonempty open subset of R. Let
ε be a positive number. According to Proposition C.4, there is a sequence {Ui}
of disjoint open intervals whose union is U . We can choose an integer k such
that μ(U)− ε < μ(∪k

i=1Ui). Next we approximate the sets Ui, i = 1, . . . , k, with
subintervals Ci such that ∑k

i=1 μ(Ui)−ε < ∑k
i=1 μ(Ci) and such that each Ci is of the

form (ci,di], where ci and di belong to the dense set given by condition (c). Then
each Ci satisfies μ(Ci) = limn μn(Ci), and it follows that

μ(U)− 2ε < ∑
i

μ(Ci) = lim
n ∑

i
μn(Ci)≤ liminf

n
μn(U).

Since ε is arbitrary, we have μ(U)≤ liminfn μn(U), and the proof is complete. �	
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Next we introduce the Fourier transform of a probability measure. For that we
need to know a bit about the integration of complex-valued functions; see Sect. 2.6.
We will also be using complex-valued exponential functions; see item B.10 in
Appendix B for the facts we need.

In addition, we need the following basic result:

Lemma 10.3.4. Let z and {zn}, n = 1, 2, . . . , be complex numbers such that z =
limn zn. Then limn(1+ zn/n)n = ez.

Proof. Choose a positive constant M that is larger than the absolute values of z
and of every zn. For each k the term in the binomial expansion of (1+ zn/n)n that
involves the kth power of zn is (

n
k

)
zk

n

nk .

As n approaches infinity, this term approaches the term zk/k! from the series
expansion of ez. Let us check that the sum of the terms of the binomial expansion
of (1+ zn/n)n approaches the sum of the terms of the series for ez. The issue here
is the interchange of sums and limits, and this interchange can be justified with the
dominated convergence theorem, if we apply that theorem to integrals (i.e., sums)
on the space of nonnegative integers together with counting measure and if we note
that the functions involved here are dominated by the terms in the series expansion
of eM). Thus limn(1+ zn/n)n = ez, and the proof is complete. �	

Now suppose that μ is a probability measure on (Rd ,B(Rd)). The characteristic
function,6 or Fourier transform, of μ is the function φμ : Rd → C defined7 by
φμ(t) =

∫
ei(t,x) μ(dx). (The integrand here is bounded and measurable, and so

the definition of φμ makes sense.) If X is an R
d-valued random variable, then the

characteristic function of X , written φX , is defined to be the characteristic function
of the distribution PX of X , and so φX(t) = φPX (t) = E(ei(t,X)).

Proposition 10.3.5. Let μ be a probability measure on (Rd ,B(Rd)). Then

(a) φμ(0) = 1,
(b) |φμ(t)| ≤ 1 holds for each t in R

d, and
(c) φμ is continuous on R

d.

Proof. Part (a) is immediate, and part (b) follows from Proposition 2.6.7. For part
(c), let t be an arbitrary element of R

d , and suppose that {tn} is a sequence of
elements of R

d such that t = limn tn. Then the dominated convergence theorem

6The phrase “characteristic function” is ambiguous; it can mean either “Fourier transform” or
“indicator function” (see item A.3 in Appendix A). In this chapter we follow the usage of
probabilists and use characteristic function to mean Fourier transform; in the rest of the book
we use characteristic function to mean indicator function.
7Here (t,x) is the inner product of t and x, defined by (t,x) =∑d

j=1 t jx j . In case we are dealing with

measures on R, rather than on R
d , we write eitx, rather than ei(t ,x).
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implies that

lim
n

∫

ei(tn,x) μ(dx) =
∫

ei(t,x) μ(dx)

and hence that limn φμ(tn) = φμ(t). Since this holds for every sequence {tn} that
converges to t, the continuity of φμ follows (see D.31 in Appendix D). �	
Lemma 10.3.6. Let X be a real-valued random variable, let a and b be real
constants, and define a random variable Y by Y = aX + b. Then φY (t) = eitbφX (at)
holds for all real t.

Proof. This follows from the calculation φY (t) = E(eit(aX+b)) = eitbE(eiatX ) =
eitbφX (at). �	
Proposition 10.3.7. Let μ be a probability measure on (R,B(R)), and let n be a
positive integer such that μ has a finite nth moment—that is, such that

∫ |x|n μ(dx)
is finite. Then φμ has n continuous derivatives, which are given by

φ (k)
μ (t) = ik

∫

xkeitx μ(dx)

for k = 1, 2, . . . , n.

Proof. Note8 that |eiu − 1| ≤ |u| holds for all real u and that limu→0(eiu − 1)/u = i.
We will use those facts in the calculations below.

We verify the formula for φ (k)
μ by using mathematical induction. Suppose that we

have already verified that φ (k)
μ has the required form (certainly φ (0)

μ is φμ and has the
required form). Then

φ (k)
μ (t + h)−φ (k)

μ (t)

h
= ik

∫

xk ei(t+h)x − eitx

h
μ(dx)

= ik
∫

xkeitx eihx − 1
h

μ(dx).

The integrand in the second integral above approaches ixk+1eitx as h approaches 0,
and it is dominated by |xk+1|. It follows from the dominated convergence theorem

that if 0≤ k < n and if φ (k)
μ has the form given in the proposition, then φ (k+1)

μ has the
analogous form with k replaced by k+ 1. (Note that, as in the proof of Proposition
10.3.5, we are actually taking limits as h approaches 0 along sequences.) The

continuity of φ (k+1)
μ follows from another application of the dominated convergence

theorem. �	

8A geometric justification for the inequality |eiu −1| ≤ |u| comes from the fact that |eiu −1| is the
straight-line distance between the points (cos u, sinu) and (1,0), while |u| gives the length of a path
that connects these points and lies on the unit circle. Alternatively, we can give this inequality and
also the limit limu→0(eiu − 1)/u = i non-geometric proofs if we rewrite the exponentials in terms
of sines and cosines.
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Proposition 10.3.8. Suppose that P is the normal distribution on (R,B(R)) with

mean μ and variance σ2. Then φP(t) = eitμ e−σ 2t2/2.

Proof. Let us begin with the special case where P is the standard normal distribution
(i.e., the normal distribution with mean 0 and variance 1). Then the Fourier
transform φP of P is given by

φP(t) =
1√
2π

∫

R

eixt e−x2/2 dx.

It is easy to check that P has a finite first moment (in fact, finite moments of all
orders), and so it follows from Proposition 10.3.7 that

φ ′
P(t) =

1√
2π

∫

R

ixeixt e−x2/2 dx.

If we integrate by parts (view the integrand above as the product of ieixt and the
derivative of −e−x2/2), we find that φ ′

P(t) =−tφP(t). It follows that the derivative of

t �→ et2/2φP(t) is identically zero and so, since φP(0) = 1, that φP(t) = e−t2/2. The
general case now follows from Lemma 10.3.6. �	
Proposition 10.3.9. Let ν1 and ν2 be probability measures on (Rd ,B(Rd)), and
let ν be their convolution. Then φν (t) = φν1(t)φν2(t) holds at each t in R

d.

Proof. Let X1 and X2 be independent random variables with distributions ν1 and ν2.
Then X1 +X2 has distribution ν , and so Proposition 10.1.10 implies that

φν (t) = E(eit(X1+X2)) = E(eitX1)E(eitX2) = φν1(t)φν2(t). �	

Example 10.3.10. Let us now try to invert the Fourier transform—to go from the
Fourier transform of a probability measure back to the measure. We start with
the Gaussian distributions and look at t �→ e−σ 2t2/2, the Fourier transform of the
Gaussian distribution with mean 0 and variance σ2. If we multiply this function by
e−ixt , integrate, and use Proposition 10.3.8 at the last step, we find

∫

R

e−ixt e−σ 2t2/2dt =
∫

R

eixt e−σ 2t2/2dt

=

√
2π
σ

1√
2π 1

σ

∫

R

eixt e
− t2

2 1
σ2 dt

=

√
2π
σ

e−x2/2σ 2
.

It follows that
1

2π

∫

R

e−ixt e−σ 2t2/2dt =
1√

2πσ
e−x2/2σ 2

. �	



334 10 Probability

In particular, we can go from the Fourier transform φ of the Gaussian distribution
with mean 0 and variance σ2 back to its density, say g, by using the Fourier inversion
formula

1
2π

∫

R

e−ixtφ(t)dt = g(x), (1)

which says that the inverse Fourier transform of φ is equal to g. The Fourier
inversion formula works for many distributions, but not all (see Exercise 13).
However, we now have enough information to prove the following uniqueness
theorem.

Proposition 10.3.11. Let μ and ν be probability measures on (Rd ,B(Rd)). Then
μ = ν if and only if φμ = φν .

Proof. The following is a proof for measures on R, rather than on R
d . We can

convert it to a proof for measures on R
d by changing the constant 1/2π in the

Fourier inversion formula to 1/(2π)d , replacing e−ixt with e−i(x,t), and checking
that the Fourier inversion formula works for probabilities on R

d that are products of
d Gaussian distributions, each with mean 0 and variance σ2.

So let us turn to the proof when d = 1. It is certainly true that if μ = ν , then
φμ = φν , and so we need only check that if φμ = φν , then μ = ν . So let μ and
ν be probability measures on (R,B(R)) such that φμ = φν . In addition, let γσ
be the Gaussian distribution on R with mean 0 and variance σ2; let φγσ and gσ
be its Fourier transform and density function. Let us calculate the inverse Fourier
transform of φγσ ∗μ , or equivalently of φγσ φμ (Proposition 10.3.9), using the fact that
we know from Example 10.3.10 that the Fourier inversion formula works in the
Gaussian case:

1
2π

∫

R

e−ixtφγσ (t)φμ(t)dt =
1

2π

∫

R

e−ixtφγσ (t)
∫

R

eits μ(ds)dt

=
1

2π

∫

R

∫

R

e−it(x−s)φγσ (t)dt μ(ds)

=

∫

R

gσ (x− s)μ(ds)

(we were able to apply Fubini’s theorem because μ is finite and φγσ is integrable
with respect to Lebesgue measure). Note that the result of this calculation is the
density of γσ ∗ μ (see Proposition 10.1.12). In other words, the inverse Fourier
transform of φγσ φμ is the density of γσ ∗ μ . A similar calculation can be applied
to ν . Since μ and ν are such that φμ = φν , we can conclude from these calculations
that γσ ∗μ = γσ ∗ν . Finally, γσ ∗μ and γσ ∗ν converge in distribution to μ and ν as
σ approaches 0 (check this; you might use Exercise 7), and it follows that μ = ν .

�	
Corollary 10.3.12. Let X1, . . . , Xd be real random variables, all defined on the
same probability space, and let X be the R

d-valued random variable whose
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components are X1, . . . , Xd. Then the random variables X1, . . . , Xd are independent
if and only if φX(t) = ∏k φXk(tk) holds for each vector t = (t1, . . . , td) in R

d.

Proof. If the random variables X1, . . . , Xd are independent, then the relation φX (t) =
∏k φXk(tk) follows from Proposition 10.1.10, which can easily be extended to apply
to complex-valued functions.

We turn to the converse. Let μX and μX1 , . . . , μXd be the distributions of X and
X1, . . . , Xd . Since the characteristic function (call it φprod) of the product measure
μX1 ×·· ·×μXd is given by φprod(t) =∏k φXk (tk), it follows from Proposition 10.3.11
that the relation φX(t) = ∏k φXk(tk) implies that μ is equal to the product measure
μX1 ×·· ·×μXd and then from Proposition 10.1.9 that the random variables X1, . . . ,
Xd are independent. �	

Our goal for the rest of this section is to prove the central limit theorem
(Theorem 10.3.16). The main tool for this will be Proposition 10.3.15.

Suppose that {μn} is a sequence of probability measures on (R,B(R)). Let us
look at the relationship between convergence in distribution of the sequence {μn}
and pointwise convergence of the corresponding sequence {φμn} of characteristic
functions. For this we need a concept related to regularity. We know (see Proposi-
tion 1.5.6) that if μ is a probability measure on (Rd ,B(Rd)), then

sup{μ(K) : K is compact}= 1.

Measures satisfying this condition are sometimes called tight. A collection C of
probability measures on (Rd ,B(Rd)) is called uniformly tight if for every positive
ε there is a compact set K such that

μ(K)> 1− ε

holds for each μ in C .
The following result is sometimes useful for establishing the uniform tightness

of a family of probability measures on (R,B(R)). See, for example, the proof of
Proposition 10.3.15.

Proposition 10.3.13. Suppose that μ is a probability measure on (R,B(R)) and
that φ is its characteristic function. Then for each positive ε we have

μ
({

x ∈R : |x| ≥ 2
ε

})

≤ 1
ε

∫ ε

−ε
(1−φ(t))dt.

Since characteristic functions are complex-valued functions, it’s conceivable that
the integral on the right-hand side of the inequality above could have a non-real
value, in which case the inequality would be meaningless. We’ll see in the proof
below that this difficulty does not occur.
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Proof. Using Fubini’s theorem and basic calculus, we find

∫ ε

−ε
φ(t)dt =

∫ ε

−ε

∫

R

eitx μ(dx)dt

=

∫

R

∫ ε

−ε
(costx+ isintx)dt μ(dx) =

∫

R

2sinεx
x

μ(dx).

