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A real-valued random variable on a probability space (Q,<7,P) is an
o/ -measurable function from Q to R. Such a variable represents a numerical
observation or measurement whose value depends on the outcome of the random
experiment represented by (Q,<7,P). More generally, a random variable with
values in a measurable space (S,%) is a measurable function from (Q,.</,P)
to (S,%). Let X be a random variable with values in (S, %). The distribution
of X is the measure PX ! defined on (S,%) by (PX~!)(A) = P(X"(A)) (see
Sect.2.6). We will often write Py for the distribution of a random variable
X. If X, ..., Xy are (S,%)-valued random variables on (Q,</,P), then the
formula X(®) = (X;(®),...,Xs(w)) defines an S%-valued random variable X;
the distribution of X is called the joint distribution of X1, ..., Xj.

Example 10.1.2. Let us continue with our coin-tossing example. The number of
heads that appear when our two coins are tossed can be represented with the random
variable X defined by

0 ifo=TT,
X(w)=11 ifwo=HT or®=TH, and
2 ifw=HH.
The distribution Py of X is given by Py = 18 + 18 + 16> O

An abbreviated notation for events is common in probability. We introduce it
with a couple of examples. Suppose that (Q, <7, P) is a probability space and that X
and X,,,n =1, 2, ..., are real-valued random variables on Q. Then the events

{weQ:X(w) >0},

{weQ:X(w)= li;?lX"(w)}’

and
{w € Q:limX,(w) exists}
n

are often abbreviated as {X > 0}, {X =1lim, X, }, and {lim, X, exists}. Sometimes
one goes a bit further and simply writes P(X > 0) instead of P({X > 0}) or
P{oeQ:X(w)>0}).

If a real-valued random variable X on a probability space (Q2,.27, P) is integrable
with respect to P, then its expected value, or expectation, written E(X), is the
integral of X with respect to P. That is, E(X) = [ X dP. If X is integrable, one also
says that X has a finite expected value or that X has an expected value. Note that
Proposition 2.6.8 gives a way to compute the expected value of a real-valued random
variable in terms of its distribution, namely E(X) = [ x Px (dx). That proposition in
fact gives the more general formula E(f o X) = [ f dPx, by which we can compute
the expected value of a Borel function f of a random variable X in terms of the
distribution of X.
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We often have use for the expected value of the square of a real-valued random
variable X, or the second moment of X. If X has a finite second moment, then it
follows from the inequality |X| < X2+ 1 that X has a finite expectation. In this case,
one calls the expected value of (X — E(X))? the variance of X; it gives a measure
of the amount by which the values of X differ from the expected value of X. The
nonnegative square root of the variance of X is called the standard deviation of X.
One often denotes the expected value of a random variable X with uy or simply u,
the variance with var(X) or 62, and the standard deviation with oy.

Lemma 10.1.3. Let X be a random variable with a finite second moment, and let a
and b be real numbers. Then

(a) var(X) = E(X?) — (E(X))? and
(b) var(aX +b) = a*var(X).

Proof. The lemma follows from basic algebra and the linearity of the integral. O

Suppose that X is a real-valued random variable with a discrete distribution—
that is, suppose that there is a countable subset C of R such that P(X € C) = 1. Then
X has a finite expected value if and only if Y . |x|P(X = x) < 4o, and in that
case E(X) = Y .ccxP(X = x). Likewise, if the distribution Py of X is absolutely
continuous with respect to Lebesgue measure and if fx is the Radon—-Nikodym
derivative of Py with respect to Lebesgue measure, then X has a finite expected value
if and only if [ |x|fx (x)dx < +ee, and in that case E(X) = [pxfx(x)dx. As these
remarks may suggest, it turns out that discrete and continuous random variables, '
which receive separate treatments in elementary discussions of probability theory,
can be given a fairly uniform treatment in terms of measure theory.

We have seen (in Propositions 1.3.9 and 1.3.10) that there is a correspondence
between finite Borel measures on R and bounded nondecreasing right-continuous
functions F : R — R for which lim,_, .. F(x) = 0. In the present context, this means
that the distribution Py of a real-valued random variable X is determined by the
function Fx : R — R defined by

Fi(x) = Py((—0,3]) = P(X < ).

The function Fy is called the cumulative distribution function, or just the distribution
function, of X.

Let {X;}ic; be an indexed family of random variables on a probability space
(Q,47,P). Then o(X;,i € I) is the smallest o-algebra on Q that makes all these
variables measurable. Likewise, if {X,} is a sequence of random variables on
(Q, 47, P), then one often writes 0(X;,X,...) for the smallest o-algebra on Q that
makes each X,, measurable.

'A real-valued random variable is discrete if its distribution is discrete and is continuous if its
distribution is absolutely continuous with respect to Lebesgue measure.
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Examples 10.1.4.

(a) We begin by returning to coin tossing. Suppose that now our experiment is to
toss a fair coin repeatedly, until we first get a head, and then to stop. It seems
reasonable to define Q2 by

Q={H,TH,TTH,..., TTTTTTTTH,...}

and to let o consist of all subsets of Q. We will (by countable additivity)
determine the probability of all the events in <7 if we specify the probabilities
of the one-point subsets of Q. It seems reasonable to let P({H}) = 1/2,
P({TH})=1/4, P{TTH}) = 1/8, ... (the reader should think through this
assignment of probabilities again, after reading the discussion of independence
that occurs later in this section). Note that the sum of the geometric series
> 1(1/2)"is 1, and so this assignment of probabilities does give a probability
measure.

(b) Now suppose that we choose a real number from the interval [a,b] in such
a way that the probability that the number chosen lies in a subinterval I of
[a,D] is proportional to the length of /. We can describe this situation with
the probability space ([a,b],%(|a,b]),P), where the measure P is given by
P(A) = A(A)/(b— a). In this case one has a uniform distribution on [a,b]. Of
course, if the interval [a, b] is the unit interval [0, 1], then the measure P is just
the restriction of Lebesgue measure to the Borel subsets of [0, 1].

(c) Now suppose that f is a nonnegative Borel measurable function on R such that
J fdA = 1. Then the formula P(A) = [, fdA defines a probability measure on
the measurable space (R, Z(R)). The function f is called the densiry of P (or
of a random variable having distribution P). Note that the measures in part (b)
above can be viewed as special cases of the situation here, with the uniform
distribution on [a, D] given by the density function that has value 1/(b —a) on
[a,b] and O elsewhere.

(d) In a similar way, a nonnegative Borel measurable function on R? such that
J [ f(x,y)A(dx)A(dy) = 1 defines a probability measure on the measurable
space (R?, B(R?)).

(e) Let us now look at normal, or Gaussian, distributions, which are given by the
familiar bell-shaped curves. We begin by evaluating the integral [p e /2 dx.
Let us denote the value of this integral by A for a moment. If we interpret A as
an integral over R? and evaluate the integral using polar coordinates, we find

0o poo 2 oo
AT= / / el dxdy = / ﬂ / re "2 drde = 2x.
)] Jo Jo

. 2 . J .
Thus A = +/2x, and so the function x — \/szﬂe”‘ /2 is a probability density
function on R (that is, it is nonnegative and its integral over R is 1).
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Now suppose that X is a random variable whose distribution has density x >

2 .
\/Lz?eﬂc /2 Tt is easy to check that

1 / —x2/2
— | xe dx=0
V2 JR
and hence that E(X) = 0. If in the following calculation we use integration by

parts to convert the first integral into the second, whose value we know, we find
that

1 2 —2)2 1 / —2/2
xX‘e dx = e dx=1
V2 ./R V2m JR

and hence that E(X?) = 1. Thus X has expected value 0 and variance 1.

It is easy to check that if X is as above and if y and o are constants, with
o > 0, then the random variable 6X + u has mean y and variance 62 (see
Lemma 10.1.3). Furthermore, according to Lemma 10.1.5, 6X + u has density

8u,0? given by

1 (—p)2/202
- —(x—u)*/20
g, 52(x) = e .
n.o? () 2To
With this we have the densities of the normal or Gaussian random variables
with mean u and variance o2.

One often writes N(0,1) for the distribution of a normal random variable
with mean 0 and variance 1 and N(u,oc?) for the distribution of a normal
random variable with mean u and variance 6. Thus N(0,1) is the measure
on (R,#(R)) with density x — \/szﬂe’xz/z, and N(u,0?) is the measure on

(R,2(R)) with density g, 5. O

Lemma 10.1.5. Let X be a real-valued random variable with density fx, let a and
b be real constants with a > 0, and let Y = aX + b. Then Y is a continuous random
variable whose density fy is given by

fr(t) = ifx (ﬂ)

a

Proof. Define afunctionT: R — R by T (1) =at+b. Then A(T(A)) = aA(A) holds
for each subinterval A of R and consequently for each Borel subset A of R. Thus

a/hd,% :/hoT*IdA

holds for each nonnegative measurable 4 (check this first in the case where 4 is the
indicator function of a Borel set), and so we have
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BA) =T () = [ | frdn

T-1(a)

= (1/a) [ Gr-say o T~ o T

~/a) [ 5x(50) pan

Thus Py can be calculated by integrating the function ¢ — % fx(%), and the proof
is complete. a

We will need the following fact about normal distributions.

Lemma 10.1.6. Let Z be a normal random variable with mean O and variance 1.

Then |

P(Z>A)< e

w2d)s V27mA

holds for each positive real number A.
Proof. We have

—x? -x2/2 L ap

P(Z>A) / gy < / PRax = —¢4/2,
( Yz V2n A V21A

Let us turn to a few definitions and results involving independence.
Let (Q,47,P) be a probability space, and let {A;};c; be an indexed family of
events. The events® A;, i € I, are called independent if for each finite subset Iy of /

we have
rTIGI() H P
i€l

Let {X;}ics be an indexed family of random variables, defined on (Q, <7, P) and
with values in the measurable space (S,%). The random variables X;, i € I, are
called independent if for each choice of sets A; in %, i € I, the events Xi’1 (A;) are
independent.

Finally, let (Q, o7, P) be a probability space and let {47 };c; be an indexed family
of sub-o-algebras of 7. The o-algebras 7, i € I, are independent if for each choice
of sets A; in <7, i € I, the events A; are independent.

Note that if {X;};cs is an indexed family of random variables on a probability
space (Q, <7, P), then the random variables X;, i € I, are independent if and only if
the o-algebras o(X;), i € I, are independent.

2 Although the independence of A;, i € I, depends on the relationship between the events A;, rather
than on the events individually, it is standard to call the events, rather than the indexed family,
independent.
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Proposition 10.1.7. Let (Q,.<7, P) be a probability space, let { <7, }icj be an indexed
family of independent sub-c-algebras of </, let {S;} jc; be a partition of I, and for
each jin J let ; = O'(Uiegj,;a/i). Then the G-algebras % are independent.