Since (1− sinεx
εx )≥ 1

2 if |εx| ≥ 2, we have

1
2ε

∫ ε

−ε
(1−φ(t))dt =

∫

R

(

1− sinεx
εx

)

μ(dx)≥ 1
2

μ
({

x ∈R : |x| ≥ 2
ε

})

and the proposition follows. �	
Proposition 10.3.14. Let {μn} be a uniformly tight sequence of probability meas-
ures on (R,B(R)). Then {μn} has a subsequence that converges in distribution to
some probability measure on (R,B(R)).

Proof. Suppose that {Fn} is the sequence of distribution functions corresponding to
{μn} and that {xk} is an enumeration of some countable dense subset D of R. We
will use a diagonal argument to choose a convergent subsequence of {μn}. To begin,
choose a subsequence {F1,n}n of {Fn}n such that {F1,n(x1)}n is convergent, and then
continue inductively, for each k choosing a subsequence {Fk+1,n}n of {Fk,n}n such
that {Fk+1,n(xk+1)}n is convergent. Now take the diagonal subsequence {Fj, j} of
{Fn}, and let {μn j} be the corresponding subsequence of {μn}. We will show that
{μn j} converges in distribution to some probability measure μ .

We can define a function G0 on the countable dense set D by letting G0(x) =
lim j Fj, j(x) hold for each x in D. Then G0 is a nondecreasing function and,
since the sequence {μn} is uniformly tight, G0 satisfies limx→−∞ G0(x) = 0 and
limx→+∞ G0(x) = 1. Next, define G : R→R by

G(x) = inf{G0(t) : t ∈ D and t > x}.

Then G is nondecreasing, it has limits of 0 and 1 at −∞ and +∞, and it is right con-
tinuous; let μ be the corresponding probability measure (recall Proposition 1.3.10).
We show that the sequence {μn j} converges in distribution to μ by checking that
G(x) = lim j Fj, j(x) holds at each x at which G is continuous. To do this, suppose
that G is continuous at x, let ε be a positive number, and choose values t0 and t1 in
D such that t0 < x < t1, G(x)− ε < G0(t0), and G0(t1) < G(x)+ ε . Note that if j is
large enough that |Fj, j(t1)−G0(t1)|< ε , then

Fj, j(x)≤ Fj, j(t1)< G0(t1)+ ε < G(x)+ 2ε.
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A similar calculation gives a lower bound of G(x)− 2ε for Fj, j(x), and so we can
conclude that |G(x)−Fj, j(x)| < 2ε holds for all large j. Thus G(x) = lim j Fj, j(x),
and Proposition 10.3.3 implies that {μn j} converges in distribution to μ . �	
Proposition 10.3.15. Let μ and μ1, μ2, . . . be probability measures on (R,B(R)).
Then the sequence {μn} converges in distribution to μ if and only if the sequence
{φμn} converges pointwise to φμ .

Proof. For each t the function x �→ eitx is bounded and continuous. Thus if {μn}
converges in distribution to μ , then

∫
eitx μ(dx) = limn

∫
eitx μn(dx) holds for each t,

and {φμn} converges pointwise to φμ .
Let us turn to the converse and assume that {φμn} converges pointwise to φμ .

We begin by showing that the sequence {μn} is uniformly tight. Choose a positive
number ε , and then use the continuity of φμ at 0 (and the fact that φμ(0) = 1) to

choose δ such that 1
δ
∫ δ
−δ (1−φμ(t))dt < ε. Since {φμn} converges pointwise to φμ ,

we can use the dominated convergence theorem to conclude that

1
δ

∫ δ

−δ
(1−φμn(t))dt < ε

holds for all large n. Proposition 10.3.13 now implies that

μn

([

− 2
δ
,

2
δ

])

> 1− ε (2)

holds for all large n. By making δ smaller, if necessary, we can make (2) hold for
all n. It follows that the sequence {μn} is uniformly tight.

We now check that {μn} converges in distribution to μ . Suppose it did not. Then
there would be a bounded continuous function f on R such that {∫ f dμn} does
not converge to

∫
f dμ . Choose a subsequence {μnk} of {μn} such that {∫ f dμnk}

converges to a value other that
∫

f dμ . The uniform tightness of {μn}, which we
verified above, together with Proposition 10.3.14, lets us replace {μnk} with a
subsubsequence that converges to some probability measure ν . Then ν �= μ , since∫

f dν �= ∫ f dμ , yet φν = φμ , since {φμnk
} converges to both φν and φμ . This is im-

possible, and so our hypothesis that {μn} does not converge to μ must be false. �	
Let us make a last preparation for the proof of the central limit theorem. Suppose

that X is a random variable with mean 0 and variance 1 and that φ is its characteristic
function. Then φ(0) = 1, φ ′(0) = 0, φ ′′(0) =−1, and φ has at least two continuous
derivatives (see Proposition 10.3.7). According to l’Hospital’s rule, plus the facts in
the previous sentence, we have

lim
x→0

φ(x)− (1− x2/2)
x2 = 0
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and so φ can be written in terms of its second-degree Maclaurin polynomial 1−x2/2
as φ(x) = 1− x2/2+R(x), where limx→0 R(x)/x2 = 0.

Theorem 10.3.16 (Central Limit Theorem). Let X1, X2, . . . be a sequence of
independent identically distributed random variables, with common mean μ and
variance σ2, and for each n let Sn = X1 + · · ·+Xn. Then the normalized sequence
{(Sn−nμ)/σ

√
n} converges in distribution to a normal (i.e., Gaussian) distribution

with mean 0 and variance 1.

Proof. Each random variable (Xi − μ)/σ has mean 0 and variance 1 and hence
has a characteristic function φ that is as described just before the statement of the
theorem. Since the Xi’s are identically distributed, the function φ does not depend
on the index i. Note that

Sn − nμ
σ
√

n
=

1√
n

n

∑
i=1

Xi − μ
σ

. (3)

If we use Eq. (3), the independence of the Xi’s, Lemma 10.3.6, Proposition 10.3.9,
and the fact that limx→0 R(x)/x2 = 0 (where R(x) is the remainder defined just
before the statement of the theorem), we find that the characteristic function of
(Sn − nμ)/σ

√
n is given by

φ
(

t√
n

)n

=

(

1− t2

2n
+R(t/

√
n)

)n

=

(

1− t2/2+ εn

n

)n

,

where εn = −nR(t/
√

n) and hence where limn εn = 0. It follows (Lemma 10.3.4)
that the characteristic functions of the normalized sums (Sn − nμ)/σ

√
n approach

the function t �→ e−t2/2; since the limit is the characteristic function of the
normal distribution with mean 0 and variance 1, the theorem follows (see
Proposition 10.3.15). �	

Exercises

1. For each positive integer n define a probability measure μn on (R,B(R)) by
μn = (1/n)∑n

i=1 δi/n. Show that the sequence {μn} converges in distribution to
the uniform distribution on [0,1].

2. Suppose that μ and μ1, μ2, . . . , are probability measures on (R,B(R)), each of
which is concentrated on the integers. Show that the sequence {μn} converges
in distribution to μ if and only if μ({k}) = limn μn({k}) holds for each k in Z.

3. Show that
(a) if μ is the point mass at a, then φμ is given by φμ(t) = eiat ,
(b) if μ is the binomial distribution with parameters n and p, then φμ is given

by φμ(t) = (1− p(1− eit))n,
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(c) if μ is the Poisson distribution with parameter λ , then φμ is given by φμ(t)=

e−λ (1−eit), and
(d) if μ is the uniform distribution on the interval [a,b], then φμ is given by

φμ(t) = eitb−eita

it(b−a) .
4. Show that if φ is the characteristic function of a probability measure on

(R,B(R)), then φ(−t) = φ(t).
5. Show that a probability measure μ on (R,B(R)) is symmetric (i.e., μ(−A) =

μ(A) holds for each A in B(R)) if and only if φμ is real-valued.
6. Show that if φ is the characteristic function of a probability measure on

(R,B(R)), then φ is uniformly continuous on R.
7. Suppose that X and X1, X2, . . . are real-valued random variables and that μ and

μ1, μ2, . . . are their distributions. Show that if {Xn} converges in probability to
X , then {μn} converges in distribution to μ .

8. Let μ be a probability distribution on (R,B(R)). Show that |φμ(t)| = 1 for
some nonzero number t if and only if there exist real numbers a and b such that
μ is concentrated on the set {a+ bn : n ∈ Z}. (Such a distribution is called a
lattice distribution.)

9. Show directly (i.e., using only the definition of convergence in distribution)
that if a sequence {μn} of probability measures on (Rd ,B(Rd) converges in
distribution to some probability measure, then the sequence {μn} is uniformly
tight.

10. Suppose that {μn} is a sequence of probability distributions on (R,B(R))
whose characteristic functions {φμn} converge pointwise to some function
φ : R → C. Show that if φ is continuous at 0, then there is a probability
distribution μ on (R,B(R)) such that {μn} converges to μ in distribution.

11. For each n let μn be a binomial distribution with parameters n and pn. Show that
if {npn} is convergent, with λ = limn npn, then the sequence {μn} converges in
distribution to the Poisson distribution with parameter λ . Do this
(a) by making a direct calculation of probabilities (see Exercise 2), and
(b) by using characteristic functions.

12. Suppose that for probability measures μ and ν on (R,B(R)) we define d(μ ,ν)
by

d(μ ,ν) = inf{ε > 0 :Fμ(t)≤ Fν(t + ε)+ ε and

Fν(t)≤ Fμ(t + ε)+ ε for all t in R}.

(The function d is known as Lévy’s metric.)
(a) Show that d is a metric on the set of all probability measures on (R,B(R)).
(b) Suppose that μ and μ1, μ2, . . . are probability measures on (R,B(R)).

Show that the sequence {μn} converges in distribution to μ if and only if
limn d(μn,μ) = 0.
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13. Suppose that μ is a probability distribution on R such that φμ is integrable.
(Note that for the inversion formula (1) to make sense with the integral
interpreted as a Lebesgue integral, φμ must be integrable.)
(a) Show that if μ is absolutely continuous with density function g and if

the inversion formula (1) is valid for φμ and g, then g is bounded and
continuous.

(b) Show that if φμ is integrable, then μ is absolutely continuous and formula
(1) works. (Hint: Use some ideas and calculations from Proposition 10.3.11.
In particular, consider

∫
R

h(x)p(x)dx, where h ranges over the continuous
functions with compact support on R and p is the inverse Fourier transform
of φγσ ∗μ .)

14. Show how to prove the central limit theorem without using Proposition 10.3.13.
(Hint: For each n let μn be the distribution of (Sn − nμ)/σ

√
n. Use Markov’s

inequality (that is, Proposition 2.3.10), rather than Proposition 10.3.13, to show
that the sequence {μn} is tight.)

15. Let μ and μ1, μ2, . . . be probability measures on (R,B(R)) such that the
sequence {μn} converges in distribution to μ .
(a) Suppose that X and X1, X2, . . . are random variables, all defined on the

same probability space, whose distributions are μ and μ1, μ2, . . . . Show (by
giving a simple example) that it does not follow that {Xn} converges almost
surely to X .

(b) On the other hand, show that there are random variables X and X1, X2, . . . ,
all defined on the same probability space and with distributions μ and μ1,
μ2, . . . , such that {Xn} converges to X almost surely. (Hint: Let F and
F1, F2, . . . be the distribution functions of μ and μ1, μ2, . . . . Then the
random variables F−1 and F−1

1 , F−1
2 , . . . constructed from F and F1, F2,

. . . as in Proposition 10.1.15 do what is required. To verify the almost
sure convergence, use the equivalence of inequalities (3) and (4) from
Sect. 10.1 to verify that limn F−1

n (t) = F−1(t) holds at each t at which F−1

is continuous.)

10.4 Conditional Distributions and Martingales

Suppose that (Ω,A ,P) is a probability space, that A and B are events in A , and that
P(B) �= 0. In elementary treatments of probability, the conditional probability of A,
given B, written P(A|B), is defined by

P(A|B) = P(A∩B)
P(B)

.

Example 10.4.1. Suppose that we select a number at random from the set
{1,2,3,4,5,6}, with each number in that set having probability 1/6 of being
selected. Consider events E and F , where E is the event that the number selected is
even and F is the event that the number selected is not equal to 6. Then we have
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P(E|F) = P(E ∩F)

P(F)
=

2/6
5/6

= 2/5

and

P(F |E) = P(F ∩E)
P(E)

=
2/6
3/6

= 2/3,

which should agree with one’s intuition. �	
Let us deal for a moment with a probability space (Ω,A ,P) such that Ω is finite

and A contains all the subsets of Ω. Let X and Y be real-valued random variables on
(Ω,A ,P) with values x1, . . . , xm and y1, . . . , yn, and let us assume that P(Y = y j) �= 0
for each j. Then E(X |Y = y j), the conditional expectation of X, given that Y = y j,
is defined by

E(X |Y = y j) = ∑
i

xiP(X = xi|Y = y j).

It follows that

E(X |Y = y j) =
∑xiP(X = xi and Y = y j)

P(Y = y j)
=

∫
Y=y j

X dP

P(Y = y j)
. (1)

Of course, this defines a function y j �→ E(X |Y = y j) on the set of values of Y .
It is convenient to have a slightly different form of the conditional expectation,
with the new form being defined on the probability space (Ω,A ,P). Let us define
E(X |Y ) : Ω → R by letting E(X |Y )(ω) be E(X |Y = y j) for those ω that satisfy
Y (ω) = y j. In other words, E(X |Y ) is the composition of the functions ω �→ Y (ω)
and y �→ E(X |Y = y). It follows from (1) that

∫

B
E(X |Y )dP =

∫

B
X dP (2)

holds for each B of the form {Y = y j}. Since each B in the σ -algebra σ(Y ) generated
by Y is a finite disjoint union of sets of the form {Y = y j}, it follows that (2) holds for
each B in σ(Y ). Furthermore, E(X |Y ) is σ(Y )-measurable (in this simple example,
where Ω is finite, this just means that E(X |Y ) is constant on each set of the form
{Y = y j}).