Proof. For each j in J let &7; consist of all finite intersections of sets in U,-esj,;zfi.
Note that each &; is a -system such that %; = o(Z?;). Let Jo be a nonempty finite
subset of J, and for each j in Jy let A; be a member of &;. The relation

P(NjenAj) = [T PA)) (1)

J€h

follows from the independence of the .27;’s. Now suppose that the elements of Jj are
J1s J25 -5 jn, and let Z be the class of all A in %, such that

P(Ajl n---NAj,_, ﬁA) :P(Ajl)"'P(Ajnﬂ)P(A)

holds forall Aj, in &,,i=1,...,n—1. Then & is a Dynkin class (i.e., a d-system)
that includes &;,, and so Theorem 1.6.2 implies that ¥ = %;,. Similar arguments,
n—1 of them, show that (1) holds for all A; in %;, j € Jo. Since the independence
of the %, j € J depends only on the independence of finite subfamilies, the proof
is complete. O

Example 10.1.8. Proposition 10.1.7 may look overly abstract, but it allows simple
proofs of some results for which a rigorous proof might otherwise be awkward.
For example, suppose that {X, }_, is a sequence of independent random variables
on a probability space (Q,.<7,P). Then it is an immediate consequence of Propo-
sition 10.1.7 that the random variables X5, | + Xp;, i = 1, 2, ...are independent.
Proving this independence in other ways would probably take more work. O

Proposition 10.1.9. Let (Q, o, P) be a probability space, let (S, %) be a measur-
able space, let X, X5, ..., X4 be S-valued random variables on Q, and let X be the
S9-valued random variable with components Xy, X, ..., Xy. Let Px,, Px,, ..., Px,,
and Px be the distributions of X1, X, ..., X4, and X, respectively. Then X1, Xo, ...,
X, are independent if and only if the joint distribution Py is equal to the product
measure Py, X Px, X --- X Px,.

Proof. If we rewrite the definition of independence, we find that Xj, ..., X; are
independent if and only if

Px(Ay x -+ xAg) =[] Py (Ai)

holds for each choice of sets A; in %, i =1, ..., d. Thus if Px is equal to the product
of the measures Py, then Xj, X, ..., X; are independent. The converse follows
from the uniqueness of product measures (see Theorem 5.1.4 and the discussion at
the end of Sect. 5.2). O
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Proposition 10.1.10. Let (Q,.<7,P) be a probability space and let X, X, ..., X,
be independent real-valued random variables on (Q, </ ,P), each of which has a
finite expectation. Then the product T1; X; has a finite expectation, and E([]; X;) =
[LE(X).

Proof. Let X be the R"-valued random variable with components X1, ..., X,, and
let Px and Py,, ..., Px, be the distributions of X and Xj, ..., X,. We will use
these distributions for the calculation of E(T];X;) and [T; E(X;). Since the random
variables X;, ..., X, are independent, Py is the product of the measures Py,, ..., Py,
(Proposition 10.1.9). Thus we can use Proposition 5.2.1 and Theorem 5.2.2, together
with the finiteness of the expectations E(X;) and the remarks at the end of Sect. 5.2,

to conclude that [T; X; has a finite expectation and that E([]; X;) = [, E(X;). O

Corollary 10.1.11. Let X, X5, ..., X, be independent real-valued random vari-
ables with finite second moments, and let S = X\ + --- + X,. Then var(S) =

Y var(X;).

Proof. By the independence of X; and X; (where i # j), the expectation of the
product (X; — E(X;))(X; — E(X;)) is the product of the expectations of X; — E(X;)
and X; — E(X;), namely 0. Thus

var($) = E((Y (X — E(X)))*) = X D E((X; — E(X)) (X; — E(X;)))

:ZE((Xi_E(Xi))z) =2 var(X;). O

Now suppose that X; and X, are independent real-valued (or R4-valued) random
variables with distributions Py, and Py, . In view of Proposition 10.1.9, we can use
the product measure Py, X Py, to compute the distribution Py, ;x, of Xj + X:

PX1+X2(A) = (PX1 X PXz)({(xlaXZ) 1xp+xp €AY). (2)
One defines the convolution v| * v, of finite measures v; and v, on (RY, Z(R?)) by
(vixwn)(A) = (vi x vo)({(x1,%2) 1 x1 +x2 €A});

thus (2) says that the distribution of the sum of two independent random variables
is the convolution of their distributions: Py, 1 x, = Py, * Px,.

Note that convolution satisfies the associative law vy x (Vo * v3) = (v x V) * V3,
since if Xj, X», and X3 are independent random variables with distributions vy,
v, and vz, then both vy x (v, x v3) and (V) % Vo) * v3 give the distribution of
X1 + Xo + X3. More generally, the convolution of the distributions of n independent
random variables gives the distribution of their sum.
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We can compute convolutions as follows.
Proposition 10.1.12. Let v| and v, be probability measures on (R, (R%)).

(a) The convolution v x v, satisfies
(V1 %v2)(A) = /v1 (A—y)dva(y) = /vz(A ~x)dvi(x)

for each A in B(R?).

(b) If vy is absolutely continuous (with respect to Lebesgue measure), with density
[ then vy x vy is absolutely continuous, with density x — [ f(x —y) va(dy).

(c) If vi and v, are absolutely continuous, with densities f and g, then V| x vy is
absolutely continuous, with density x — [ f(x—y)g(y) A(dy).

Proof. Since the sections of the set {(x,y) :x+y €A} are equal to A —x and A — y,
part (a) is an immediate consequence of Theorem 5.1.4. Part (b) follows from the
calculation

) = [ a4 35020 va(ay)
= [ [ st 2@ valay)
= [10) [ $lx=y)valar) Aca)

(The finiteness of [ f(x—y) v»(dy) for almost every x follows from this calculation,
applied in the case where A = R.) Part (c) follows from part (b), since in this case
we have [ f(x—y)va(dy) = [ f(x—y)g(y) A(dy) (recall Exercise 4.2.3). O

In the remainder of this section we look at some random variables that arise when
we consider the binary expansions of the values of certain uniformly distributed
random variables. The techniques discussed here will give us a way to construct
arbitrary sequences of independent (real-valued) random variables.

It will be convenient to have a bit of standard terminology. A random variable X
is said to have a Bernoulli distribution with parameter p if the possible values® of X
are 0 and 1, with 1 having probability p and 0 having probability 1 — p.

So let us suppose that (Q, <7, P) is a probability space and that X is a random
variable on (Q,.27,P) that is uniformly distributed on [0, 1]. By redefining X on a
null set, if necessary, we can assume that every value of X belongs to [0, 1). Define a
sequence {Y,} on (Q,.<7, P) by letting ¥, (@) be the nth bit in the binary expansion*

3 Actually, we are only assuming that P(X € {0,1}) = 1 and not that X (@) € {0, 1} for every ® in
Q.

“In case the value X (@) has two binary expansions, take the one that ends in an infinite sequence
of 0’s. See B.9 in Appendix B.
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of X (). Then Y} (w) is 0 if X () belongs to the interval [0,1/2) and is 1 if X (®)
belongs to [1/2,1). Likewise ¥» () is 0 if X (@) belongs to [0,1/4)U[1/2,3/4) and
is 1if X () belongs to [1/4,1/2)U[3/4,1).In general, ¥, (®) is 0 if X () satisfies
2i/2" < X(w) < (2i+1)/2" for some i and is 1 otherwise; from that it is not difficult
to check that the variables {Y, } are measurable and independent, with each having
a Bernoulli distribution with parameter 1/2.

Proposition 10.1.13. Let (Q, 7, P) be a probability space.

(a) Suppose that X is a random variable on (Q, </, P) that is uniformly distributed
on [0,1], and define a sequence {Y,} on (Q,/,P) by letting {Y,(®)} be
the sequence of 0’s and 1’s in the binary expansion of X(®). Then {Y,} is
a sequence of independent random variables, each of which has a Bernoulli
distribution with parameter 1/2.

(b) Conversely, suppose that {Y,} is a sequence of independent random variables
on (Q,4,P), each of which has a Bernoulli distribution with parameter 1/2.
Then the random variable X defined by X = Y.,Y,/2" is uniformly distributed
on the interval [0, 1].

Proof. A proof for part (a) was given just before the statement of the proposition.
We turn to part (b). By modifying the variables Y, on a null set if necessary, we
can assume that for every @ the sequence {¥,(®)} contains only 0’s and 1’s and
does not end with an infinite string of 1’s. Consider the dyadic rational i/2", where
i satisfies 0 < i < 2". Then i/2" has an n-bit binary expansion, say 0.b1b;...b,, and
X () belongs to the interval [i/2",(i+ 1)/2") if and only if Y;(w) = b; holds for
j=1,...,n Thus Px(I) = A(I) holds for intervals I of the form [i/2", (i + 1)/2")
and hence (see Lemma 1.4.2) for all open subsets / of (0, 1). In view of the regularity
of Py and A (Proposition 1.5.6), the proof is complete. O

Corollary 10.1.14. There is an infinite sequence of independent random variables,
each of which is uniformly distributed on [0, 1]. Such a sequence can be constructed

on the probability space ([0, 1], 2([0,1]),1).

Proof. Let X be arandom variable that is uniformly distributed on [0, 1]; such a ran-
dom variable can of course be defined on the probability space ([0, 1], 4([0,1]),A4).
Let {Y,} be the sequence of random variables constructed in part (a) of Propo-
sition 10.1.13. Since the set N of positive integers has the same cardinality as
the set N x N of pairs of positive integers, we can reindex the sequence {Y,},
obtaining a doubly indexed sequence {Y,:m}. For each n define a random variable
Z,byZ, =%, Y,:m /2™. Then part (b) Proposition 10.1.13 implies that each Z, is
uniformly distributed on [0,1], while Proposition 10.1.7 implies that the variables
{Z,} are independent. O

It is possible to use uniformly distributed random variables to construct random
variables having arbitrary distributions on (R, 2(R)). This can be done as follows:

Proposition 10.1.15. Let p be a probability measure on (R, B(R)) with cumu-
lative distribution function F, and let X be a random variable that is uniformly
distributed on the interval (0,1). Then the function F~': (0,1) — R defined by
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F Y )=inf{xeR:r < F(x)}

is Borel measurable, and F~ o X has distribution u.