We are now ready to look at how these ideas generalize to arbitrary probability
spaces.

Let (Ω,A ,P) be a probability space and let B be a sub-σ -algebra of A . Suppose
that X is a real-valued random variable on (Ω,A ,P) that has a finite expected
value. A conditional expectation of X given B is a random variable Y that is B-
measurable, is integrable (that is, has a finite expected value), and satisfies

∫

B
Y dP =

∫

B
X dP
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for each B in B. One generally writes E(X |B) for a conditional expectation of X
given B. When one needs to be more precise, one sometimes calls an integrable
B-measurable function Y that satisfies

∫
B Y dP =

∫
B X dP for all B in B a version of

the conditional expectation of X given B or a version of E(X |B).

Proposition 10.4.2. Let (Ω,A ,P) be a probability space, let X be a random
variable on (Ω,A ,P) that has a finite expected value, and let B be a sub-σ -algebra
of A . Then

(a) X has a conditional expectation given B, and
(b) the conditional expectation of X given B is unique, in the sense that if Y1 and

Y2 are versions of E(X |B), then Y1 = Y2 almost surely.

Proof. The formula μ(B) =
∫

B X dP defines a finite signed measure on (Ω,B); it
is absolutely continuous with respect to the restriction of P to B. Thus the Radon–
Nikodym theorem (Theorem 4.2.4), applied to μ and the restriction of P to B, gives
a B-measurable random variable Y such that

∫

B
Y dP = μ(B) =

∫

B
X dP

holds for each B in B. Thus Y is a conditional expectation of X given B. The
uniqueness assertion in the Radon–Nikodym theorem gives the uniqueness of the
conditional expectation. �	
Proposition 10.4.3. Let (Ω,A ,P) be a probability space, let B and B0 be sub-σ -
algebras of A , and let X and Y be random variables on (Ω,A ,P) that have finite
expected values. Then

(a) if a and b are constants, then E(aX + bY |B) = aE(X |B)+ bE(Y |B) almost
surely,9

(b) if X ≤ Y, then E(X |B)≤ E(Y |B) almost surely,
(c) ‖E(X |B)‖1 ≤ ‖X‖1,
(d) if X is B-measurable, then E(X |B) = X almost surely (in particular, if c is a

constant, then E(c|B) = c almost surely),
(e) if B0 ⊆ B, then E(X |B0) = E(E(X |B)|B0) almost surely,
(f) if B and X are independent (that is, if B and σ(X) are independent), then

E(X |B) is almost surely equal to the constant E(X), and
(g) if X is bounded and B-measurable, then E(XY |B) = XE(Y |B) almost surely.

Proof. Note that aE(X |B)+ bE(Y |B) is a B-measurable function that satisfies

9It is probably worth translating one of the parts of this proposition into more precise language. Part
(a) says that if Z is a version of E(aX +bY |B), if Z1 is a version of E(X |B), and if Z2 is a version
of E(Y |B), then Z = aZ1 +bZ2 almost surely. Equivalently, part (a) can be viewed as saying that
if Z1 and Z2 are versions of E(X |B) and E(Y |B), then aZ1 +bZ2 is a version of E(aX +bY |B).
Other assertions about conditional expectations can be made precise in similar ways.
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∫

B
(aE(X |B)+ bE(Y |B))dP =

∫

B
(aX + bY)dP

for each B in B and hence is a conditional expectation of aX +bY given B. Part (a)
then follows from the uniqueness of conditional expectations (part (b) of Proposition
10.4.2).

For part (b), note that
∫

B
E(X |B)dP =

∫

B
X dP ≤

∫

B
Y dP =

∫

B
E(Y |B)dP

holds for each B in B. It now follows from Corollary 2.3.13 that E(X |B)≤E(Y |B)
almost surely.

If we let A+ and A− be the sets {E(X |B)≥ 0} and {E(X |B)< 0}, then part (c)
follows from the calculation

‖E(X |B)‖1 =

∫

A+

E(X |B)dP−
∫

A−
E(X |B)dP

=
∫

A+

X dP−
∫

A−
X dP ≤ ‖X‖1.

Part (d) is immediate, and part (e) follows from the calculation

∫

B
E(E(X |B)|B0)dP =

∫

B
E(X |B)dP =

∫

B
X dP

which holds for every B in B0 (recall that B0 ⊆ B).
We turn to part (f). If B and X are independent, then for each B in B the random

variables χB and X are independent, and so Proposition 10.1.10 implies that

∫

B
X dP =

∫

χBX dP =

∫

χB dP
∫

X dP

= P(B)E(X) =

∫

B
E(X)dP;

it follows that E(X) is a version of E(X |B).
Let us start our consideration of part (g) with the special case where X = χA for

some A in B. Then for each B in B we have
∫

B
XY dP =

∫

B∩A
Y dP =

∫

B∩A
E(Y |B)dP

=
∫

B
χAE(Y |B)dP =

∫

B
XE(Y |B)dP

and so ∫

B
XY dP =

∫

B
XE(Y |B)dP. (3)
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Equation (3) now extends to the case where X is simple function and then (by the
dominated convergence theorem) to the case where X is an arbitrary bounded B-
measurable function. Furthermore XE(Y |B) is B-measurable. Thus XE(Y |B) is a
version of E(XY |B) and the proof is complete. �	
Proposition 10.4.4 (Monotone and Dominated Convergence Theorems for Con-
ditional Expectations). Let (Ω,A ,P) be a probability space, let B be a sub-σ -
algebra of A , and let X1, X2, . . . be random variables with finite expected values
such that limn Xn exists almost surely. If

(a) {Xn} is an increasing sequence such that limn E(Xn) is finite, or
(b) there exists a random variable Y with finite expected value such that each Xn

satisfies |Xn| ≤ Y almost surely,

then limn Xn has a finite expected value and E(limn Xn|B) = limn E(Xn|B) almost
surely.

Proof. First suppose that condition (a) holds. Let us also temporarily assume that
the random variables Xn are nonnegative. Since we are assuming that {Xn} is an
increasing sequence, it follows from part (b) of Proposition 10.4.3 that the sequence
{E(Xn|B)} is increasing almost surely and so has an almost sure limit, possibly
with some of values of limn E(Xn|B) being infinite. The monotone convergence
theorem implies that

∫

lim
n

E(Xn|B)dP = lim
n

∫

E(Xn|B)dP = lim
n

∫

Xn dP <+∞,

and so limn E(Xn|B) is finite almost everywhere. Applying the monotone conver-
gence theorem twice more gives

∫

B
lim

n
Xn dP = lim

n

∫

B
Xn dP = lim

n

∫

B
E(Xn|B)dP =

∫

B
lim

n
E(Xn|B)dP

for each B in B; thus limn E(Xn|B) is a version of E(limn Xn|B) and the proof is
complete in the case where condition (a) holds and the Xn’s are nonnegative. We
can complete the proof for the case where (a) holds by applying what we have
just proved to the sequence {Xn −X1} and then using the linearity of conditional
expectations.

Now suppose that condition (b) holds. Since we are assuming that |Xn| ≤ Y for
each n, we have | limn Xn| ≤ Y and so limn Xn has a finite expected value. For each
n let Yn = inf{Xk : k ≥ n} and Zn = sup{Xk : k ≥ n}. Then {Yn} is an increasing
sequence that converges pointwise to liminfn Xn, and {Zn} is a decreasing sequence
that converges pointwise to limsupn Xn; since limXn exists, both those sequences
converge to it almost surely. If we apply the first half of the proposition to the
sequence {Yn}, we conclude that limn E(Yn|B) = E(limn Yn|B) = E(limn Xn|B)
almost surely. A similar argument, applied to the sequence {Y − Zn}, shows that
limn E(Zn|B) = E(limn Xn|B) almost surely. Finally, each variable E(Xn|B) lies
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between the corresponding variables E(Yn|B) and E(Zn|B), and it follows that
limn E(Xn|B) = E(limn Xn|B) almost surely. With this the proof is complete. �	

In the remainder of this chapter we will be looking at stochastic processes.
A rather abstract definition might say that a stochastic process is an indexed family
{Xt}t∈T of random variables, where T is an arbitrary nonempty set and all the
random variables are defined on the same probability space. However, one usually
deals with more concrete situations, in which the index set T is a set of integers
or else a nice set of real numbers (such as an interval), and the members of T
are interpreted as times. For each t in T the random variable Xt is thought of as
representing a quantity that can be observed at time t.

A discrete-time stochastic process is one for which T is a set of integers, and a
continuous-time process is one for which T is an interval of real numbers. We will
see a few discrete-time processes in this section, and we will see some continuous-
time processes later in the chapter.

Let (Ω,A ,P) be a probability space. A filtration10 is a sequence {Fn}∞
n=0 of

sub-σ -algebras of A that is increasing, in the sense that Fn ⊆ Fn+1 holds for each
n. A discrete-time stochastic process (i.e., a sequence of random variables) {Xn}∞

n=0
is adapted to the filtration {Fn}∞

n=0 if Xn is Fn-measurable for each n. Note that the
sequence {Xn}∞

n=0 is adapted to the filtration {Fn}∞
n=0 if and only if σ(X0, . . . ,Xn)⊆

Fn holds for each n.
The intuition here is that the events in the σ -algebra Fn are those that could be

known by time n. In one common situation, {Xn} is an arbitrary sequence of random
variables and for each n we let Fn be σ(X0, . . . ,Xn). In this case Fn contains exactly
the events that are determined by the random variables X0, . . . , Xn.

Let {Fn} be a filtration on the probability space (Ω,A ,P). A stopping time or
an optional time is a function τ : Ω →N0 ∪{+∞} such that {τ ≤ n} ∈ Fn holds for
each n in N0. It is easy to check that if τ is a stopping time, then τ is A -measurable
and that a function τ : Ω→N0∪{+∞} is a stopping time if and only if {τ = n}∈Fn

holds for each n in N0.
One standard interpretation of a stopping time is the following: You are observing

random variables X0, X1, . . . , one after the other, and you may decide to stop
observing at some random time τ . It is reasonable to decide whether or not to stop
with the nth observation on the basis of the information that is available by time n,
but it is not reasonable to use information about the future (e.g., the values of Xn+1,
Xn+2, . . . ). In other words, {τ = n}, the event that you stop just after observing Xn,
should belong to Fn.

10In this section we are dealing with discrete-time processes. On the other hand, a filtration
{Ft}t∈T in continuous time is defined by requiring that Ft1 ⊆ Ft2 holds whenever t1 and t2 are
elements of T such that t1 < t2. If {Ft}t∈T is a filtration with T = [0,+∞), then a stopping time
for it is a function τ : Ω → [0,+∞] such that {τ ≤ t} ∈ Ft holds for all t in T . Except for a few
exercises involving Brownian motion, we will not be dealing with filtrations in continuous time.
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Example 10.4.5. Suppose that you take a random walk on the integers in the
following way. You begin at 0, and every minute you toss a fair coin and move
to the right by a distance of 1 if the coin yields a head and to the left by a distance
of 1 if it yields a tail. To formalize this, we let {Yi}∞

i=1 be a sequence of independent
and identically distributed random variables such that

P({Yi =−1}) = P({Yi = 1}) = 1/2

holds for each i, and then we define {Xn}∞
n=0 by X0 = 0 and Xn = Y1 + · · ·+Yn

if n > 0. Finally, we define the filtration {Fn} by letting Fn be σ(X0, . . . ,Xn) for
each n.

Let us consider a rather simple stopping time for this process. The time you first
reach 1 (if you ever reach it) is given by

τ{1}(ω) = inf{n ∈ N0 : Xn(ω) = 1}. (4)

Note that τ{1}(ω) = +∞ if the set on the right side of (4) is empty—in other words,
if you never reach the point 1. Since

{τ{1} ≤ n}=
⋃

i≤n

{Xi = 1} ∈ Fn,

the variable τ{1} is in fact a stopping time. �	
Example 10.4.6. Now suppose we have an arbitrary real-valued process {Xn}∞

n=0
that is adapted to some filtration {Fn} and we want to know the first time that Xn is
in some Borel subset A of R. The same reasoning as in Example 10.4.5 works if we
replace (4) with

τA(ω) = inf{n ∈ N0 : Xn(ω) ∈ A}. �	
Let us now turn to martingales. Suppose that (Ω,A ,P) is a probability space, that

{Fn}∞
n=0 is a filtration on (Ω,A ,P), and that {Xn}∞

n=0 is a discrete-time process on
(Ω,A ,P). Then ({Xn}∞

n=0,{Fn}∞
n=0), or simply {Xn}∞

n=0, is a martingale if

(a) {Xn}∞
n=0 is adapted to {Fn}∞

n=0,
(b) each Xn has a finite expected value, and
(c) for each n we have Xn = E(Xn+1|Fn) almost surely.

Sometimes we will say that {Xn} is a martingale relative to {Fn}. If condition (c)
is replaced with

for each n we have Xn ≤ E(Xn+1|Fn) almost surely

or with
for each n we have Xn ≥ E(Xn+1|Fn) almost surely,
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then ({Xn}∞
n=0,{Fn}∞

n=0) or {Xn}∞
n=0 is a submartingale or a supermartingale. Note

that we can verify condition (c) in the definition of a martingale by checking that∫
B Xn dP =

∫
B Xn+1 dP holds for each n in N0 and each B in Fn. Similar remarks

apply to submartingales and supermartingales.

Examples 10.4.7.

(a) Let (Ω,A ,P) be a probability space, and let {Yn}∞
n=1 be a sequence of

independent (real-valued) random variables on Ω with finite expectations.
Define {Sn}∞

n=0 by S0 = 0 and Sn = Y1 + · · ·+Yn if n ≥ 1, and define a filtration
{Fn}∞

n=0 by Fn = σ(S0, . . . ,Sn). If E(Yn) = 0 for n = 1, 2, . . . , then we can use
parts (a), (d), and (f) of Proposition 10.4.3, together with the independence of
the sequence {Yn}∞

n=1, to show that

E(Sn+1|Fn) = E(Sn +Yn+1|Fn) = Sn +E(Yn+1|Fn) = Sn

holds almost surely for each n, and hence that {Sn}∞
n=0 is a martingale. Similar

calculations show that if E(Yn) ≥ 0 for n = 1, 2, . . . (or if E(Yn) ≤ 0 for n = 1,
2, . . . ), then {Sn}∞

n=0 is a submartingale (or a supermartingale).
(b) Suppose that you are gambling, making a sequence of wagers. Let {Xn}∞

n=0 be a
sequence of random variables with finite expected values and defined on some
probability space (Ω,A ,P), and suppose that X0 represents your capital at the
start and that Xn represents your capital after n wagers. Define a filtration by
letting Fn = σ(X0, . . . ,Xn) hold for each n. Then {Xn}∞

n=0 is a martingale if the
wagers are fair (that is, if at each stage the conditional expectation of your gain
from the next wager, namely E(Xn+1|Fn)−Xn, is 0); it is a submartingale if the
wagers favor you and is a supermartingale if they favor your opponent.

(c) Let (Ω,A ,P) be a probability space, let {Fn}∞
n=0 be a filtration on (Ω,A ,P),

and let X be an integrable A -measurable function on Ω. For each n define Xn by
Xn = E(X |Fn). Let us check that {Xn}∞

n=0 is a martingale. Condition (c) in the
definition of martingales is the only thing to check, and that condition follows
from the calculation

E(Xn+1|Fn) = E(E(X |Fn+1)|Fn) = E(X |Fn) = Xn

(see part (e) of Proposition 10.4.3).
(d) We define a martingale on the probability space ((0,1],B((0,1]),λ ) as follows.

Let F0 be the σ -algebra that contains only the sets ∅ and (0,1]. For positive n
let Pn be the partition of (0,1] that consists of the intervals (i/2n,(i+ 1)/2n],
i = 0, . . . , 2n − 1; then let Fn = σ(Pn). Now suppose that μ is a finite Borel
measure on (0,1], and for each n define Xn : (0,1]→ R by Xn(x) = μ(I)/λ (I),
where I is the interval in Pn that contains x. Then each interval I in Pn satisfies

∫

I
Xn dλ = μ(I) =

∫

I
Xn+1 dλ .
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It follows that the same equation holds if I is replaced with an arbitrary set in
Fn; hence Xn = E(Xn+1|Fn) and {Xn} is a martingale. There are a couple of
things to note here. First, if we consider the behavior of the sequence {Xn(x)} as
n goes to infinity, we seem to be dealing with some sort of derivative. We’ll look
harder at this later in this section. Second, we are dealing with pure analysis in
this example; no probability seems to be involved. �	

The following is one of the major results of martingale theory.

Theorem 10.4.8 (Doob’s Martingale Convergence Theorem). Let (Ω,A ,P) be
a probability space, and let ({Xn}∞

n=0,{Fn}∞
n=0) be a submartingale on (Ω,A ,P)

such that supn E(X+
n ) < +∞. Then the limit limn Xn exists almost surely, and

E(| limn Xn|)<+∞.

We need a few preliminary results before we prove the martingale convergence
theorem.

Lemma 10.4.9. Suppose that {Fn} is a filtration on the probability space
(Ω,A ,P) and that {Xn} and {Yn} are submartingales on Ω relative to {Fn}.
Then {Xn ∨Yn} is a submartingale relative to {Fn}.

Proof. It is clear that each Xn ∨Yn has a finite expectation and is Fn-measurable.
Define sets Cn, n = 0, 1, . . . , by Cn = {Xn > Yn}. Then each Cn belongs to the
corresponding Fn, and for each B in Fn we have

∫

B
(Xn ∨Yn)dP =

∫

B∩Cn

Xn dP+

∫

B∩Cc
n

Yn dP

≤
∫

B∩Cn

Xn+1 dP+

∫

B∩Cc
n

Yn+1 dP ≤
∫

B
(Xn+1 ∨Yn+1)dP.

Thus {Xn ∨Yn} is a submartingale relative to {Fn}. �	
Let us for a moment view a martingale (or sub- or supermartingale) {Xn} in

terms of gambling, with Xn representing our capital after the nth of a sequence
of games. It is sometimes useful to modify {Xn} by allowing ourselves to skip
certain of the games. More precisely, let {εn} be a sequence of {0,1}-valued
random variables, with εn having value 1 if we participate in the nth game and
having value 0 otherwise. Since Xn − Xn−1 would be our gain or loss from the
nth game of the original sequence, εn(Xn −Xn−1) will be our gain or loss in the
modified sequence. Thus we can describe our fortunes in the modified situation with
a sequence {Yn}, where Y0 = X0 and Yn = Yn−1 + εn(Xn −Xn−1), or, equivalently,
Yn = X0 +∑n

i=1 εi(Xi−Xi−1). For this formalization to be reasonable, we must make
our decisions about which games to play and which to skip using only information
that is available at the time of the decision. Hence it is natural to assume that εn is
Fn−1-measurable.
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We have the following proposition, which says that if we transform a submartin-
gale {Xn} as in the preceding paragraph, then the resulting sequence {Yn} is also a
submartingale, with expected values no larger than those for the original sequence.

Proposition 10.4.10. Suppose that ({Xn},{Fn}) is a submartingale on the prob-
ability space (Ω,A ,P) and that {εn}∞

n=1 is a sequence of {0,1}-valued random
variables on Ω such that εn is Fn−1-measurable for each n. Then the sequence
{Yn}∞

n=0 defined by Y0 = X0 and Yn = Yn−1 + εn(Xn −Xn−1) for n = 1, 2, . . . is a
submartingale, and E(Yn)≤ E(Xn) holds for each n.

Proof. It is clear that each Yn is Fn-measurable and has a finite expected value.
Since {Xn} is a submartingale,

E(Xn −Xn−1|Fn−1) = E(Xn|Fn−1)−Xn−1 ≥ 0

holds almost surely for n = 1, 2, . . . , and so (see Proposition 10.4.3)

E(Yn|Fn−1) = E(Yn−1|Fn−1)+E(εn(Xn −Xn−1)|Fn−1)

= Yn−1 + εnE(Xn −Xn−1|Fn−1)

≥ Yn−1

almost surely; thus {Yn} is a submartingale. We prove that E(Yn) ≤ E(Xn) by
induction. This inequality certainly holds when n = 0. For the induction step, note
that, since E(Xn −Xn−1|Fn−1)≥ 0, we have

E(Yn) = E(Yn−1)+E(εn(Xn −Xn−1))

= E(Yn−1)+E(εnE(Xn −Xn−1|Fn−1))

≤ E(Xn−1)+E(Xn−Xn−1) = E(Xn). �	
In order to prove the martingale convergence theorem, we will look a bit at how

a sequence {xn} of real numbers might fail to converge. One way for this to happen
is for liminfn xn to be less than limsupn xn. In that case, there are real numbers a and
b such that

liminf
n

xn < a < b < limsup
n

xn,

from which it follows that there is a subsequence {xnk} of {xn} such that xn1 < a,
xn2 > b, xn3 < a, . . . . This suggests the following definition. A sequence {xn} is said
to have an upcrossing of the interval [a,b] as n increases from p to q if xp ≤ a, xn < b
for n satisfying p < n < q, and xq ≥ b.

Now suppose that (Ω,A ,P) is a probability space, that {Fn} is a filtration on
(Ω,A ,P), and that {Xn}∞

n=0 is a sequence of random variables adapted to {Fn}.
Let a and b be real numbers such that a < b. Our immediate goal is to count the
upcrossings of the interval [a,b] made by these random variables, and for this we
use sequences {σn} and {τn} of stopping times defined as follows. We define σ1 by
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σ1(ω) = inf{i ∈N0 : Xi(ω)≤ a},

and then we continue inductively, defining σn, n ≥ 2, and τn, n ≥ 1, by

τn(ω) = inf{i ∈N0 : i > σn(ω) and Xi(ω)≥ b}

and
σn(ω) = inf{i ∈ N0 : i > τn−1(ω) and Xi(ω)≤ a}

(recall that the infimum of the empty set is +∞). We can check inductively that σn

and τn are indeed stopping times by noting that

{σ1 ≤ k}= ∪k
i=0{Xi ≤ a} ∈ Fk,

{σn ≤ k}= ∪k
i=1{τn−1 < i and Xi ≤ a} ∈ Fk if n ≥ 2, and

{τn ≤ k} = ∪k
i=1{σn < i and Xi ≥ b} ∈ Fk.

The finite sequence {Xi(ω)}n
i=0 contains k or more upcrossings11 of [a,b] if and

only if τk(ω)≤ n. Thus, if we define functions U [a,b]
n : Ω→R by letting U [a,b]

n (ω) be

the number of upcrossings of [a,b] in the sequence {Xi(ω)}n
i=0, then {U [a,b]

n ≥ k}=
{τk ≤ n}; since each τk is a stopping time, it follows that U [a,b]

n is Fn-measurable.

Proposition 10.4.11 (The upcrossing inequality). Let (Ω,A ,P) be a probability
space and let ({Xn},{Fn}) be a submartingale on (Ω,A ,P). If a and b are real

numbers such that a < b, then for each n the number U [a,b]
n of upcrossings of [a,b]

by {Xi}n
i=0 satisfies

E(U [a,b]
n )≤ E((Xn − a)+)

b− a
.

Proof. Let us suppose that a and b are fixed. We can assume that each Xn satisfies
a ≤ Xn, since replacing {Xn} with {max(Xn,a)} gives a new sequence that is a
submartingale (see Lemma 10.4.9), has the same number of upcrossings of [a,b] as
the original sequence, and is such that E((Xn −a)+) is the same for the old and new
sequences. Let {σn} and {τn} be the sequences of stopping times defined before the
statement of the proposition, and define functions12 εn : Ω → R, n = 1, 2, . . . , by

εn(ω) =

{
1 if there is an i such that σi(ω)< n ≤ τi(ω), and

0 otherwise.

Then

11Here we are, of course, counting non-overlapping upcrossings, where we call a sequence of
upcrossings of [a,b] non-overlapping if the sets of times (i.e., of subscripts) during which they
occur are non-overlapping.
12The intuitive meaning of εn is that it tells whether Xn is part of an upcrossing.
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{εn = 1}= ∪i({σi ≤ n− 1}∩{τi ≤ n− 1}c) ∈ Fn−1,

and so εn is Fn−1-measurable. Let {Yn} be the submartingale (see Proposition
10.4.10) defined by Yn = X0 +∑n

i=1 εi(Xi − Xi−1). We will use {Yn} to bound the
number of upcrossings of [a,b] by {Xi}n

i=0.
For an arbitrary element ω of Ω let us analyze the set of those k that satisfy

k ≤ n and εk(ω) = 1. Such values of k can arise in two ways. First, for each i such
that τi(ω) ≤ n we have the set of k that satisfy σi(ω) < k ≤ τi(ω). Those values
correspond to the steps in the upcrossing of [a,b] that begins at σi(ω) and ends at
τi(ω), and so we have

b− a ≤
τi(ω)

∑
k=σi(ω)+1

(Xk(ω)−Xk−1(ω)). (5)

The other way that such k can arise is for there to be an i such that σi(ω) < k ≤
n < τi(ω). These k correspond to a potential upcrossing that has started but has not
finished by time n, and in this case we have

n

∑
k=σi(ω)+1

(Xk(ω)−Xk−1(ω)) = Xn(ω)− a ≥ 0. (6)

We are now ready to relate the number of upcrossings to the submartingale {Yn}.
In view of (5) and (6), we have

X0 +(b− a)U [a,b]
n ≤ X0 +

n

∑
k=1

εk(Xk −Xk−1) = Yn;

since a ≤ X0 and E(Yn)≤ E(Xn) (see Proposition 10.4.10), it follows that

a+(b− a)E(U [a,b]
n )≤ E(Yn)≤ E(Xn)

and hence that

(b− a)E(U [a,b]
n )≤ E(Xn − a)≤ E((Xn − a)+).

With this the proof of the upcrossing lemma is complete. �	
We are now in a position to prove the martingale convergence theorem.

Proof of the Martingale Convergence Theorem. As in the statement of the theorem,
let {Xn}∞

n=0 be a submartingale such that supn E(X+
n ) < +∞. We begin by showing

that liminfn Xn = limsupn Xn almost surely, which we do by counting upcrossings.
For each pair a, b of real numbers such that a < b we define U [a,b] : Ω → R

by letting U [a,b](ω) be the total number of upcrossings of [a,b] in the sequence

{Xn(ω)}∞
n=0. (This differs from U [a,b]

n , which only counts the upcrossings in the first
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n+1 terms of {Xi(ω)}∞
i=0). Note that the sequence {U [a,b]

n }∞
n=1 is increasing and has

U [a,b] as its limit, and also that (Xn − a)+ ≤ X+
n + |a|. The monotone convergence

theorem and the upcrossing inequality, together with assumption that supn E(X+
n )<

+∞, imply that

E(U [a,b]) = lim
n

E(U [a,b]
n )≤ sup

n

E((Xn − a)+)
b− a

≤ supn EX+
n + |a|

b− a
<+∞.