Proof. The function F satisfies limy_,_o F(x) = 0 and lim,_, ;. F(x) = 1, from
which it follows that for each 7 in (0,1) the set {x € R:¢ < F(x)} is nonempty
and bounded below and hence that each F~!(¢) is finite. If #; < 15, then

{xeR:L <F(x)} C{xeR:n <F(x)},

and taking the infima of these sets gives F~!(¢;) < F~!(t,). In other words, F~! is
nondecreasing, and so it is Borel measurable.
Let us check that

Fln) <x 3)

holds if and only if
t <F(x). “

It is immediate from the definition of F~! that (4) implies (3). On the other hand,
if (3) holds, then there is a sequence {x,} that decreases to x and is such that r <
F(x,) holds for each n. Since F is right continuous, (4) follows and the proof of the
equivalence of (3) and (4) is complete.

Finally, the equivalence of (3) and (4) implies that for each x in R we have

P(F'oX <x)=P(X <F(x))=F(x);

thus F~! o X has distribution function F and distribution . a

Corollary 10.1.16. Ler u be a probability distribution on (R, 2(R)). Then there
is an infinite sequence of independent random variables, each of which has
distribution |L. Such a sequence of random variables can be constructed on the
probability space ([0,1],%([0,1]),1).

Proof. This is an immediate consequence of Corollary 10.1.14 and Proposition
10.1.15. ad

Given a source of independent and uniformly distributed random numbers (for
instance, a table of random numbers or a random number generator on a computer),
one can use the techniques of Proposition 10.1.15 and Corollary 10.1.16 to simulate
a sequence of observations from an arbitrary distribution.

Exercises

1. Let (Q, </, P) be a probability space, and let Ay, Ay, ..., A, be a finite indexed
family of events in .27. Show that the conditions
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(i) theevents Ay, Ay, ..., A, are independent,
(ii) the equation

P(31 ﬁBzﬁ---ﬂBn) ZP(Bl)P(Bz)---P(Bn)

holds for every choice of By, B>, ..., By, where for each i the event B; is
either A; or AY,

(iii) the events A{, AS, ..., Aj, are independent, and

(iv) the random variables ya,, X4,, - - -» X, are independent

are equivalent.

2. Let (Q, o, P) be a probability space, let Xj, ..., X; be real-valued random
variables on €, and let X be the R?-valued random vector whose components are
X1, ..., Xy4. Suppose that Fx,, ..., Fx, are the cumulative distribution functions
of X1, ..., X; and that Fy is the cumulative distribution function of X, defined by

Fx(l‘l,...,l‘d) :P(Xl' <t; forall i).
Show that X1, ..., X; are independent if and only if
FX(tla"'vtd) :FXl(tl)"'FXd(td)

holds for all (¢1,...,2;) in R?. (Hint: Use Theorem 1.6.2.)

3. Let (Q,,P) be a probability space, let Xj, ..., X; be real-valued random
variables on Q, and let X be the R“-valued random vector whose components
are X, ..., Xy. Let uy, ..., Uy be the distributions of X1, ..., Xy, and let u be the
distribution of X.

(a) Show that if u is absolutely continuous (with respect to Lebesgue measure),
then uy, ..., Uy are absolutely continuous.

(b) Show by example that the absolute continuity of (t does not follow from the
absolute continuity of Uy, ..., Ug.

4. Let (Q,<7,P) be a probability space, let Xj, ..., X; be real-valued random
variables on Q, and let X be the R?-valued random vector whose components
are X, ..., X;. Suppose that the distributions of X, ..., X; are absolutely
continuous, with densities fi, ..., fz. Show that X, ..., X; are independent if
and only if the random vector X is an absolutely continuous random variable
whose density is given by (t1,...,15) — fi(t1) ... fa(ta)-

5. Let Xj, X5, ..., X, be independent random variables, each of which has a
Bernoulli distribution with parameter p, andlet S =X; + X +--- + X,,.

(a) Show that S has a binomial distribution with parameters n and p—that is,
that it is concentrated on the set {0,1,...,n}, with P(S = k) being given by
(1) p*(1 = p)"~* for each k in {0,1,...,n}.

(b) Show that E(S) = np and var(S) =np(1 — p).
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6. A real-valued random variable has a Poisson distribution with parameter A if its
values are nonnegative integers, with P(X = k) = A*e~* /k! for each nonnegative
integer k.

(a) Check that the formula above indeed defines a probability measure on
(R, B(R)).

(b) Verify that if the random variable X has a Poisson distribution with parameter
A,then E(X) = A and var(X) = 1.

(c) Show that if X| and X, are independent random variables that have Poisson
distributions with parameters A; and A;, respectively, then X; + X, has a
Poisson distribution with parameter A; + 4.

7. Let X; and X, be independent random variables, each of which is uniformly
distributed on the interval [0, 1]. Find the density function of X; + X5.

8. Let X and Y be independent normal random variables with mean 0 and variance
1, and let R and © be random variables with values in [0, +e<) and [0,27) that
correspond to writing (X,Y) in polar coordinates.

(a) Show that R and © are independent, that R has distribution function given
byt—1— e~"*/2 for nonnegative ¢, and that © has a uniform distribution.

(b) Derive from this a way to use Proposition 10.1.15 to simulate values for
normally distributed random variables by using easily available functions,
rather than by using the inverse of the distribution function of a normal
distribution.

10.2 Laws of Large Numbers

This section contains an introduction to the laws of large numbers.
Let X and Xj, X, ... be random variables on the probability space (Q,<7,P).
Then {X,} is said to converge in probability to X if

imP(|X,—X|>¢€)=0
n
holds for each positive number € and to converge almost surely to X (or to converge
a.s. to X) if
P(X =limX,) =1.
n
In other words, {X,,} converges to X in probability if it converges to X in measure,
and {X,} converges to X almost surely if it converges to X almost everywhere.’

Thus a number of relationships between convergence in probability and almost sure
convergence can be found in Chap. 3.

SMore generally, an arbitrary (probabilistic) assertion holds almost surely if it holds almost
everywhere.
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Random variables X;, i € I, are said to be identically distributed if they all have
the same distribution—that is, if Py, = PXj forall i, jinI. Sequences {X,} of random
variables that are independent and identically distributed occur frequently, and one
often abbreviates a little and calls such sequences i.i.d.

Theorem 10.2.1 (Weak Law of Large Numbers). Ler {X,} be a sequence of
independent identically distributed real-valued random variables with finite second
moments. For each n let S, = X| + -+ + Xp. Then Sy/n converges to E(X)) in
probability.

Proof. Let € be a positive number. Since var(S,/n) = (1/n)var(X;) (see
Corollary 10.1.11 and Lemma 10.1.3), Proposition 2.3.10 implies that

P( %—E(XO >£> =P< —S,,—f(S,,) ’ >£2>
< évar(S,,/n) = Va;g1>.

Thus lim,, P(| 5;1—” —E(X;)| > €) =0, and so S, /n converges to E(X;) in probability.
O

Suppose that (Q,.27,P) is a probability space and that {A,} is a sequence of
events in .27 Then

{w € Q: w € A, for infinitely many n}

is equal to N> _, U"_, Ay; it is the event that infinitely many of the events A, occur,
and it is often written as {A, i.0.} (“i.0.” is an abbreviation for “infinitely often”).
For example, if we are dealing with an infinite sequence of tosses of a coin, and if
for each n we let A, be the event that a head appears on the nth toss, then {A, i.0.}
is the event that a head appears on infinitely many of the tosses.

Proposition 10.2.2 (Borel-Cantelli Lemmas). Let (Q,<7,P) be a probability
space, and let {A,} be a sequence of events in <7 .

(@) If S, P(Ay) < +oo, then P({Ay i.0.}) = 0.
(b) If the events Ay, n =1, 2, ..., are independent and if ¥, P(A,) = +oo, then
P({A,i0.})=1.
Note that part (b) of Proposition 10.2.2 implies that if the events {A,} are
independent and satisfy P({A,i.0.}) =0, then Y, P(A,) < 4. Combining this

with part (a) of the proposition, we see that for independent events the conditions
P({A,i.0.})=0and ¥, P(A,) < +oo are equivalent.

Proof. Since {4, 1.0.} =N7_, Ur_, A,, we have

=

P({Ani0.}) <P(Uy_,An) < Y P(Ay)

n=m
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for each m. Thus if 3, P(A,) < 4o, then P({A4, i.0.}) <lim, Y, P(A,) =0 and
so P({A, i.0.}) = 0; with this, part (a) is proved.
To prove part (b), let us look at the complement of {A,, i.0.}. We have

{Api0.} =U,_ N, Ay,

and so we can prove that P({A, i.0.}) = 1 by checking that P(N;;_,,A%) = 0 holds
for each m. Since the events Ay, Af L1, ---are independent (see Exercise 10.1.1), we
have

POA5) = [ (1~ PlAn).

We can now derive the relation

oo

[Ta—-P@A)) =0 (1)

n=m

from the hypothesis that Y, P(A,) = +eo: If P(A,) = 1 for some n that is greater than
or equal to m, or if there is a positive € such that P(A,) > € holds for infinitely many
n, then (1) certainly holds. Otherwise, log(1 — P(A,)) is asymptotic to —P(A,), and
so Yo, log(1 — P(Ay)) = —eo, from which (1) follows. O

Proposition 10.2.3 (Kolmogorov’s Zero—-One Law). Suppose that {X,} is a se-
quence of independent random variables. Then each event that belongs to the
o-algebra N, (X, X1, - - ) has probability 0 or 1.

The intersection of the o-algebras ¢ (X, X, +1,-..) is, of course, a o-algebra. It
is called the tail 0-algebra of the sequence {X,}, and its members are called tail
events. Thus Kolmogorov’s zero—one law can be rephrased so as to say that each
tail event of a sequence of independent random variables has probability O or 1.

Proof. Let .7 be the tail c-algebra for the sequence {X,}. Proposition 10.1.7
implies that for each n the c-algebras o(X;), ..., 6(X,—1), and (X, Xp41,...)
are independent and hence that 6(X;), ..., 6(X,_1), and 7 are independent. Since
this is true for every n, it follows that the collection consisting of 6(X,), n = 1,
2, ..., together with .7, is independent. Applying Proposition 10.1.7 once more
shows that 0(X;,X,,...) and .7 are independent. Since .7 is a sub-c-algebra of
o(X1,Xs,...), 7 must be independent of .7. Thus each A in 7 satisfies P(A) =
P(ANA)=P(A)P(A), from which it follows that P(A) =0 or P(A) = 1. O

Example 10.2.4. Suppose that {X,} is a sequence of independent random vari-
ables, and for each nlet S,, = X| + - - - + X,,. For each k the convergence or divergence
of the sequence {S,(®)} does not depend on the values X; (®), ..., Xi(®) but only
on the later terms in the sequence {X,(®)}. Thus the event {lim, S, exists} is a
tail event and so by Kolmogorov’s zero—one law has probability O or 1. A similar
argument shows that the event {lim, S,,/n exists} has probability O or 1. O
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Theorem 10.2.5 (Strong Law of Large Numbers). Let {X,} be a sequence of
independent identically distributed random variables with finite expected values.
Foreachnlet Sy =X| + -+ X,. Then {S,/n} converges to E(X)) almost surely.