It follows that U [a,b], the number of upcrossings of [a,b], is almost surely finite.
Since

{liminf
n

Xn < limsup
n

Xn}= ∪a,b{U [a,b] = +∞},

where a and b range over all rational numbers such that a < b, we have liminfn Xn =
limsupn Xn almost surely. Thus limn Xn exists almost surely, as an element of
[−∞,+∞]. We still need to show that E(| limn Xn|) < +∞ and hence that limn Xn

is finite almost surely.
Note that |Xn|= 2X+

n −Xn, and so if we use Fatou’s lemma (Theorem 2.4.4), plus
the fact that {Xn}, as a submartingale, satisfies E(X0)≤ E(Xn), we find

∫

| lim
n

Xn|dP =

∫

liminf
n

|Xn|dP

≤ liminf
n

∫

|Xn|dP ≤ 2sup
n

∫

X+
n −

∫

X0 dP <+∞.

With this the proof of the martingale convergence theorem is complete. �	
Let us return to a couple of the examples discussed above. We first look at

Example 10.4.7(c), which we can extend as follows:

Proposition 10.4.12. Let (Ω,A ,P) be a probability space, let X be an integrable
random variable on Ω, let {Fn} be a filtration on (Ω,A ,P), and let F∞ =
σ(∪nFn). Then the martingale {Xn} defined by Xn = E(X |Fn) converges almost
surely and in mean (i.e., in the norm ‖ · ‖1) to E(X |F∞).

Proof. Since

E(X+
n ) =

∫

{Xn≥0}
Xn =

∫

{Xn≥0}
X ≤ ‖X‖1,

the martingale convergence theorem (Theorem 10.4.8) implies that the sequence
{Xn} converges almost surely, say to Xlim.

Let X∞ = E(X |F∞). Part (e) of Proposition 10.4.3 implies that {Xn} is also given
by Xn = E(X∞|Fn). Let us show that limn ‖Xn − X∞‖1 = 0. Suppose that ε is a
positive real number. It follows from Proposition 3.4.2 and Lemma 3.4.6 that there
is a simple function Xε of the form ∑i aiχAi , where each Ai belongs to ∪nFn, such
that ‖Xε −X∞‖1 < ε . Since each Ai is in Fn for some n, there is a positive integer N
such that Xε is FN-measurable. It follows that if n ≥ N, then E(Xε |Fn) = Xε , and
so (see also part (c) of Proposition 10.4.3)
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‖Xn −X∞‖1 = ‖E(X∞|Fn)−X∞‖1

≤ ‖E(X∞|Fn)−E(Xε |Fn)‖1 + ‖E(Xε |Fn)−Xε‖1 + ‖Xε −X∞‖1

≤ ‖Xε −X∞‖1 + 0+ ‖Xε −X∞‖1 ≤ 2ε.

Since ε was arbitrary, we have limn ‖Xn −X∞‖1 = 0.
We still need to show that {Xn} converges to X∞ almost surely. Since we have

limn ‖Xn −X∞‖1 = 0, there is a subsequence of {Xn} that converges to X∞ almost
surely (see the discussion that follows the proof of Proposition 3.1.5). Since we
already know that the sequence {Xn} converges almost surely to Xlim, we can
conclude that X∞ = Xlim and hence that {Xn} converges to X∞ both almost surely
and with respect to ‖ · ‖1. �	

See Exercise 11 for another proof of Proposition 10.4.12.

Example 10.4.13. Let us now look at Example 10.4.7(d), which hinted at some
relationships between martingales and derivatives. Let μ be the measure from that
example, and define F by F(x) = μ((0,x]). The martingale convergence theorem
says that the limit

lim
n

F(bn)−F(an)

bn − an

exists for almost every x in (0,1], where for each n we let (an,bn] be the interval
in Pn that contains x. In case μ is absolutely continuous with respect to Lebesgue
measure, Proposition 10.4.12 identifies this limit as the Radon–Nikodym derivative
of μ with respect to Lebesgue measure. See Exercise 12 for the case of singular
measures.

Note that the argument in the preceding paragraph is not a derivation of the
almost everywhere differentiability of monotone functions from the martingale con-
vergence theorem—there are uncountably many possible choices for the sequence
{Pn} of partitions of (0,1], and different sequences of partitions could give rise
to different sets of values where the limit does not exist. Nevertheless, as noted by
Doob [38, p. 347], these ideas can be made to work; see Chatterji [27] for the details.

�	

Exercises

1. Let (Ω,A ,P) be a probability space, let X and Y be random variables
on (Ω,A ,P) such that the joint distribution of (X ,Y ) on R

2 is absolutely
continuous with respect to Lebesgue measure, and let p : R2 → R be the
density function for that joint distribution. Suppose that F : R2 → R is a Borel
measurable function such that F ◦ (X ,Y ) has a finite expected value. Define a
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function f : R→R by letting

f (x) =

∫
F(x,y)p(x,y)dy
∫

p(x,y)dy

for those x for which the expression above is defined and finite and by letting
f (x) = 0 for other x. Show that f ◦X is a version of the conditional expectation
E(F ◦ (X ,Y )|σ(X)).

2. Suppose that (Ω,A ,P) is a probability space and that {Fn} is a filtration on
(Ω,A ,P).
(a) Show that if τ1 and τ2 are stopping times and n is a positive integer, then

τ1 + n, τ1 + τ2, τ1 ∨ τ2, and τ1 ∧ τ2 are stopping times.
(b) Show that if {τn} is a sequence of stopping times, then infn τn, supn τn,

liminfn τn, and limsupn τn are stopping times.
3. Let (Ω,A ,P) be a probability space, let {Fn}∞

0 be a filtration on (Ω,A ,P),
and let τ be a stopping time. Define Fτ to be the set of all sets A in σ(∪Fn)
such that A∩{τ ≤ n} ∈ Fn holds for each nonnegative integer n.
(a) Show that Fτ is a sub-σ -algebra of A .
(b) Show that a set A belongs to Fτ if and only if it satisfies A∩{τ = n} ∈ Fn

for each nonnegative integer n, along with A∩{τ =+∞} ∈ σ(∪Fn).
4. Suppose that {Xn}∞

1 is a sequence of independent identically distributed random
variables on (Ω,A ,P). Define a filtration {Fn}∞

0 by F0 = {∅,Ω} and Fn =
σ(X1, . . . ,Xn) for n = 1, 2, . . . . Suppose that τ is a stopping time such that
P(τ <+∞) = 1. Define a sequence {Yn} of random variables by

Yn(ω) =

{
Xτ+n(ω) if τ(ω)<+∞, and

0 otherwise.

(a) Show that the random variables {Yn} are independent and identically
distributed, with the same distributions as the Xn’s. (Hint: Consider the
probabilities of events of the form {τ = m}∩{Y1 ∈ A1}∩{Y2 ∈ A2}∩· · ·∩
{Yn ∈ An}.)

(b) Show that the σ -algebra Fτ and the process {Yn} are independent. That is,
show that the σ -algebras Fτ and σ(Yn,n = 1,2, . . .) are independent.

5. (Jensen’s inequality for conditional expectations) Let ϕ : R → R be a convex
function, let (Ω,A ,P) be a probability space, let B be a sub-σ -algebra of
A , and let X be a random variable on (Ω,A ,P) such that both X and ϕ ◦X
have finite expected values. Show that ϕ ◦E(X |B)≤ E(ϕ ◦X |B) holds almost
surely. (Hint: Use ideas from Exercise 3.3.8 to show that there is a family F of
functions, each of the form x �→ ax+ b, such that

ϕ(x) = sup{ f (x) : f ∈ F}
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holds for each x in R and such that f ◦E(X |B) ≤ E(ϕ ◦X |B) holds almost
surely for each f in F . To conclude that ϕ ◦ E(X |B) ≤ E(ϕ ◦ X |B) holds
almost surely, choose a countable subset F0 of F such that ϕ is the pointwise
supremum of the functions in F0. (Why do we need F0 to be countable?) The
existence of such a subset can be derived from item D.11 in the appendices.)

6. Show that if {Xn} is a submartingale relative to {Fn}, then it is a submartingale
relative to {σ(X0,X1, . . . ,Xn)}.

7. Show that if ({Xn},{Fn}) is a submartingale and if τ is a stopping time, then
({Xτ∧n},{Fn}) is a submartingale.

8. (This exercise has nothing to do with martingales or conditional expectations.
It appears here as preparation for Exercise 10.) Suppose that {an} is a sequence
of real numbers such that the sequence {eitan} is convergent for all t in some
Lebesgue measurable set of positive measure.
(a) Show that {eitan} is convergent for all real t. (Hint: Use Proposition 1.4.10.)
(b) Show that {an} is convergent. (Hint: Choose an interval [b,c] such that∫ c

b limeitan dt �= 0. Then consider the sequence {∫ c
b eitan dt}.)

9. Suppose that {Xn} is a sequence of independent random variables on some
probability space. For each n define Fn and Sn by Fn = σ(X1,X2, . . . ,Xn) and
Sn = X1 +X2 + · · ·+Xn. Suppose that t is a real number such that limn E(eitSn)
exists and is not equal to 0. Check that for such t we have E(eitSn) �= 0 for all n.
Let Yn = eitSn/E(eitSn) for each n.
(a) Verify that ({Yn},{Fn}) is a martingale.
(b) Conclude that the sequence {eitSn} is almost surely convergent.

10. Let {Xn} be a sequence of independent random variables, let ∑n Xn be the
corresponding infinite series, let μn, n = 1, 2, . . . be the distributions of the
partial sums of the series, and let φμn , n = 1, 2, . . . be the corresponding
characteristic functions. Consider the following conditions:

(i) The series ∑n Xn converges almost everywhere.
(ii) The series ∑n Xn converges in probability.

(iii) The series ∑n Xn converges in distribution (that is, the sequence {μn}
converges in distribution to some probability measure).

(iv) The sequence of characteristic functions {φμn} has a nonzero pointwise
limit on a set of positive measure. That is, limn φμn(t) exists and is nonzero
for all t in some set of positive measure.

We have seen that condition (i) implies condition (ii), condition (ii) implies
condition (iii), and condition (iii) implies condition (iv) (see Proposition 3.1.2,
Exercise 10.3.7, and Proposition 10.3.15). Now prove that condition (iv)
implies condition (i). (Hint: Use Exercises 8 and 9.)

11. Let ({Xn},{Fn}) be a martingale on (Ω,A ,P) such that the sequence {Xn} is
uniformly integrable. (See Exercises 4.2.12–4.2.16.)
(a) Show that {Xn} converges almost surely and in mean to some random

variable X .
(b) Show that for each n the equality Xn = E(X |Fn) holds almost surely.
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12. Suppose that μ is a finite measure on ((0,1],B((0,1])) and that {Xn} is the
martingale defined in Example 10.4.7(d). Show that if μ is singular with respect
to Lebesgue measure, then limn Xn = 0 holds λ -almost everywhere on (0,1].

13. Let (Ω,A ,P) be a probability space. In this exercise we consider sequences
{Xn} and {Fn} that are indexed by the negative integers. The pair ({Xn},{Fn})
is called a reverse martingale if

(i) each Fn is a sub-σ -algebra of A ,
(ii) Fm ⊆ Fn holds whenever m ≤ n,

(iii) each Xn is measurable with respect to the corresponding Fn and has a finite
expected value, and

(iv) Xn = E(Xn+1|Fn) holds for n =−2, −3, . . . .

Prove the convergence theorem for reverse martingales: if ({Xn},{Fn}) is a
reverse martingale, then there is a function X−∞ such that X−∞ = limn→−∞ Xn

holds almost surely and in mean. Furthermore, X−∞ = E(X−1| ∩n Fn). (Hint:
Use the upcrossing inequality, and verify and use the fact that the sequence
{Xn} is uniformly integrable. See Exercises 4.2.12–4.2.16

14. In this exercise we derive the strong law of large numbers from the convergence
theorem for reverse martingales (see Exercise 13). Suppose that (Ω,A ,P)
is a probability space and that {Xi} is a sequence of independent identically
distributed random variables on (Ω,A ,P) that have finite expected values. For
each positive integer n let Sn = X1+X2+ · · ·+Xn and define the σ -algebra F−n

to be σ(Sn,Xn+1,Xn+2, . . . ).
(a) Let F = σ(Sn). Show that E(X1|F ) = E(X2|F ) = · · · = E(Xn|F ) and

conclude that E(X1|F ) = Sn/n. (Hint: Using the map

ω �→ (X1(ω),X2(ω), . . . ,Xn(ω))

to convert this to a calculation on R
n might be useful.)

(b) Show that ({Sn/n},{Fn}) is a reverse martingale.
(c) Use the convergence theorem for reverse martingales, together with Kol-

mogorov’s zero–one law (see Exercise 10.2.2), to conclude that limn Sn/n=
E(X1) holds almost surely.