We will need the following two results for the proof of the strong law of large
numbers.

Proposition 10.2.6 (Kolmogorov’s Inequality). Let X), Xy, ..., X, be independent
random variables, each of which has mean 0 and a finite second moment, and for
eachilet Si =X+ -+ X;. Then

n

P(max [S;| > &) < (1/e*) Y E(X?)

1<i<n =1

holds for each positive €.
Proof. Define events A and Ay, ..., A, by A = {max; |S;| > €} and

Ai={lSi|>¢eand |[S;| <eforj=1,2,...,i—1}.
Let us check that for each i we have

/ §?dP < / S2dP. ()
Aj Aj

To see this, note that the random variables y,,S; and S,, — S; are independent, while
E(S, — S;) =0, and so Proposition 10.1.10 implies that fA,— Si(S, — S;) = 0. Hence,
if we write S2 as (S; + (S, — S;))? and expand, we find

/S,%dP:/ S%dP+2/ Si(S,,—Si)dP+/(Sn—Si)2dP
Aj Aj Aj Aj
:/ SizdP—l—/ (S, —Si)2dP
Aj Aj

> [ spap,
Aj

and (2) follows. Using Proposition 2.3.10 and relation (2), we find
e’P(A) =Y e?P(A;) < 2/ 57 < 2/ 52 < /Sﬁ;
i i JAi i JAi

since the variables X; are independent and have mean 0, we have E(S2) = Y E(X?),
and the proof is complete. O

Proposition 10.2.7. Let {X,} be a sequence of independent random variables that
have mean 0 and satisfy ¥, E(X?) < +ee. Then ¥,, X, converges almost surely.
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Proof. For each n define S, by S, = X; + X+ --- 4+ X,,. If for each m and n such
that m > n we apply Kolmogorov’s inequality (Proposition 10.2.6) to the sequence
Xu+1s - --» X and then let m approach infinity, we find

=

P({sup|Si— S| > £}) < izz

i>n

Choose a sequence {&} of positive numbers that decreases to 0, and for each k
choose a positive integer ng such that 32, | E (X?) < €}/2*. For each k define Ay
by A = {sup;.,, |Si — Su,| > &}. Then

1 2
> P(Ay) <28—2;—’; =31/2" < 4o,
k k “k k

and so P({Ayi.0.}) = 0. However, for each @ outside {Aji.0.} the sequence
{Sy(®)} is a Cauchy sequence, and so {S,} converges almost surely. O

Proof of Strong Law of Large Numbers. For each i let ¥; be the truncated version of
X; defined by

Yiw) = Xi(w) if |X;(w)| <i,and
' 0 otherwise.

Of course, the variables {Y i} are independent and have finite expected values.

Claim. The series 2, At converges almost surely.

Since E((Y; — E(Y;))? ) < E(Y?), the claim will follow from Proposition 10.2.7
if we verify that 3; E(Y? /i?) < +oo. Let i be the common distribution of the X;’s,
and for each positive integer j define /; by I; = {x e R: j—1 < |x| < j}. Thereis a
constant C such that 3.7 ; 1/ i? < C/j holds for each j (use basic calculus), and so

SE0R) =35 [ Puls
_22 /xudx 22 /x/.tdx

i j<l j l>j J

2
= Z/C/,j %H(dx) = C/Rlxlu(dx) = CE(|X]) < +oo.

With this the claim is proved.

ForeachnletT, be Y, %() the nth partial sum of 21 i( ) The planis to
relate the partial sums of Zi(Y E(Y;)) to the T,,’s and to {S,/n}; this will give us
the information that we need about the sequence {S,/n}. We begin by noting that
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Since (by the claim above) lim, 7, exists almost surely, if we divide both sides of
the preceding equation by n and use item B.7 in Appendix B, we find

1 n 1 n—1
lim= Y (Y;— E(Y;)) =lim (T,,—— ZT,) =0 as. 3)
L " iz
As preparation for the final step we check that
1 n
lim — Xi—Y)=0 .S. 4
im~ Z{( 7 a.s 4
and that
1 n
li}ln; Y E(Y;) =E(X)). (5)
i=1

Let us begin with Eq. (4). Note that the finiteness of E(|X;|) and Exercise 2.4.6
imply that 3, P({X; # Y;}) = X; P(|Xi| > i) < —+eo; from this and the Borel-Cantelli
lemma, we conclude that P({X; # ¥; i.0.}) = 0 and hence that (4) holds. Equation (5)
follows from the fact that lim; E(Y;) = E(X;), plus another use of B.7. Finally,
Egs. (3) and (5) imply that

n

1 n
Iim- ) Y, =E(X
im . Z{ f (X1)
holds almost surely, and from this, together with (4), we conclude that lim, S, /n =
E (X)) holds almost surely. With this the proof of the strong law is complete. O

Theorem 10.2.8 (Converse to the Strong Law of Large Numbers). Let {X,} be
a sequence of independent identically distributed random variables that do not have
finite expected values. For eachn let S, = X| + - - + X,,. Then limsup,, |S,/n| = +oo
almost surely.

Proof. Let K be a positive integer, fixed for a moment, and for each » let A, be the
event {|X,| > Kn}. Since the variables {X;} have a common distribution, but do not
have a finite expected value, it follows from Exercise 2.4.6 that ¥, P(A,) = +e. The
second part of the Borel-Cantelli lemmas implies that P({A, i.0.}) = 1 and hence
that

X,
P<limsup| i ZK) =1.
n

n
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This is true for each positive integer K, and so it follows that limsup,, |X,,/n| = +oo
almost surely. However,
X . Sn

n—18,

n n n n—1

from which it follows that limsup,, |X,,/n| < 2limsup, |S,/#n|; thus limsup|S, /| is
also almost surely infinite. a

Exercises

1. The Weierstrass approximation theorem says that every continuous function on a
closed bounded subinterval of R can be uniformly approximated by polynomials.
This exercise is devoted to a derivation of the Weierstrass approximation theorem
for functions on [0, 1] from the weak law of large numbers.

Let f be a continuous real-valued function on [0, 1], let {X,,} be a sequence of
independent random variables, each of which has a Bernoulli distribution with
parameter p, and for each n let S, = X; +--- 4+ X, and ¥, = S,,/n. For each p in
[0,1] let gu(p) be E,(f oY,), the expected value of f oY, in the case where the
underlying Bernoulli distribution has parameter p. Then (see Exercise 10.1.5)

gn(p) = i‘, f(k/n) (Z) pra—p)

k=0

and so g, is a polynomial in p. Show that the sequence {g, } converges uniformly
to f. (Hint: The weak law of large numbers says that for each € we have
lim, P(|S,,/n— p| > €) = 0; check that this convergence is uniform in p. Use this
and the uniform continuity of f to conclude that the convergence of E,,(f oY) to
f(p) is uniform in p.)

2. Suppose that {X, } is a sequence of independent random variables and that 7 is
the o-algebra of tail events of {X,}. Show that every [—oo, 4-o0]-valued random
variable that is .7 -measurable is almost surely constant.

3. Let b be an integer such that » > 2. The digits that can occur in a base b expansion
of a number are, of course, 0, 1, ..., b— 1. A number x in [0, 1] is normal to base
b if each value in {0,1,...,b — 1} occurs the expected fraction (namely 1/b) of
the time in the base b expansion of x—that is, if

number of times k occurs among the first n digits of x 1
im i
n n b

holds fork =0, 1, ..., b — 1. The value x is normal if it is normal to base b for
every b.
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(a) For a given b, show that almost every number in [0, 1] is normal to base b.
(Hint: Modify part (a) of Proposition 10.1.13 and use the strong law of large
numbers.)

(b) Conclude that almost every number in [0, 1] is normal.

4. (The Glivenko—Cantelli Theorem) Let (€,.27,P) be a probability space, let u
be a probability distribution on (R, Z(R)), let F be its distribution function,
and let {X, } be a sequence of independent random variables on (Q, <7, P), each
of which has distribution u. For each @ in Q, {X,(®)} is a sequence of real
numbers, and we can define a sequence {1}, of measures on (R, Z(R)) by
letting p’ = (1/n) X7_ Oy, (w)- Also, let F,” be the distribution function of the
measure [°; thus,

n

an(x> = (1/}1) ;X(foo,x] OXk(w)

_ number of kin {1,2,...,n} for which X; (@) < x
n

holds for all n, @, and x. (Such functions F,” are called empirical distribution

functions.) Since p describes the distribution of values of the X,,’s, it seems

plausible that for a typical , the measures 1, might approach u as n becomes
large. This is in fact true, and the Glivenko—Cantelli theorem makes a rather
strong version of this precise, namely that for all w outside some set of

probability zero, the sequence {F,’(x)}7"_, converges to F(x), uniformly in x.

(a) As a first step, show that if x € R, then F(x) = lim, £,®(x) and F(x—) =
lim, F,; (x—) hold for almost every o in Q.

(b) Show thatif € is a positive number, if x1, X2, . . ., X are real numbers such that
x| < x3 < --+ < xy and such that the intervals (—eo, x1), (x1,%2), ..., (X, o)
all have measure less than € under u, and if o is such that lim, F,® (x;) =
F(x;) and lim, E®(x;—) = F(x;—) hold fori =1, 2, ..., k, then sup, |F,® (x) —
F(x)| < € holds for all large n.

(c) Use parts (a) and (b) to prove the Glivenko—Cantelli theorem.

5. Let {X,} be a sequence of independent identically distributed random variables
that are nonnegative and satisfy E (X, ) = 4o for each n. Show that lim,, %” = o0
almost surely.

6. (a) Let Xi, X, ..., X, be independent random variables on (Q, <7, P), each of
which has mean 0, for each i let S; = X; + X» 4+ --- + Xj, let ¢ be a positive
constant such that |X;| < ¢ holds almost surely for each i, and for each i let
o'l-2 be the variance of X;. Show that for each positive number a,

(a+c)?
Yo

(Hint: Start by using ideas from the proof of Kolmogorov’s inequality to
show that

P(max |S;| >a)>1—
1
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E(S3) < a*(1—P(A)) + (a+c)’P(A) + Y (07 + - 0; )P(Ay),
i

where Ay, ..., A, are given by
Ai={|Si|>aand |Sj| <aforj=1,2,...,i—1}

and A = U;A;)

(b) Let Xy, X5, ... be independent random variables on (€, <7, P), each of which
has mean 0, and for each i let 0'1.2 be the variance of X;. Show that if there is
a constant ¢ such that |X;| < ¢ holds almost surely for each i and if the series
Y X; is almost surely convergent, then Y ; O'iz < oo,

(c) Show that part (b) remains true if the assumption that each X; has mean
0 is omitted. (Hint: Define random variables Y1, Y», ... on the product of
(Q, o, P) with itself by letting Y;(w;, ) = X;(®;) — X;(@,), and apply part
(b) to the series Y, Y;.)

7. Let {X,,} be a sequence of independent random variables such that P(X,, = 1) =
P(X, = —1) = 1 holds for each n, and let {a,} be a sequence of real numbers.
Show that the series ¥, a,X, converges almost surely if and only if {a,} € ¢>.
(Hint: See Exercise 6.)

8. Let X1, Xp, ... be independent random variables on (Q, o7, P), let ¢ be a positive

constant, and for each i define a new random variable, the truncation Xi(c) of X;
by c, as follows:

. i . <
X(C)(a)) _ Xt(w) if |Xl((0)| < ¢, and
0 otherwise.

The three series theorem says that the series >; X; converges almost surely if and
only if the series

(1) ZIP(|X1| > C)’
(i) E(X). and
(iii) 3, var(X\*)

all converge. Prove the three series theorem. (Hint: Use the Borel-Cantelli
lemma, Proposition 10.2.7, and Exercise 6.)

10.3 Convergence in Distribution and the Central Limit
Theorem

In this section we look at circumstances under which probability distributions on
(R, %(R)), or on (R? %(RY)), give good approximations to one another. As a
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rather trivial example, if n is large, then the point mass J;,, concentrated at 1/n
should be considered to be close to the point mass & concentrated at 0. As a
somewhat less trivial example, for large values of n the measure (1/n)37; 5/,
would seem to give a reasonable approximation to the uniform distribution on [0, 1].
More significantly, we will see in Theorem 10.3.16 (the central limit theorem)
that the distributions of certain normalized sums of random variables are well
approximated by Gaussian distributions.

We should note that for our current purposes the total variation norm (defined in
Sect. 4.1) does not lead to a reasonable criterion for closeness. For example, the total
variation distance between §, /n and & is 2, however large n is. We need a definition
that, for large n, will classify these measures as close.

We will deal with such questions in terms of convergence of sequences of
probability measures (for a bit about an approach using distances, see Exercise 12
and the notes at the end of the chapter). Let u and p;, yp, ... be probability
measures on (R, 2(R%)). The sequence { i, } is said to converge in distribution, or
to converge weakly, to 1 if

[ rau=tim [ rau,

holds for each bounded continuous f on R?.

Before doing anything else, we should verify that limits in distribution of
sequences of probability measures are unique. In other words, we should check
that if the sequence {u,} converges in distribution to i and to v, then y = v. This,
however, is an immediate consequence of the following lemma.

Lemma 10.3.1. Let y and v be probability measures on (R, B(RY)). If [ fdu =
[ fdv holds for each bounded continuous f on R%, then = v.

Lemma 10.3.1 is an immediate consequence of the Riesz representation theorem
(Theorem 7.2.8). The following proof, however, does not depend on the Riesz
representation theorem and so avoids unnecessary dependence on Chap. 7.

Proof. Since u and v are regular (see Proposition 1.5.6), it is enough to prove
that each compact subset K of R? satisfies u(K) = v(K). So let K be a nonempty
compact subset of R?. Recall that the distance d(x, K) between the point x and the set
K is continuous as a function of x (see D.27) and is equal to 0 exactly when x € K.
For each k define a function f;: R — R by f;(x) = max(0,1 — kd(x,K)). These
functions are bounded (by 0 and 1) and continuous, and they form a sequence that
decreases to the indicator function yx of K. Furthermore [ fydu = [ frdv holds
for each k, and so we can use the dominated convergence theorem (or the monotone
convergence theorem) to conclude that

w(K) = lillcn/fkdu :1111{11'/fkdv — v(K).
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With this the proof of the lemma is complete. O

Proposition 10.3.2. Suppose that i and U,, n=1, 2, ..., are probability measures
on (R, B(R?)). Then the conditions

(a) the sequence {U,} converges in distribution to L,

(b) each bounded uniformly continuous f on R? satisfies Jfdu=1lim, [ fdu,

(¢) each closed subset F of R satisfies limsup,, u,(F) < u(F),

(d) each open subset U of R? satisfies u(U) < liminf, u,(U), and

(e) each Borel subset B of RY whose boundary has measure O under | satisfies
W (B) = lim, U, (B)

are equivalent.

Proof. Since every uniformly continuous function is continuous, condition (b) is an
immediate consequence of condition (a). Now assume that condition (b) holds. If
F is a nonempty closed subset of R¢, then the functions f;: RY — R defined by
fi(x) = max(0,1 — kd(x,F)) are bounded (by 0 and 1) and uniformly continuous
(again see D.27). Since these functions decrease to the indicator function of F, it
follows that u(F) = limy [ fidu. Now suppose that € is a positive constant, and
choose k such that [ fidu < u(F)+ €. Then, since U, (F) < [ fi du, holds for each
n, we have

limsup/,tn(F)§lirrln/fkdun:/fkdu<,u(F)+£,

and condition (c) follows. It is easy to check that condition (d) is equivalent to
condition (c). Now suppose that conditions (c) and (d) hold, and let B be a Borel
set whose boundary has p-measure 0. Let F and U be the closure and interior of
B. Then F — U is the boundary of B, and so y(F) = u(U) = u(B), from which it
follows that

1(B) = (U) <liminfu,(U)
<liminfu,(B) < limsup u,(B)

<limsup u,(F) < p(F) = p(B).

Thus, condition (e) follows from conditions (c) and (d).

Finally, we derive condition (a) from condition (e). So suppose that condition
(e) holds, and let f be a bounded continuous function on R?. Suppose that £ is a
positive number. Let B be a positive number such that —B < f(x) < B holds for all
x, and let ¢, cq, ..., ¢y be numbers such that

—B=cp<c1<--<cy=B8B
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(we still need to look at the details of how the ¢;’s are to be chosen). Fori=1, ...,k
let Gy = {x € R?: ¢; | < f(x) < ¢t }. The continuity of f implies that the boundary
of Cy is included in the set of points x such that f(x) is equal to ¢;_; or ¢. Since the
sets {x € R? : f(x) = c}, where c ranges over R, are disjoint and Borel, at most a
countable number of them can have positive measure under pt. It follows that we can
choose our points ¢; so that the boundaries of the sets C; have p-measure 0 and so
that each interval [c;_1,c¢;) has length less than €. If we define g by g = 2{;1 CiXc;s
then f < g < f+ ¢, and so, if we apply condition (e) to the sets C;, we find

lim sup /fdu,, glim/gdu,, :/gdu < /fdu—i—e.

A similar calculation shows that [ fdu — & < liminf, [ fdpu,. Since € is arbitrary,
condition (a) follows, and with that the proof of the proposition is complete. a

As we have seen, probability measures on (R, %(R)) can be identified with
distribution functions. Here is a characterization of convergence in distribution on R
in terms of distribution functions (in fact, convergence in distribution seems to have
first been defined in terms of distribution functions).

Proposition 10.3.3. Suppose that i and U,, n=1, 2, ..., are probability measures
on (R,2(R)), with distribution functions F and F,, n =1, 2, .... Then the
conditions

(@) {u,} converges in distribution to L,
(b) F(t) =lim, F,(¢t) holds at each t at which F is continuous, and
(c) F(t) =lim, F,(t) holds at each t in some dense subset of R

are equivalent.

Proof. Tt follows from Proposition 10.3.2 that condition (a) implies condition
(b) and from the fact that a monotone function has at most countably many
discontinuities (see Lemma 6.3.2) that condition (b) implies condition (c). To
show that condition (c) implies condition (a), we will assume that condition (c)
holds and prove that each open subset U of R satisfies u(U) < liminf, t,(U)
(see Proposition 10.3.2). So suppose that U is a nonempty open subset of R. Let
€ be a positive number. According to Proposition C.4, there is a sequence {U;}
of disjoint open intervals whose union is U. We can choose an integer k such
that u(U) —e < [,L(Uf?lei). Next we approximate the sets U;, i = 1, ..., k, with
subintervals C; such that ¥¥_, 11(U;) — e < 3¥_, 11(C;) and such that each C; is of the
form (c;,d;], where ¢; and d; belong to the dense set given by condition (c). Then
each C; satisfies 1 (C;) = lim, u,(C;), and it follows that

u(U) —2e < 3 pu(Ci) = lim 3’ 1, (C;) < liminf 1, (U).

Since ¢ is arbitrary, we have u(U) < liminf, u,(U), and the proof is complete. O



10.3 Convergence in Distribution and the Central Limit Theorem 331

Next we introduce the Fourier transform of a probability measure. For that we
need to know a bit about the integration of complex-valued functions; see Sect. 2.6.
We will also be using complex-valued exponential functions; see item B.10 in
Appendix B for the facts we need.

In addition, we need the following basic result:

Lemma 10.3.4. Let z and {z,}, n=1, 2, ..., be complex numbers such that 7 =
lim,, z,. Then lim,, (1 +z,/n)" = €.

Proof. Choose a positive constant M that is larger than the absolute values of z
and of every z,. For each k the term in the binomial expansion of (14 z,/n)" that
involves the kth power of z,, is
k
" &
(&)

As n approaches infinity, this term approaches the term z¥/k! from the series
expansion of e*. Let us check that the sum of the terms of the binomial expansion
of (14 z,/n)" approaches the sum of the terms of the series for e*. The issue here
is the interchange of sums and limits, and this interchange can be justified with the
dominated convergence theorem, if we apply that theorem to integrals (i.e., sums)
on the space of nonnegative integers together with counting measure and if we note
that the functions involved here are dominated by the terms in the series expansion
of eM). Thus lim, (1 +z,/n)" = €%, and the proof is complete. O

Now suppose that (1 is a probability measure on (RY, (R?)). The characteristic
function,® or Fourier transform, of u is the function ¢,: R? — C defined’ by
¢u(t) = [ u(dx). (The integrand here is bounded and measurable, and so
the definition of ¢, makes sense.) If X is an R?-valued random variable, then the
characteristic function of X, written ¢y, is defined to be the characteristic function
of the distribution Py of X, and so ¢x (1) = p, (1) = E(e/*X)).

Proposition 10.3.5. Let u be a probability measure on (R?, (R?)). Then
(@) ¢u(0)=1,

() |¢u(t)| < 1 holds for each t in RY, and
(¢) @u is continuous on R4,

Proof. Part (a) is immediate, and part (b) follows from Proposition 2.6.7. For part
(c), let t be an arbitrary element of R, and suppose that {z,} is a sequence of
elements of R such that # = lim,7,. Then the dominated convergence theorem

5The phrase “characteristic function” is ambiguous; it can mean either “Fourier transform” or
“indicator function” (see item A.3 in Appendix A). In this chapter we follow the usage of
probabilists and use characteristic function to mean Fourier transform; in the rest of the book
we use characteristic function to mean indicator function.