10.5 Brownian Motion

In this section we look at a continuous-time stochastic process that models Brownian
motion, the random movement of a very small particle suspended in a fluid. Einstein
seems to have been one of the first to study Brownian motion mathematically, and
Norbert Wiener was the first to build a probability measure with which to describe
Brownian motion. In fact, the basic probability measure defining a Brownian motion
process is generally called a Wiener measure.
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As we noted in Sect. 10.4, a continuous-time process is a stochastic process
{Xt}t∈T for which the index set T is a reasonable subset of R—typically an interval
such as [0,1] or [0,+∞). We will first construct a Brownian motion in which the
index set is [0,1] and then we’ll note how to build one with index set [0,+∞).

Since one usually thinks of particles moving in three-dimensional space, it seems
natural to construct a process {Xt}t∈T for which the variables Xt have values in
R

3. However, the trick of taking three independent one-dimensional process and
using them to build a three-dimensional process works. More precisely, suppose that
{Xt}t∈T is a one-dimensional Brownian motion on a probability space (Ω,A ,P).
Then it turns out that the three-dimensional process {X ′

t }t∈T that is defined on the
product of three copies of (Ω,A ,P) by X ′

t ((ω1,ω2,ω3)) = (Xt(ω1),Xt(ω2),Xt(ω3))
has suitable properties. In any case, we will devote our attention to one-dimensional
Brownian motion. We begin with a precise definition.

Suppose that (Ω,A ,P) is a probability space and that T is either [0,1] or [0,+∞).
A stochastic process {Xt}t∈T with values in R is a Brownian motion13 if

(a) X0(ω) = 0 for all ω in Ω,
(b) for each choice of t0, t1, . . . , tn in T such that t0 < t1 < · · · < tn the increments

Xti − Xti−1 , i = 1, . . . , n, are independent, with Xti − Xti−1 having distribution
N(0, ti − ti−1), that is, a normal distribution with mean 0 and variance ti − ti−1,
and

(c) for each ω in Ω the function X•(ω) : T →R defined by t �→Xt(ω) is continuous.

Given a process {Xt}t∈T , the functions t �→ Xt(ω) are called the paths of the
process. Thus condition (c) says that we are requiring the paths of a Brownian
motion process to be continuous.

Theorem 10.5.1. Let T = [0,1]. Then a one-dimensional Brownian motion with
parameter set T exists. That is, there exist a probability space (Ω,A ,P) and random
variables Xt , t ∈ T , on Ω such that the stochastic process {Xt}t∈T is a Brownian
motion.

Proof. Let (Ω,A ,P) be a probability space on which there exists a sequence
{Zn}∞

n=0 of independent random variables, each of which has a normal distribution
with mean 0 and variance 1. (Recall that according to Corollary 10.1.16, such a
sequence can be constructed on the probability space ([0,1],B([0,1]),λ ).) We will
use such a sequence {Zn} to build a sequence of piecewise linear approximations to
a Brownian motion process. More precisely, we will construct processes {Xn

t }t∈T ,
n = 0, 1, . . . , such that

(a′) for each n the paths of {Xn
t }t∈T satisfy Xn

0 (ω) = 0 for all ω and are piecewise
linear, with the paths being linear on the intervals of the form [(i−1)/2n, i/2n],

13Some authors only require conditions (a) and (c) in the definition of a Brownian motion to hold
for all ω outside some P-null subset of Ω.
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(b′) for each n the process {Xn
t }t∈T , when restricted to the points ti/2n , i = 0, . . . ,

2n, looks like a Brownian motion (that is, it has independent increments whose
distributions are normal and have the required means and variances),

(c′) for almost every ω the sequence of functions {t �→ Xn
t (ω)}∞

n=1 converges
uniformly on [0,1] as n approaches infinity, and

(d′) these processes satisfy Xn
t (ω) = Xn+1

t (ω) = Xn+2
t (ω) = . . . for each n and ω

and each t of the form i/2n.

Now assume that we have constructed such a sequence of processes {Xn
t }t∈T , and let

A be an event of probability 1 such that if ω ∈ A, then the sequence {t �→ Xn
t (ω)}n

converges uniformly on T . Define a process {Xt}t∈T by

Xt(ω) =

{
limn Xn

t (ω) if t ∈ T and ω ∈ A, and

0 if t ∈ T and ω /∈ A.

Then, in view of the uniform convergence of the paths, condition (a′) implies that
X0 = 0 and that all the paths of {Xt}t∈T are continuous. Conditions (b′) and (d′)
imply that if t0, t1, . . . , tk are dyadic rationals such that t0 < t1 < · · · < tk, then
the increments Xti − Xti−1 , i = 1, . . . , k, are independent, with Xti − Xti−1 having
distribution N(0, ti − ti−1). We need to extend this to the case where the ti are not
necessarily dyadic rationals.

So suppose that ti, i = 0, . . . , k, are elements of [0,1] such that t0 < t1 < · · · <
tk. Let us approximate these values by choosing sequences {ti,n}n, i = 0, . . . , k,
of dyadic rationals in [0,1] such that ti = limn ti,n holds for all i and ti−1,n < ti,n
holds for all i and n. Then for each n the increments Xti,n −Xti−1,n , i = 1, . . . , k, are
independent, with Xti,n −Xti−1,n having distribution N(0, ti,n − ti−1,n). The increments
Xti,n −Xti−1,n converge pointwise (and so14 in distribution) to the increments Xti −
Xti−1 , and so it follows that the increments Xti −Xti−1 , i = 1, . . . , k, are independent
(see Corollary 10.3.12), with Xti −Xti−1 having distribution N(0, ti − ti−1). This will
complete the proof, as soon as we construct the processes {Xn

t }t∈T , n = 0, . . . .
We turn to the construction of processes {Xn

t }t∈T , n = 0, . . . satisfying conditions
(a′)–(d′). Recall that we have a sequence {Zn}∞

n=0 of independent normal random
variables, each with mean 0 and variance 1. We define the process {X0

t }t∈T by
letting X0

t (ω) = tZ0(ω) hold for each ω and each t. This process certainly satisfies
conditions (a′) and (b′) above.

Given the process {Xn−1
t }t∈T , we form the process {Xn

t }t∈T as follows. For each
t of the form i/2n−1 we let Xn

t = Xn−1
t . For each t of the form (2i+1)/2n, i = 0, . . . ,

2n−1 − 1, we let
Xn

t = Xn−1
t + 2−(n+1)/2Z2n−1+i.

14Use the definition of convergence in distribution, together with the dominated convergence
theorem.
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2i
2n

2i+1
2n

2i+2
2n

Fig. 10.1 Constructing Xn from Xn−1. Solid line: path of Xn−1. Dashed line: path of Xn. Vertical
line: 2−(n+1)/2Z2n−1+i

Then we use straight line segments to interpolate between the points (t,Xn
t (ω)), for

which t has the form i/2n for some i. See Fig. 10.1. (The choice of Z2n−1+i from
the sequence of Z’s is made so that the new Z’s used in the construction of {Xn

t }t∈T

are all distinct from those used earlier—that is, from those used in the construction
of {Xk

t }t∈T , where k < n. The coefficient of Z2n−1+i will turn out to be what is
needed to make the increments of {Xn

t }t∈T be independent and have the required
distributions.) To simplify the notation a bit, let us denote i/2n by ti, for i = 0, . . . ,
2n. Then the increment Xn

t2i+1
−Xn

t2i
is given by

Xn
t2i+1

−Xn
t2i
= Xn−1

t2i+1
+ 2−(n+1)/2Z2n−1+i −Xn−1

t2i

= (1/2)(Xn−1
t2i

+Xn−1
t2i+2

)+ 2−(n+1)/2Z2n−1+i −Xn−1
t2i

= (1/2)(Xn−1
t2i+2

−Xn−1
t2i

)+ 2−(n+1)/2Z2n−1+i.

A similar calculation shows that

Xn
t2i+2

−Xn
t2i+1

= (1/2)(Xn−1
t2i+2

−Xn−1
t2i

)− 2−(n+1)/2Z2n−1+i.

The variables (1/2)(Xn−1
t2i+2

− Xn−1
t2i

) and 2−(n+1)/2Z2n−1+i are independent, with
each having distribution N(0,1/2n+1), from which it follows that the increments
Xn

t2i+1
− Xn

t2i
and Xn

t2i+2
− Xn

t2i+1
both have distribution N(0,1/2n). Finally, if one

calculates the characteristic function of the joint distribution of the increments
Xn

ti+1
−Xn

ti , one obtains the product of the characteristic functions of normal variables
with mean 0 and variance 1/2n, and the independence of the increments follows.
With this we have verified conditions (a′), (b′), and (d′).

We turn to condition (c′), the almost sure uniform convergence of the sequence
{Xn

t (ω)}. Suppose that we can find a sequence {εn} of positive numbers such that
∑n εn <+∞ and ∑n P(An)<+∞, where An is defined by

An = {sup
t
|Xn

t −Xn−1
t |> εn}.
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Then the Borel–Cantelli lemma says that P({An i.o.}) = 0; since if ω /∈ {An i.o.},
then supt |Xn

t (ω)− Xn−1
t (ω)| ≤ εn holds for all large n, the almost sure uniform

convergence of the sequence {t �→ Xn
t (ω)}∞

n=1 will follow from the condition
∑n εn <+∞.

We still need to construct the sequence {εn}. In view of the way {Xn
t }t∈T was

constructed from {Xn−1
t }t∈T , we have

P(An) = P({sup
t
|Xn

t −Xn−1
t |> εn})

= P( max
0≤i<2n−1

|2−(n+1)/2Z2n−1+i|> εn)

≤
2n−1−1

∑
i=0

P(|2−(n+1)/2Z2n−1+i|> εn)

= 2n−1P(|Z2n−1 |> 2(n+1)/2εn).

Since Z2n−1 has a normal distribution with mean 0 and variance 1, it follows from
Lemma 10.1.6 that

P(An)≤ 2n−1 2√
2π2(n+1)/2εn

e−(1/2)2n+1ε2
n =

2n/2−1
√

πεn
e−2nε2

n .

If, for example, we let εn be 2−n/4, then ∑n εn < +∞ and ∑n P(An) < +∞, and the
proof is complete. �	
Corollary 10.5.2. A one-dimensional Brownian motion with parameter set [0,+∞)
exists.

Proof. We will use a sequence {X (n)
t }t∈[0,1], n = 1, 2, . . . , of independent

Brownian motion processes, which we can construct as follows. According to
Corollary 10.1.16 there exists a sequence {Zn} of independent normal random
variables, each with mean 0 and variance 1. Using ideas from the proof of
Corollary 10.1.14, we can divide the sequence {Zn} into a sequence of sequences
{Z′

m,n}m, n = 1, 2, . . . . Finally, for each n, the construction in Theorem 10.5.1

can be applied to the sequence {Z′
m,n}m to produce the process {X (n)

t }t∈[0,1]; the
independence of these processes follows from the independence of the sequences
{Z′

m,n}m, n = 1, 2, . . . .
Next we define a process {Xt}t∈[0,+∞) by splicing together the paths of the

processes {X (n)
t }t∈[0,1]—that is, by letting Xt(ω) = X (1)

t (ω) if t ≤ 1, letting Xt(ω) =

X (1)
1 (ω)+X (2)

t−1(ω) if 1 < t ≤ 2, . . . . More precisely, we define Xt recursively by

Xt(ω) =

{
X (1)

t (ω) if 0 ≤ t ≤ 1, and

Xn−1(ω)+X (n)
t−(n−1)(ω) if n > 1 and n− 1 < t ≤ n.
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It is clear that the paths of {Xt}t∈[0,+∞) are continuous and that X0 = 0. Now suppose
that we have a sequence t0, t1, . . . , tm in [0,+∞) such that ti−1 < ti, i = 1, . . . , m.
Add to this sequence those integers between t0 and tm that are not in the original
sequence, forming a new sequence s0, s1, . . . , sn such that si−1 < si, i = 1, . . . , n.

Since {X (n)
t }t∈[0,1], n = 1, 2, . . . , is a collection of independent Brownian motions,

the increments Xsi −Xsi−1, i = 1, . . . , n, are independent normal variables with mean
0 and the appropriate variances. It follows that the increments Xti −Xti−1 , i = 1, . . . ,
m, are independent and have the required distributions. �	

Here is an interesting fact about the paths of a Brownian motion process.

Theorem 10.5.3. Almost all the paths of a one-dimensional Brownian motion are
nowhere differentiable. More precisely, let T = [0,1] and let {Xt}t∈T be a one-
dimensional Brownian motion on the probability space (Ω,A ,P). Then there is a
set A in A such that P(A) = 0 and such that for each ω outside A the path t �→Xt(ω)
is nowhere differentiable.

Proof. Let K be a positive integer, which we hold fixed for the moment. We will
construct a sequence {Bn} of A -measurable subsets of Ω such that

(a) limn P(Bn) = 0, and
(b) if ω is a element of Ω such that the path t �→ Xt(ω) is differentiable at some t0

in [0,1], with |X ′
t0(ω)|< K, then ω belongs to Bn for all large n.

Suppose we have constructed such a sequence {Bn}. Let AK be ∪m ∩n≥m Bn, the set
of points ω such that ω ∈Bn holds for all large n. Then P(∩n≥mBn)≤ limn P(Bn)= 0
holds for all m, and so P(AK) = 0. Now suppose that we let K vary through the
positive integers, and we define A by A = ∪∞

K=1AK . Then A has P-measure 0, and it
follows from condition (b) that A contains every ω for which the path t �→ Xt(ω) is
differentiable at one or more points; in other words, A is as described in the statement
of the theorem.