"Here (,x) is the inner product of 7 and x, defined by (r,x) = 3%_, £x;. In case we are dealing with

measures on R, rather than on R?, we write ¢/, rather than i),
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implies that
lim/ei(””x)u(dx) = /ei(”x)u(dx)

and hence that lim, ¢y (#,) = ¢y (¢). Since this holds for every sequence {#,} that
converges to ¢, the continuity of ¢, follows (see D.31 in Appendix D). a

Lemma 10.3.6. Let X be a real-valued random variable, let a and b be real
constants, and define a random variable Y by Y = aX +b. Then ¢y (t) = e ¢x (at)
holds for all real t.

Proof. This follows from the calculation ¢y (1) = E(e(@X+0)) = ¢tbE(piaX) =
e ox (at). O

Proposition 10.3.7. Let i be a probability measure on (R, Z(R)), and let n be a
positive integer such that | has a finite nth moment—that is, such that [ |x|" L (dx)
is finite. Then ¢y has n continuous derivatives, which are given by

¢[.(lk) (l‘) — ik '/xkeitxu(dx)

fork=1,2,..., n

Proof. Note® that |¢™ — 1| < |u| holds for all real u and that lim,_,o(e™ — 1) /u = i.
We will use those facts in the calculations below.
We verify the formula for ¢l(1k) by using mathematical induction. Suppose that we

have already verified that q)ﬁ(lk) has the required form (certainly q)ﬁ(lo) is ¢y, and has the
required form). Then

(k) (k) ' j
h) — i(t4+h)x __ itx
W =ol0) _y [udetid,

o pihx
= ik/xke”xeh—lu(dx).

The integrand in the second integral above approaches ix**!¢/* as h approaches 0,

and it is dominated by |x**!|. It follows from the dominated convergence theorem

thatif 0 <k <nand if q)ﬁ(lk) has the form given in the proposition, then ¢L(lk+1) has the

analogous form with k replaced by k 4 1. (Note that, as in the proof of Proposition
10.3.5, we are actually taking limits as & approaches 0 along sequences.) The
continuity of ¢L(lk+1) follows from another application of the dominated convergence
theorem. O

8 A geometric justification for the inequality |e™ — 1| < |u| comes from the fact that |¢™ — 1] is the
straight-line distance between the points (cos u, sinu) and (1,0), while |u«| gives the length of a path
that connects these points and lies on the unit circle. Alternatively, we can give this inequality and
also the limit lim,_,o(e™ — 1) /u = i non-geometric proofs if we rewrite the exponentials in terms
of sines and cosines.
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Proposition 10.3.8. Suppose that P is the normal distribution on (R, 2(R)) with
mean W and variance 6. Then ¢p(t) = et e=0%/2,
Proof. Let us begin with the special case where P is the standard normal distribution

(i.e., the normal distribution with mean O and variance 1). Then the Fourier
transform ¢p of P is given by

1 ixt ,—x2/2
00 (0) \/ﬁ/R ¢

It is easy to check that P has a finite first moment (in fact, finite moments of all
orders), and so it follows from Proposition 10.3.7 that

1 .
op(t) = \/T—n/Rixe”“e*xz/zdx.

If we integrate by parts (view the integrand above as the product of ie” and the
derivative of —e—/2), we find that op (1) = —tgp(r). It follows that the derivative of
t— e’2/2¢p(t) is identically zero and so, since ¢p(0) = 1, that ¢p(t) = e '/2 The
general case now follows from Lemma 10.3.6. a

Proposition 10.3.9. Let v and v, be probability measures on (R, B(R?)), and
let v be their convolution. Then ¢y (t) = ¢y, (t)dy, (t) holds at each t in R?.

Proof. Let X| and X, be independent random variables with distributions v; and v;.
Then X; + X, has distribution v, and so Proposition 10.1.10 implies that

Ov(1) = E("N17%)) = E("™)E("2) = ¢y, (1), (1) 0

Example 10.3.10. Let us now try to invert the Fourier transform—to go from the
Fourier transform of a probability measure back to the measure. We start with
the Gaussian distributions and look at ¢ — e"’zlz/ 2 the Fourier transform of the
Gaussian distribution with mean 0 and variance 2. If we multiply this function by
e integrate, and use Proposition 10.3.8 at the last step, we find

g . 2,2 L 2.2
/ g M Ot /2dl‘ — / M0t /2dl‘
R R

2

vV 21 1 / el’xt67261—2 dt
R

o Vil
. @efxz/ZGz'
o
It follows that | ' . 1 2 2
E/Refmeia ; /2dt: meﬂc /207 O
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In particular, we can go from the Fourier transform ¢ of the Gaussian distribution
with mean 0 and variance 62 back to its density, say g, by using the Fourier inversion
formula
1
21

/e*”“(p(t)dt =g(x), (1)
JR

which says that the inverse Fourier transform of ¢ is equal to g. The Fourier
inversion formula works for many distributions, but not all (see Exercise 13).
However, we now have enough information to prove the following uniqueness
theorem.

Proposition 10.3.11. Let u and v be probability measures on (R?, B(R?)). Then
W=V ifand only if oy = ¢y.

Proof. The following is a proof for measures on R, rather than on R¢. We can
convert it to a proof for measures on R? by changing the constant 1/27 in the
Fourier inversion formula to 1/(27)?, replacing e~ with ¢***), and checking
that the Fourier inversion formula works for probabilities on R? that are products of
d Gaussian distributions, each with mean 0 and variance 62.

So let us turn to the proof when d = 1. It is certainly true that if u = v, then
¢u = ¢y, and so we need only check that if ¢, = ¢y, then y = v. So let u and
v be probability measures on (R, %(R)) such that ¢, = ¢,. In addition, let 5
be the Gaussian distribution on R with mean 0 and variance ¢?; let ¢y, and go
be its Fourier transform and density function. Let us calculate the inverse Fourier
transform of @y, ., or equivalently of ¢y, ¢, (Proposition 10.3.9), using the fact that
we know from Example 10.3.10 that the Fourier inversion formula works in the
Gaussian case:

1 7 _; 1 7 _; ;
o Lo ou0dr = o [ o) [ o uids)ar

=5 [ [0 0)ana
~ [ golx=5)u(as

(we were able to apply Fubini’s theorem because p is finite and ¢y, is integrable
with respect to Lebesgue measure). Note that the result of this calculation is the
density of Y5 * i (see Proposition 10.1.12). In other words, the inverse Fourier
transform of ¢, @, is the density of y5 * 1. A similar calculation can be applied
to v. Since (1 and v are such that ¢, = ¢y, we can conclude from these calculations
that 5 * L = Y5 * v. Finally, V5 * 1t and Y5 * v converge in distribution to ¢ and v as
o approaches 0 (check this; you might use Exercise 7), and it follows that 4 = v.

O

Corollary 10.3.12. Let Xy, ..., Xy be real random variables, all defined on the
same probability space, and let X be the R-valued random variable whose
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components are Xy, ..., X4. Then the random variables X1, ..., X, are independent
if and only if x (t) = [Ti ¢x, (tx) holds for each vectort = (11,...,14) in R%.

Proof. 1f the random variables X, . .., X; are independent, then the relation ¢x () =
[T; 9x, (1) follows from Proposition 10.1.10, which can easily be extended to apply
to complex-valued functions.

We turn to the converse. Let uy and iy, ..., Ux, be the distributions of X and
X1, ..., Xy. Since the characteristic function (call it @p0q) of the product measure
Ux, X - X Uy, is given by @proa () = [Tx @x, (x), it follows from Proposition 10.3.11
that the relation ¢x (1) = [T ¢x, () implies that u is equal to the product measure
Uy, X --- X Ux, and then from Proposition 10.1.9 that the random variables Xi, ...,
X, are independent. O

Our goal for the rest of this section is to prove the central limit theorem
(Theorem 10.3.16). The main tool for this will be Proposition 10.3.15.

Suppose that {1, } is a sequence of probability measures on (R, Z(R)). Let us
look at the relationship between convergence in distribution of the sequence {1, }
and pointwise convergence of the corresponding sequence {¢y, } of characteristic
functions. For this we need a concept related to regularity. We know (see Proposi-
tion 1.5.6) that if y is a probability measure on (R?, Z(R¢)), then

sup{u(K) : K is compact} = 1.

Measures satisfying this condition are sometimes called fight. A collection € of
probability measures on (R?, %(R%)) is called uniformly tight if for every positive
€ there is a compact set K such that

uK)>1-e¢

holds for each u in %.

The following result is sometimes useful for establishing the uniform tightness
of a family of probability measures on (R, Z(R)). See, for example, the proof of
Proposition 10.3.15.

Proposition 10.3.13. Suppose that U is a probability measure on (R, B(R)) and
that @ is its characteristic function. Then for each positive € we have

p({remipmz2l) < [a-oma

Since characteristic functions are complex-valued functions, it’s conceivable that
the integral on the right-hand side of the inequality above could have a non-real
value, in which case the inequality would be meaningless. We’ll see in the proof
below that this difficulty does not occur.
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Proof. Using Fubini’s theorem and basic calculus, we find
€ £ )
o()di = / / o (dx) di
—€ —eJR

€
:// (costx—l—isintx)dtu(dx):/
RJ—¢ R

Since (1 — 2&5) > L if |ex| > 2, we have

se [ o= [ (1-55 Jutan 2 gu({remonz 2}

and the proposition follows. a

Proposition 10.3.14. Let {u,} be a uniformly tight sequence of probability meas-
ures on (R, Z(R)). Then {1, } has a subsequence that converges in distribution to
some probability measure on (R, B(R)).

Proof. Suppose that {F; } is the sequence of distribution functions corresponding to
{t,} and that {x;} is an enumeration of some countable dense subset D of R. We
will use a diagonal argument to choose a convergent subsequence of { ,, }. To begin,
choose a subsequence {F} ,, }, of {Fy, }, such that {Fj ,(x;)}, is convergent, and then
continue inductively, for each k choosing a subsequence {Fi; 1 ,}n Of {Fi,}n such
that {Fj1,(xxs1)}n is convergent. Now take the diagonal subsequence {F; ;} of
{Fu}, and let {y,, } be the corresponding subsequence of {i,}. We will show that
{ /,Lnj} converges in distribution to some probability measure (.

We can define a function Gy on the countable dense set D by letting Go(x) =
lim; F; j(x) hold for each x in D. Then Gy is a nondecreasing function and,
since the sequence {l,} is uniformly tight, Gy satisfies limy_,_. Go(x) = 0 and
lim,_, 4. Go(x) = 1. Next, define G: R — R by

G(x) =inf{Go(t) :t € D and t > x}.