Now we turn to our remaining task, the construction of a sequence15 {Bn} of sets
satisfying conditions (a) and (b) above. We once again consider K to be fixed; we do
so through the end of the proof. For each n, where n ≥ 3, we define sets Cn,k, k = 1,
. . . , n by

Cn,k =

{

ω : |Xk/n(ω)−X(k−1)/n(ω)|< 3K
n

}

,

and then we define sets Dn,k, k = 2, . . . , n− 1 by

Dn,k =Cn,k−1 ∩Cn,k ∩Cn,k+1.

Finally, we define sets Bn by Bn = Cn,1 ∪Cn,n ∪ (∪n−1
k=2Dn,k). We will show that the

sets Bn satisfy (a) and (b).

15Our sequence will start with n equal to 3, rather than equal to 0 or 1.
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We begin our verification of condition (a) by estimating the probabilities of the
sets Cn,k. Since the difference Xk/n −X(k−1)/n is normal with mean 0 and variance
1/n, it has the same distribution as the variable Z/

√
n, where Z is a normal variable

with mean 0 and variance 1. Thus

P(Cn,k) = P

(

|Xk/n −X(k−1)/n|<
3K
n

)

= P

(

|Z|< 3K√
n

)

=
1√
2π

∫ 3K√
n

− 3K√
n

e−x2/2 dx <
K1√

n
,

where K1 is the constant 6K/
√

2π . The independence of the events Cn,k, k = 1, . . . ,
n, implies that

P(Dn,k) = P(Cn,k−1)P(Cn,k)P(Cn,k+1)< K1
3/n3/2.

Since Bn =Cn,1 ∪Cn,n ∪ (∪n−1
k=2Dn,k), we have P(Bn)< 2K1/

√
n+(n− 2)K1

3/n3/2,
and limn P(Bn) = 0 follows. Thus condition (a) holds.

We turn to condition (b). Suppose that t �→ Xt(ω) is differentiable at the point t0,
and that |X ′

t0(ω)|< K. Let n be large enough that

|Xt(ω)−Xt0(ω)|< K|t − t0| (1)

holds when |t − t0| ≤ 2/n. It follows that if t0 ∈ [ k−1
n , k

n ], then

|Xk/n(ω)−X(k−1)/n(ω)|< K/n,

while if t0 lies in an interval of length 1/n adjacent to the interval [ k−1
n , k

n ], then

|Xk/n(ω)−X(k−1)/n(ω)| ≤ |Xk/n(ω)−Xt0(ω)|+ |Xt0(ω)−X(k−1)/n(ω)|
< K/n+ 2K/n= 3K/n.

Now suppose that k is such that t0 ∈ [ k−1
n , k

n ]. The estimates we have just made show
that ω ∈ Cn,1 ∪Cn,n if k is 1 or n and that ω ∈ Dn,k otherwise. In any case, ω ∈ Bn,
and the verification of condition (b) is complete. �	

Exercises

1. Suppose that we have a stochastic process {Xt} with index set [0,1]∩Q that
satisfies properties (a) and (b) in the definition of Brownian motion (where the
values ti are restricted to lie in [0,1]∩Q). In this exercise we prove that almost all
the paths of this process are uniformly continuous on [0,1]∩Q. In the following
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exercise we use this to give another construction of a Brownian motion process
on [0,1].

(a) Show that if a and b are rational numbers that satisfy 0 ≤ a < b ≤ 1 and if C
is a positive constant, then

P(sup{Xt −Xa : t ∈ [a,b]∩Q}>C)≤ 2P(Xb −Xa >C). (2)

(Hint: First suppose that a ≤ t1 < t2 < · · ·< tk ≤ b and let Ai be the event that
i is the smallest value of j for which Xtj −Xa >C. Check that

P(Ai) = P(Ai ∩{Xb −Xti ≥ 0})+P(Ai∩{Xb −Xti < 0})
≤ 2P(Ai ∩{Xb −Xa >C}),

and then use this estimate to prove the analogue of (2) in which the supremum
is taken as t ranges over {t1, t2, . . . , tn}. Finally, take limits as more and more
points from [a,b]∩Q are considered in the supremum.)

(b) For each positive δ define v(δ ) by

v(δ ) = sup{|Xt −Xs| : s, t ∈ [0,1]∩Q and |t − s|< δ}.
Use part (a), together with Lemma 10.1.6, to show that there exist sequences
{εn} and {δn} of positive numbers such that limn εn = limn δn = 0 and

∑
i

P(v(δn)> εn)<+∞;

from this derive the almost sure uniform continuity of the paths.

2. In Exercise 10.6.4 we will construct a stochastic process {Xt} with index set
[0,1]∩Q that satisfies properties (a) and (b) in the definition of Brownian motion.
Given that result, use Exercise 1 to give a proof of the existence of Brownian
motion on [0,1] that is quite different from the proof in the text.

3. Let T = [0,+∞), let (Ω,A ,P) be a probability space, and let {Xt}t∈T be a
Brownian motion process on (Ω,A ,P). Define a filtration {Ft}t∈T by letting
Ft = σ({Xs : s ≤ t}) hold for each t in T .

(a) Let a be a real number. Show that the function τ : Ω → [0,+∞] defined by
τ(ω) = inf{t : Xt(ω) = a} is a stopping time.

(b) Suppose τ is a stopping time. Show that if n is a positive integer, then

τn(ω) = inf{i/2n : τ(ω)≤ i/2n}
defines a stopping time (of course, τn(ω) = +∞ if τ(ω) = +∞).

(c) Show that if τ is a stopping time, then Xτ is Fτ -measurable.

4. Let T = [0,+∞) and let {Xt}t∈T be a Brownian motion process.
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(a) Fix a value t0 such that 0 < t0 < +∞ and define a process {Yt}t∈T by Yt =
Xt+t0 −Xt0 for t in T . Show that {Yt}t∈T is a Brownian motion and that it is
independent of Ft0 (in other words, the σ -algebras σ(Yt , t ∈ T ) and Ft are
independent).

(b) Suppose that τ is a stopping time that is finite almost surely, and define a
process {Yt}t∈T by

Yt(ω) =

{
Xt+τ(ω)(ω)−Xτ(ω)(ω) if τ(ω)<+∞, and

0 otherwise.

Show that if the stopping time τ has only finitely many values, then {Yt}t∈T

is a Brownian motion that is independent of Fτ .
(c) Show that the assumption that τ has only finitely many values can be

removed from part (b). (Hint: See Exercise 3.)

10.6 Construction of Probability Measures

This section contains two constructions of possibly infinite families of random
variables with specified distributions. The first construction gives sequences of
independent random variables, while the second gives families of not necessarily
independent random variables.

Let us recall the methods we have been using to construct sequences of
independent real-valued random variables. In simple cases, where we need only
finitely many independent random variables, say with distributions μ1, μ2, . . . , μd ,
we saw that we can take the product measure μ1 × ·· ·× μd on R

d and then let the
random variables be the coordinate functions on R

d . On the other hand, to construct
an infinite sequence of independent real-valued random variables, we used a perhaps
awkward-seeming ad hoc construction based on the binary expansion of numbers
in the unit interval, together with a kind of inverse for distribution functions of
probability measures (see the end of Sect. 10.1).

Here we will look at the use of product spaces to construct infinite families of
random variables. Note that the random variables we construct do not need to be
real valued—in our first construction, they can have values in arbitrary measurable
spaces, while in our second construction, they can have values in rather general, but
not arbitrary, spaces.

We begin by defining the measurable spaces on which we will construct families
of random variables. Let I be an index set, and let {(Ωi,Ai)}i∈I be an indexed family
of measurable spaces. (In typical situations the measurable spaces (Ωi,Ai) will be
equal to one another.) The product of these measurable spaces is the measurable
space (Ω,A ) defined as follows: The underlying set Ω is the product ∏i Ωi of the
sets {Ωi}i; that is, Ω is the set of all functions ω : I → ∪iΩi such that ω(i) ∈ Ωi

for each i in I. For each i we define the coordinate function Xi : Ω → Ωi by
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Xi(ω) = ω(i). Finally, we let A be the smallest σ -algebra on Ω that makes each Xi

measurable with respect to A and Ai. Equivalently, we can let A be the σ -algebra
on Ω generated by the collection of all sets that have the form

{ω ∈ Ω : ω(i) ∈ Ai holds for each i in I0}

for some finite subset I0 of I and some sets Ai that satisfy Ai ∈ Ai for each i in I0.
Let us turn to the construction of sequences of independent random variables.

Proposition 10.6.1. Let {(Ωi,Ai,Pi)}i∈N be a family of probability spaces indexed
by the set N of positive integers, let (Ω,A ) be the product of the measurable spaces
{(Ωi,Ai)}i∈N, and for each i in N let Xi be the coordinate projection from Ω to Ωi.
Then there is a unique probability measure P on (Ω,A ) such that

(a) for each i the distribution of Xi is Pi, and
(b) the random variables {Xi}i∈N are independent.

Proof. What we need here is a product measure with infinitely many factors. In
particular, we need a measure P on (Ω,A ) such that for each n and each choice of
sets Ai in Ai, i = 1, . . . , n, we have

P(A) = P1(A1)P2(A2) · · · Pn(An),

where A is the subset
A1 ×·· ·×An ×Ωn+1 ×·· · (1)

of Ω—that is, where A consists of those sequences {xi}∞
1 in Ω such that xi ∈Ai holds

for i = 1, . . . , n.
The results in Chap. 5 give us a start on the construction of such measures.

Namely for each n those results give us a product measure P1 × ·· · × Pn on the
measurable space (∏n

1 Ωi,∏n
1 Ai). For each n let projn be the projection of the

infinite product Ω onto ∏n
1 Ωi, that is, the function that takes an infinite sequence

to the sequence of its first n components. Let A (1) be the collection of subsets of Ω
defined16 by

A (1) =
⋃

n

proj−1
n (

n

∏
1

Ai).

Since {proj−1
n (∏n

1 Ai)}∞
n=1 is an increasing sequence of σ -algebras on Ω, it follows

that A (1) is an algebra of sets. Furthermore A = σ(A (1)). We need to transfer our
finite-dimensional product measures to A (1). For that, define a function P on A (1)

by letting
P(proj−1

n (A)) = (P1 ×·· ·×Pn)(A)

16Note that if X and Y are sets, if f is a function from X to Y , and if C is a family of subsets of Y ,
then f −1(C ) = { f −1(C) : C ∈ C }.
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hold for each n and each A in ∏n
1 Ai (the reader should check that P is well defined).

Certainly P has the necessary value on each rectangular set of the form given in (1).
Furthermore P is countably additive on each proj−1

n (∏n
1 Ai) and so is at least finitely

additive on A (1). If we show that P is countably additive on A (1), then it will have
a countably additive extension to A (see Exercise 1.3.5) and the proof of existence
will be complete.

We need a bit of notation for the proof of countable additivity. For each n we
want the analogue of Ω, A (1), and P, but with the products starting with (Ωn,An)
and Pn, rather than with (Ω1,A1) and P1. Let us use the notation Ω(n), A (n), and
P(n) for such sets,17 algebras, and finitely additive probabilities. Note that Ω(1) = Ω,
P(1) =P, and A (1) is the algebra discussed above. Note also that if A is a set in A (n),
then for each x in Ωn the section Ax belongs to A (n+1). Finally, let us introduce the
following temporary notation for sections of sets. Instead of writing Ax we will write
A(x), and instead of writing (Ax1)x2 we will write A(x1,x2). Continuing in this way
gives a reasonable way to express the result of many iterations of the operation of
taking a section of a set.

We prove the countable additivity of P by showing that if {A j} is a decreasing
sequence of sets in A (1) such that ∩ jA j = ∅, then lim j P(A j) = 0.18 We do this by
considering the contrapositive and showing that if {A j} is a decreasing sequence
of sets in A (1) such that lim j P(A j) > 0, then ∩ jA j �= ∅. So let us fix a decreasing
sequence {A j} and a positive number ε such that P(A j) ≥ ε holds for all j. We
will show that ∩ jA j �= ∅ by constructing an element of ∩ jA j. Suppose that A j is
a member of the sequence {A j}. Then there is a positive integer k and a set B j in
∏k

1 Ai such that A j = proj−1
k (B j). We have (see Theorem 5.1.4)

(P1 ×·· ·×Pk)(B j) =

∫

Ω1

(P2 ×·· ·×Pk)(B j(x1))P1(dx1),

which translates into

P(A j) =

∫

Ω1

P(2)(A j(x1))P1(dx1).

Since {A j} j is a decreasing sequence of sets, {P(2)(A j(x1))} j is (for each choice of
x1 in Ω1) a decreasing sequence of numbers, and we can define a function f1 : Ω1 →
R by f1(x1) = lim j P(2)(A j(x1)). The function f1 is measurable, and it follows from
the dominated convergence theorem that

∫

Ω1

f1(x1)P1(dx1) = lim
j

∫

Ω1

P(2)(A j(x1))P1(dx1) = lim
j

P(A j)≥ ε.

17Be careful to note that Ω(n) is a product space, while Ωn is one of (in fact, the first of) its factors.
18See Proposition 1.2.6, whose proof can easily be modified so as to apply to finitely additive
measures on algebras.
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Since P1 has total mass 1, there must be an element x1 of Ω1 such that f1(x1) ≥ ε
and hence such that P(2)(A j(x1)) ≥ ε holds for all j; fix such a value x1. We can
apply the same argument to the sequence {A j(x1)} j, producing an element x2 of Ω2

such that P(3)(A j(x1,x2))≥ ε holds for each j. By repeating this argument over and
over, we produce a sequence {xn} such that P(n+1)(A j(x1, . . . ,xn))≥ ε holds for all
j and n.