Then G is nondecreasing, it has limits of 0 and 1 at —ee and 4o, and it is right con-
tinuous; let i be the corresponding probability measure (recall Proposition 1.3.10).
We show that the sequence {u, j} converges in distribution to y by checking that
G(x) = lim; F; j(x) holds at each x at which G is continuous. To do this, suppose
that G is continuous at x, let € be a positive number, and choose values 7y and #; in
D such thattg < x < t;, G(x) — & < Gy(tp), and Go(t1) < G(x) + €. Note that if j is
large enough that |F; j(t;) — Go(t1)| < €, then

ijj(x) < ijj(tl) < Go(l1)+8 < G(x)+28.
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A similar calculation gives a lower bound of G(x) — 2& for F; j(x), and so we can
conclude that |G(x) — Fj j(x)| < 2& holds for all large j. Thus G(x) = lim; F} ;(x),
and Proposition 10.3.3 implies that {u, j} converges in distribution to U. O

Proposition 10.3.15. Let y and Uy, Uy, ... be probability measures on (R, B(R)).
Then the sequence {l,} converges in distribution to [ if and only if the sequence
{®u,} converges pointwise to ¢y.

Proof. For each ¢ the function x + ¢ is bounded and continuous. Thus if {,}
converges in distribution to u, then [ ¢ u(dx) = lim,, [ €™ u,(dx) holds for each ,
and {¢,, } converges pointwise to ¢y,.

Let us turn to the converse and assume that {¢,,, } converges pointwise to ¢.
We begin by showing that the sequence {u,} is uniformly tight. Choose a positive
number &, and then use the continuity of ¢, at 0 (and the fact that ¢, (0) = 1) to

choose 6 such that %ji;(l — @u(1))dt < €. Since {¢y, } converges pointwise to ¢y,
we can use the dominated convergence theorem to conclude that

o
5 [0 oud<e

holds for all large n. Proposition 10.3.13 now implies that

2 2
uﬂ<|:_§73:|)>1_8 ()

holds for all large n. By making 6 smaller, if necessary, we can make (2) hold for
all n. It follows that the sequence {u,} is uniformly tight.

We now check that {u, } converges in distribution to . Suppose it did not. Then
there would be a bounded continuous function f on R such that {[ fdu,} does
not converge to [ fdu. Choose a subsequence {fi,, } of {u,} such that { [ fdpu,, }
converges to a value other that [ fdu. The uniform tightness of {u,}, which we
verified above, together with Proposition 10.3.14, lets us replace {u, } with a
subsubsequence that converges to some probability measure v. Then v # u, since
Jfdv# [ fdu,yetdy = @y, since {@,, } converges to both ¢, and ¢, This is im-
possible, and so our hypothesis that {u, } does not converge to ¢ must be false. O

Let us make a last preparation for the proof of the central limit theorem. Suppose
that X is a random variable with mean 0 and variance 1 and that ¢ is its characteristic
function. Then ¢(0) = 1, ¢'(0) =0, ¢”(0) = —1, and ¢ has at least two continuous
derivatives (see Proposition 10.3.7). According to I"Hospital’s rule, plus the facts in
the previous sentence, we have

o 9 = (1=2/2)

x—0 x2

=0
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and so ¢ can be written in terms of its second-degree Maclaurin polynomial 1 —x?/2
as ¢(x) = 1 —x?/2 + R(x), where lim,_,o R(x) /x> = 0.

Theorem 10.3.16 (Central Limit Theorem). Let X|, Xp, ... be a sequence of
independent identically distributed random variables, with common mean | and
variance 62, and for each n let S, = X| + --- + X,,. Then the normalized sequence
{(Sn—npt)/o+/n} converges in distribution to a normal (i.e., Gaussian) distribution
with mean 0 and variance 1.

Proof. Each random variable (X; — u)/oc has mean 0 and variance 1 and hence
has a characteristic function ¢ that is as described just before the statement of the
theorem. Since the X;’s are identically distributed, the function ¢ does not depend
on the index i. Note that

Sp—nu 1 2 Xi— U

oyn Vn&E o

3)

If we use Eq. (3), the independence of the X;’s, Lemma 10.3.6, Proposition 10.3.9,
and the fact that lim, ,oR(x)/x*> = O (where R(x) is the remainder defined just
before the statement of the theorem), we find that the characteristic function of

(S, —nu)/o+/nis given by

) - () (- 2225

where g, = —nR(t/+/n) and hence where lim, &, = 0. It follows (Lemma 10.3.4)

that the characteristic functions of the normalized sums (S, — ni)/c+/n approach
—12)2.

the function t — e ; since the limit is the characteristic function of the
normal distribution with mean O and variance 1, the theorem follows (see
Proposition 10.3.15). O
Exercises

1. For each positive integer n define a probability measure y, on (R, Z(R)) by
M = (1/n) 3| 8/, Show that the sequence {i, } converges in distribution to
the uniform distribution on [0, 1].

2. Suppose that g and yy, Lo, ..., are probability measures on (R, %(R)), each of
which is concentrated on the integers. Show that the sequence {1, } converges
in distribution to g if and only if w({k}) = lim, ,({k}) holds for each k in Z.

3. Show that
(a) if u is the point mass at a, then ¢, is given by @, (r) = €',

(b) if u is the binomial distribution with parameters n and p, then ¢, is given
by du(t) = (1— p(1 — )",
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10.

11.

12.

(c) if u is the Poisson distribution with parameter A, then ¢y, is given by ¢, (¢) =

e’“l’e”), and

(d) if p is the uniform distribution on the interval [a,b], then ¢, is given by
eitb7 eim

Ou(t) = Gy

. Show that if ¢ is the characteristic function of a probability measure on

(R, B(R)), then ¢(—1) = ¢(¢).

. Show that a probability measure g on (R, %(R)) is symmetric (i.e., 4(—A) =

1 (A) holds for each A in Z(R)) if and only if ¢y, is real-valued.

. Show that if ¢ is the characteristic function of a probability measure on

(R,%(R)), then ¢ is uniformly continuous on R.

. Suppose that X and X1, X, ... are real-valued random variables and that y and

Ui, Uy, ... are their distributions. Show that if {X,,} converges in probability to
X, then {,} converges in distribution to y.

. Let u be a probability distribution on (R, Z(R)). Show that |¢,(r)| = 1 for

some nonzero number ¢ if and only if there exist real numbers a and b such that
U is concentrated on the set {a+ bn : n € Z}. (Such a distribution is called a
lattice distribution.)

. Show directly (i.e., using only the definition of convergence in distribution)

that if a sequence {u,} of probability measures on (RY, (R?) converges in
distribution to some probability measure, then the sequence {, } is uniformly
tight.

Suppose that {u,} is a sequence of probability distributions on (R, %Z(R))
whose characteristic functions {¢,} converge pointwise to some function
¢: R — C. Show that if ¢ is continuous at 0, then there is a probability
distribution ¢ on (R, %Z(R)) such that {u,} converges to u in distribution.

For each n let u, be a binomial distribution with parameters n and p,,. Show that
if {np,} is convergent, with A = lim,, np,, then the sequence {1, } converges in
distribution to the Poisson distribution with parameter A. Do this

(a) by making a direct calculation of probabilities (see Exercise 2), and

(b) by using characteristic functions.

Suppose that for probability measures p and v on (R, %(R)) we define d(u,v)
by

d(u,v) =inf{e > 0:F,(r) <F,(t+€)+¢€and
Fy(t) < Fy(t+¢€)+¢eforalltin R}.

(The function d is known as Lévy’s metric.)

(a) Show that d is a metric on the set of all probability measures on (R, Z(R)).

(b) Suppose that y and i, Uy, ... are probability measures on (R, Z(R)).
Show that the sequence {1, } converges in distribution to y if and only if
lim,, d(n, ) = 0.
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13. Suppose that u is a probability distribution on R such that ¢, is integrable.
(Note that for the inversion formula (1) to make sense with the integral
interpreted as a Lebesgue integral, ¢, must be integrable.)

(a) Show that if u is absolutely continuous with density function g and if
the inversion formula (1) is valid for ¢, and g, then g is bounded and
continuous.

(b) Show that if ¢ is integrable, then u is absolutely continuous and formula
(1) works. (Hint: Use some ideas and calculations from Proposition 10.3.11.
In particular, consider [ h(x)p(x)dx, where h ranges over the continuous
functions with compact support on R and p is the inverse Fourier transform
of Pyosut-)

14. Show how to prove the central limit theorem without using Proposition 10.3.13.
(Hint: For each n let 1, be the distribution of (S, — nu)/o+/n. Use Markov’s
inequality (that is, Proposition 2.3.10), rather than Proposition 10.3.13, to show
that the sequence {u, } is tight.)

15. Let p and u;, Uy, ... be probability measures on (R, Z(R)) such that the
sequence {4, } converges in distribution to 4.

(a) Suppose that X and Xj, X5, ... are random variables, all defined on the
same probability space, whose distributions are ¢ and g, U, .... Show (by
giving a simple example) that it does not follow that {X,,} converges almost
surely to X.

(b) On the other hand, show that there are random variables X and X, X», ...,
all defined on the same probability space and with distributions pt and py,

U, ..., such that {X,} converges to X almost surely. (Hint: Let F and
Fi, F,, ... be the distribution functions of y and uj, Uy, .... Then the
random variables F~! and Ffl, F{l, ... constructed from F and Fj, F>,

. as in Proposition 10.1.15 do what is required. To verify the almost
sure convergence, use the equivalence of inequalities (3) and (4) from
Sect. 10.1 to verify that lim,, F, ' (t) = F~!(¢) holds at each ¢ at which F~!
is continuous.)