To complete our proof that P is countably additive on A (1), we need to show
that ∩ jA j �= ∅. We do this by verifying that the sequence {xn} constructed above
belongs to ∩ jA j. So fix a set A j in {A j}. Then there is a positive integer k and a set
B j in ∏k

1 Ai such that A j = proj−1
k (B j). Note that, because of this representation of

A j, the section A j(x1, . . . ,xk) is equal to either Ω(k+1) or ∅, depending on whether
(x1, . . . ,xk) belongs to B j or not. However, we know that A j(x1, . . . ,xk) is not
empty (since P(k+1)(A j(x1, . . . ,xk)) ≥ ε). Thus, A j(x1, . . . ,xk) = Ω(k+1), and every
continuation of the finite sequence x1, . . . , xk belongs to A j; in particular {xn} ∈ A j.
Since this argument works for every j, we have {xn} ∈ ∩A j, and the construction of
our product measure is complete.

We turn to the uniqueness of P. The collection of sets of the form (1) (where
Ai ∈ Ai holds for each i) is a π-system that generates A , and so the uniqueness of
P follows from Corollary 1.6.3. �	

See Exercise 2 for an extension of Proposition 10.6.1 to the case of uncountably
many random variables.

Now we turn to the construction of families of random variables that are not
necessarily independent. For the construction of such families we will once again
build a suitable measure on an infinite product space. This time, however, the
measure we construct will not be a product measure.

As before, let I be an index set and let {(Ωi,Ai)}i∈I be an indexed family of
measurable spaces. Let (Ω,A ) and {Xi}i∈I be the measurable space and coordinate
functions constructed at the beginning of this section. We need to look at how to
describe the dependence between our random variables. To get an idea of what to
do, let us temporarily assume that we already have a probability P on (Ω,A ). We
will get a consistency condition that the joint distributions of finite collections of the
random variables {Xi} must satisfy; then we will use this consistency condition as
one of the hypotheses in our existence theorem (Theorem 10.6.2).

Let I be the collection of all nonempty finite subsets of I. For each I0 in I
consider the finite product (∏i∈I0 Ωi,∏i∈I0 Ai). Let us call this product (ΩI0 ,AI0).
For each I0 let XI0 : Ω → ΩI0 be the projection of Ω onto ΩI0 . So in set-theoretic
terms, XI0(ω) is the restriction of the function ω to the subset I0 of its domain. It is
easy to check that for each I0 the function XI0 is measurable with respect to A and
AI0 . Let PI0 be the distribution of XI0 (in other words, let PI0 be the joint distribution
of the random variables Xi, i ∈ I0); thus PI0(A) = P(X−1

I0
(A)) holds for each A in AI0 .

We need to look at how these distributions on finite products are related to
one another. So suppose that I1 and I2 belong to I and satisfy I2 ⊆ I1, and
let projI2,I1 : ΩI1 → ΩI2 be the projection of ΩI1 onto ΩI2 . Certainly projI2,I1 is



368 10 Probability

measurable and XI2 = projI2,I1 ◦XI1 ; thus P(X−1
I2

(A)) = P(X−1
I1

(proj−1
I2,I1

(A))) holds
for each A in AI2 . That is, the distributions on the finite product spaces satisfy the
condition

PI2 = PI1 proj−1
I2,I1

for all I1, I2 in I such that I2 ⊆ I1. (2)

This is the consistency condition that will be one of the hypotheses in the following
theorem.

The upcoming theorem would not hold if the spaces (Ωi,Ai) were allowed to
be completely arbitrary (see Exercise 5). To get around that difficulty, we will
assume that for each i there is a compact metric space Ki such that (Ωi,Ai)
is Borel isomorphic to (Ki,B(Ki)); in other words, there must be a bijection
fi : Ωi → Ki such that fi and f−1

i are both measurable. Such measurable spaces are
called standard.19 One can check (see Exercise 1) that (R,B(R)) is isomorphic to
([0,1],B([0,1]) and hence that (R,B(R)) is standard; from this one can conclude
that (Rd ,B(Rd)) is also standard.

Theorem 10.6.2 (Kolmogorov Consistency Theorem). Let I be a nonempty set,
let {(Ωi,Ai)}i∈I be an indexed family of measurable spaces, and let I be the col-
lection of all nonempty finite subsets of I. As in the discussion above, define product
measurable spaces (Ω,A ) and {(ΩI0 ,AI0)}I0∈I , plus projections XI0 : Ω → ΩI0
and projI2,I1 : ΩI1 → ΩI2 , where I0, I1, I2 ∈ I and I2 ⊆ I1. Let {PI0}I0∈I be an
indexed family of probability measures on the spaces {(ΩI0 ,AI0)}I0∈I . If

(a) the measurable spaces {(Ωi,Ai)}i∈I are all standard, and
(b) the measures {PI0}I0∈I are consistent, in the sense that they satisfy

condition (2),

then there is a unique probability measure P on (Ω,A ) such that for each I0 in I
the distribution of XI0 is PI0 .

Proof. The hypothesis that the spaces {(Ωi,Ai)}i∈I are standard implies that for
each i there is a compact metrizable topology on Ωi for which B(Ωi) = Ai. Fix
such a topology for each i. It follows from Tychonoff’s theorem (Theorem D.20)
and Proposition 7.1.13 that the product topology on Ω is compact Hausdorff and
that for each I0 the product topology on ΩI0 is compact and metrizable; furthermore,
B(ΩI0 ) = AI0 holds for each I0 in I (see Proposition 7.6.2). We will construct a
suitable positive linear functional L on the space C(Ω) of continuous real-valued
functions on Ω. The Riesz representation theorem (Theorem 7.2.8) then gives a
regular Borel measure μ on Ω such that L( f ) =

∫
f dμ holds for each f in C(Ω).

We will see that the restriction of μ to A is the measure we need.
We turn to the definition of the linear functional L. We begin by defining it on

the algebra of functions on Ω generated by the functions that can be written in the
form g◦Xi for some i in I and some g in C(Ωi). Let us call this algebra C•. Since the
functions h in C• are finite sums of finite products of functions of the form g ◦Xi,

19See Chap. 8, and especially Sect. 8.6, for more information about standard spaces.
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each can be written in the form hI0 ◦XI0 for some I0 in I and some hI0 in C(ΩI0). We
want to define L(h) for h in C• by L(h) =

∫
ΩI0

hI0 dPI0 , where h and hI0 are related

by h = hI0 ◦XI0 . The potential problem is that a function h can in general be written
in many ways, say as hI1 ◦XI1 and as hI2 ◦XI2 , and so we need to check that L(h)
does not depend on how h is written.20 Suppose that I1 and I2 are as in the previous
sentence, and let I3 = I1 ∪ I2. The relation hI1 ◦XI1 = h = hI2 ◦XI2 implies that

hI1 ◦ projI1,I3 = hI2 ◦ projI2,I3 .

From this and the consistency condition (2), we find

∫

ΩI1

hI1 dPI1 =
∫

ΩI3

hI1 ◦ projI1,I3 dPI3

=

∫

ΩI3

hI2 ◦ projI2,I3 dPI3 =

∫

ΩI2

hI2 dPI2 ,

and it follows that L is well defined on C•. The Stone–Weierstrass theorem
(Theorem D.22) implies that C• is uniformly dense in C(Ω). Thus we can extend L
from C• to C(Ω). It is easy to check that the extended L is positive and linear. Thus
the Riesz representation theorem gives a regular Borel measure μ on Ω such that
L(h) =

∫
hdμ holds for each h in C(Ω). In particular, for each I0 in I and each hI0

in C(ΩI0) we have

∫

ΩI0

hI0 dPI0 = L(hI0 ◦XI0) =

∫

Ω
hI0 ◦XI0 dμ =

∫

ΩI0

hI0 d(μX−1
I0

). (3)

Let P be the restriction of μ to A . It follows from Eq. (3) that PI0 = PX−1
I0

. In other
words, PI0 is the distribution of XI0 under P. Since this is true for each I0 in I , we
have constructed the required measure on (Ω,A ).

We turn to the uniqueness of P. Define A ′ by A ′ = ∪I0∈I X−1
I0

(AI0). Then A ′

is a π-system on Ω and σ(A ′) = A . Suppose that P′ and P′′ are probabilities on
A that satisfy PI0 = P′X−1

I0
= P′′X−1

I0
for each I0 in I . This means that P′ and P′′

agree on A ′, and it follows from Corollary 1.6.3 that P′ = P′′. With this the proof is
complete. �	

Exercises

1. Check that the measurable spaces (R,B(R)) and ([0,1],B([0,1])) are isomor-
phic. (Hint: This is an immediate consequence of some of the results in Chap. 8.

20This is where we use the consistency condition (2).
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A more elementary proof is possible: start with a homeomorphism of R onto
the open interval (0,1), and modify it on a countable set so as to get a suitable
bijection from R onto the closed interval [0,1].)

2. Show that Proposition 10.6.1 also holds for uncountable families of independent
random variables (i.e., for uncountable index sets). (Hint: Suppose that the
index set I is uncountable. Combine the version of Proposition 10.6.1 for
countable products with the fact that the product σ -algebra on ∏i∈I Ωi is the
union of the inverse images (under projection) of the product σ -algebras on the
countable products ∏i∈I0 Ωi, where I0 ranges over the countable subsets of I. See
Exercise 1.1.7.)

3. Let T = [0,1]. For each t in T let (Ωt ,At) = (R,B(R)), and let (Ω,A ) be the
product of these spaces. Show that the subset of Ω consisting of the continuous
functions from T to R does not belong to A .21 (Hint: See Exercise 1.1.7.)

4. Use Theorem 10.6.2 to construct a stochastic process {Xt} with index set [0,1]∩
Q that satisfies properties (a) and (b) in the definition of Brownian motion (where
the values ti are restricted to lie in [0,1]∩Q). (Given this result, Exercises 10.5.1
and 10.5.2 can be used to give a proof of Theorem 10.5.1 that is less technical
than the one given in Sect. 10.5.)

5. Show that the conclusion of the Kolmogorov consistency theorem (Theo-
rem 10.6.2) may fail if the assumption that the measurable spaces (Ωi,Ai) are
standard is simply omitted. (Hint: Let {An} be a decreasing sequence of subsets
of [0,1] such that λ ∗(An) = 1 holds for each n, but for which ∩nAn = ∅. See
Exercise 1.4.7. For each n let Ωn = An and let An be the trace of B(R) on An.
Finally, for index sets I0 of the form {1,2, . . . ,n} define PI0 on (ΩI0 ,AI0) by
letting it be the image of the trace of Lebesgue measure on An under the mapping
x �→ (x,x, . . . ,x).)

6. Assume that we modify the statement of the Kolmogorov consistency theorem
(Theorem 10.6.2) by replacing the assumption that the spaces (Ωi,Ai) are
standard with the assumption that each Ωi is a universally measurable subset
of some compact metric space Ki (and adding the assumption that Ai is the trace
of B(Ki) on Ki). Prove that this modified version is true. (Hint: Don’t work too
hard—derive this modified version from the original version of Theorem 10.6.2.)

Notes

Kolmogorov was at the forefront of early work on measure-theoretic probability,
as was Doob a few years later; see Kolmogorov’s book on the foundations of

21Thus one often needs to say things like “There is a set A in A that has probability 1 and is such
that t �→ Xt (ω) is continuous for each ω in A.” rather than less pedantic things like “The set of all
ω such that t �→ Xt(ω) is continuous has probability 1.”
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probability [72] and Doob’s book on stochastic processes [38]. Dudley [40] gives
detailed historical citations in his end-of-chapter notes.

See Billingsley [8], Dudley [40], Klenke [71], Lamperti [79], Walsh [124], and
Williams [128] for introductions to probability that carry the ideas in this chapter
much further and are at a level appropriate for people who have completed a course
in measure theory.

Much more on dealing with convergence of probability measures using distances
(see a remark near the start of Sect. 10.3, and see Exercise 10.3.12) can be found in
Dudley [40] and Dudley [41].



Appendix A
Notation and Set Theory

See van Dalen et al. [118], Halmos [55], Hrbacek and Jech [63], or Moschovakis
[90] for further information on the topics discussed in this appendix.

A.1. Let A and B be sets. We write x ∈ A, x /∈ A, and A ⊆ B to indicate that x is a
member of A, that x is not a member of A, and that A is a subset of B, respectively.
We will denote the union, intersection, and difference of A and B by A∪B, A∩B,
and A−B, respectively (of course A−B = {x : x ∈ A and x /∈ B}). In case we are
dealing with subsets of a fixed set X , the complement of A will be denoted by Ac;
thus Ac = X −A.

The empty set will be denoted by ∅.
The symmetric difference of the sets A and B is defined by

A�B = (A−B)∪ (B−A).

It is clear that A�A = ∅ and that A�B = Ac �Bc. Furthermore, x belongs to
A� (B�C) if and only if it belongs either to exactly one, or else to all three, of A,
B, and C; since a similar remark applies to (A�B)�C, we have

A� (B�C) = (A�B)�C.

Suppose that A1, . . . , An is a finite sequence of sets. The union and intersection
of these sets are defined by

n⋃

i=1

Ai = {x : x ∈ Ai for some i in the range 1, . . . , n}

and
n⋂

i=1

Ai = {x : x ∈ Ai for each i in the range 1, . . . , n}
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