10.4 Conditional Distributions and Martingales

Suppose that (Q, <7, P) is a probability space, that A and B are events in <, and that
P(B) # 0. In elementary treatments of probability, the conditional probability of A,
given B, written P(A|B), is defined by

p(ajp) = PANE)
P(B)

Example 10.4.1. Suppose that we select a number at random from the set

{1,2,3,4,5,6}, with each number in that set having probability 1/6 of being

selected. Consider events E and F', where E is the event that the number selected is

even and F is the event that the number selected is not equal to 6. Then we have
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P(ENF) 2/6

PEF) = ——— =2/5
(EIF) P(F) 5/6 /
and P(FNE) _2/6
N
P(FIE)= ——— =2/3,
which should agree with one’s intuition. a

Let us deal for a moment with a probability space (Q, <7, P) such that Q is finite
and .7 contains all the subsets of Q. Let X and Y be real-valued random variables on
(Q, o, P) with values xi, ..., xp and yy, ..., yn, and let us assume that P(Y =y;) #0
for each j. Then E(X|Y =y;), the conditional expectation of X, given thatY =yj,
is defined by

EX|Y =yj) ZX, X =xlY =yj).
It follows that

YxP(X =x;andY =y;) Jy=y; XdP
P(Y =y)) P(Y =y))

E(X[Y =yj) = )

Of course, this defines a function y; — E(X|Y = y;) on the set of values of Y.
It is convenient to have a slightly different form of the conditional expectation,
with the new form being defined on the probability space (Q,.o7, P). Let us define
E(X|Y): Q — R by letting E(X|Y)(w) be E(X|Y = ;) for those @ that satisfy
Y(w) =y;. In other words, E(X|Y) is the composition of the functions ® — Y (o)
andy — E(X|Y =y). It follows from (1) that

/BE(X|Y)dP:/BXdP 2

holds for each B of the form {Y =y, }. Since each B in the o-algebra o(Y) generated
by Y is a finite disjoint union of sets of the form {Y = y;}, it follows that (2) holds for
each B in o(Y). Furthermore, E(X|Y) is o (Y )-measurable (in this simple example,
where Q is finite, this just means that E(X|Y) is constant on each set of the form
{Y =y;b.

We are now ready to look at how these ideas generalize to arbitrary probability
spaces.

Let (Q, o7, P) be a probability space and let Z be a sub-c-algebra of «7. Suppose
that X is a real-valued random variable on (Q,.</,P) that has a finite expected
value. A conditional expectation of X given % is a random variable Y that is %-
measurable, is integrable (that is, has a finite expected value), and satisfies

/YdP:/XdP
JB JB
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for each B in 2. One generally writes E(X|4%) for a conditional expectation of X
given 2. When one needs to be more precise, one sometimes calls an integrable
ZB-measurable function Y that satisfies [, Y dP = [, X dP for all B in & a version of
the conditional expectation of X given 2 or a version of E(X|%).

Proposition 10.4.2. Let (Q,.o/,P) be a probability space, let X be a random
variable on (Q, o/, P) that has a finite expected value, and let 2 be a sub-c-algebra
of <. Then

(a) X has a conditional expectation given B, and
(b) the conditional expectation of X given A is unique, in the sense that if Y| and
Y, are versions of E(X|B), then Y| =Y, almost surely.

Proof. The formula u(B) = [z X dP defines a finite signed measure on (Q, A); it
is absolutely continuous with respect to the restriction of P to %. Thus the Radon—
Nikodym theorem (Theorem 4.2.4), applied to u and the restriction of P to %, gives
a #-measurable random variable Y such that

/BYdP:u(B) _ /BXdP

holds for each B in #. Thus Y is a conditional expectation of X given B. The
uniqueness assertion in the Radon—Nikodym theorem gives the uniqueness of the
conditional expectation. O

Proposition 10.4.3. Let (Q,<7, P) be a probability space, let 8 and B be sub-0-
algebras of <7, and let X and Y be random variables on (Q, </, P) that have finite
expected values. Then

(a) if a and b are constants, then E(aX + bY|#) = aE(X| %) + bE(Y| %) almost
surely,g

(b) if X <Y, then E(X|B) < E(Y|#) almost surely,

© IEXIZ) < X1l

(d) if X is B-measurable, then E(X|#) = X almost surely (in particular, if ¢ is a
constant, then E (c|B) = c almost surely),

(e) if By C B, then E(X|Bo) = E(E(X|B)|%o) almost surely,

(f) if # and X are independent (that is, if % and 6(X) are independent), then
E(X|2) is almost surely equal to the constant E(X), and

(g) if X is bounded and JB-measurable, then E(XY|%) = XE(Y|%) almost surely.

Proof. Note that aE(X| %) + bE (Y| %) is a #-measurable function that satisfies

91t is probably worth translating one of the parts of this proposition into more precise language. Part
(a) says that if Z is a version of E(aX + bY|#), if Z; is a version of E(X|%), and if Z; is a version
of E(Y| %), then Z = aZ; + bZ, almost surely. Equivalently, part (a) can be viewed as saying that
if Z; and Z, are versions of E(X|%) and E(Y|%), then aZ, + bZ, is a version of E(aX + bY|A).
Other assertions about conditional expectations can be made precise in similar ways.
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/(aE(X|%’)+bE(Y|§£))sz /(aX+bY)dP
JB JB

for each B in % and hence is a conditional expectation of aX + bY given 4. Part (a)
then follows from the uniqueness of conditional expectations (part (b) of Proposition
10.4.2).

For part (b), note that

'/BE(XL@)dP:/I;XdPS/I;YdP:/I;E(YL@)dP

holds for each B in 2. It now follows from Corollary 2.3.13 that E (X | %) < E(Y| %)
almost surely.

If we let A1 and A_ be the sets {E(X|#) > 0} and {E(X|%) < 0}, then part (c)
follows from the calculation

IExi#) = [ ECizap— [ Exiz)ap

:/ XdP—/ XdP < |X|.
AL .

Part (d) is immediate, and part (e) follows from the calculation
/E(E(XL%)L@O)LZP: /E(x@)dpz /XdP
B B B
which holds for every B in A (recall that By C A).

We turn to part (). If 8 and X are independent, then for each B in # the random
variables yp and X are independent, and so Proposition 10.1.10 implies that

/XdP:/xBXdP:/XBdP/XdP
B

— P(B)E(X) = /B E(X)dP;

it follows that E(X) is a version of E (X |4).
Let us start our consideration of part (g) with the special case where X = y,4 for
some A in Z. Then for each B in % we have

/XYdP:/ YdP:/ E(Y|%)dP
B BNA BNA

:/XAE(Y|%)dP:/XE(Y|%)dP
B B

and so i
/XYdP: / XE(Y|%)dP. 3)
JB B
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Equation (3) now extends to the case where X is simple function and then (by the
dominated convergence theorem) to the case where X is an arbitrary bounded %-
measurable function. Furthermore XE (Y| %) is #-measurable. Thus XE (Y| %) is a
version of E(XY|%) and the proof is complete. O

Proposition 10.4.4 (Monotone and Dominated Convergence Theorems for Con-
ditional Expectations). Let (Q, .o/, P) be a probability space, let B be a sub-o-
algebra of <7, and let Xy, X, ... be random variables with finite expected values
such that lim, X,, exists almost surely. If

() {X,} is an increasing sequence such that lim, E(X,) is finite, or
(b) there exists a random variable Y with finite expected value such that each X,
satisfies |X,| <Y almost surely,

then lim, X,, has a finite expected value and E (lim, X,| %) = lim, E (X,| %) almost
surely.

Proof. First suppose that condition (a) holds. Let us also temporarily assume that
the random variables X, are nonnegative. Since we are assuming that {X,} is an
increasing sequence, it follows from part (b) of Proposition 10.4.3 that the sequence
{E(Xy|#)} is increasing almost surely and so has an almost sure limit, possibly
with some of values of lim, E(X,|%) being infinite. The monotone convergence
theorem implies that

/limE(XnL@) P = lim/E(X,,L%) P = lim/X,, dP < oo,
n n n

and so lim, E(X,|%) is finite almost everywhere. Applying the monotone conver-
gence theorem twice more gives

limX, dP = lim / X, dP = lim / E(X,|#)dP = / limE (X,| %) dP
B n n JB n JB B n

for each B in %; thus lim, E(X,,| ) is a version of E(lim, X,|#) and the proof is
complete in the case where condition (a) holds and the X,’s are nonnegative. We
can complete the proof for the case where (a) holds by applying what we have
just proved to the sequence {X, — X} and then using the linearity of conditional
expectations.

Now suppose that condition (b) holds. Since we are assuming that |X,| <Y for
each n, we have |lim, X,| <Y and so lim, X, has a finite expected value. For each
nlet ¥, = inf{Xy : k > n} and Z, = sup{X; : k > n}. Then {Y,} is an increasing
sequence that converges pointwise to liminf, X, and {Z,} is a decreasing sequence
that converges pointwise to limsup, X,;; since limX,, exists, both those sequences
converge to it almost surely. If we apply the first half of the proposition to the
sequence {Y,}, we conclude that lim, E(Y,|%) = E(lim, Y,| %) = E(lim, X,| %)
almost surely. A similar argument, applied to the sequence {Y — Z,}, shows that
lim, E(Z,| %) = E(lim, X,| %) almost surely. Finally, each variable E(X,|%) lies
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between the corresponding variables E(Y,| %) and E(Z,| %), and it follows that
lim, E (X,| %) = E(lim, X,,| %) almost surely. With this the proof is complete. O

In the remainder of this chapter we will be looking at stochastic processes.
A rather abstract definition might say that a stochastic process is an indexed family
{X;}ter of random variables, where T is an arbitrary nonempty set and all the
random variables are defined on the same probability space. However, one usually
deals with more concrete situations, in which the index set 7 is a set of integers
or else a nice set of real numbers (such as an interval), and the members of T
are interpreted as times. For each ¢ in T the random variable X; is thought of as
representing a quantity that can be observed at time 7.

A discrete-time stochastic process is one for which T is a set of integers, and a
continuous-time process is one for which T is an interval of real numbers. We will
see a few discrete-time processes in this section, and we will see some continuous-
time processes later in the chapter.

Let (Q,7,P) be a probability space. A filtration'® is a sequence {%,}:>_, of
sub-o-algebras of o7 that is increasing, in the sense that .%, C .%,; holds for each
n. A discrete-time stochastic process (i.e., a sequence of random variables) {X, }
is adapted to the filtration {.%,}7_ if X, is .%,-measurable for each n. Note that the
sequence {X, }_ is adapted to the filtration {.%, };._ if and only if 6(Xo, ..., X,) C
%, holds for each n.

The intuition here is that the events in the c-algebra .%, are those that could be
known by time n. In one common situation, {X, } is an arbitrary sequence of random
variables and for each n we let .7, be 6(Xy, ..., X,). In this case .%, contains exactly
the events that are determined by the random variables Xy, ..., Xj.

Let {.%,} be a filtration on the probability space (Q,.«7,P). A stopping time or
an optional time is a function 7: Q — NoU {+eo} such that {t <n} € .%, holds for
each n in Ny. It is easy to check that if 7 is a stopping time, then 7 is .27 -measurable
and that a function 7: Q — NoU{+eo} is a stopping time if and only if {t=n} € .Z,
holds for each n in Nj.

One standard interpretation of a stopping time is the following: You are observing
random variables Xy, Xi, ..., one after the other, and you may decide to stop
observing at some random time 7. It is reasonable to decide whether or not to stop
with the nth observation on the basis of the information that is available by time n,
but it is not reasonable to use information about the future (e.g., the values of X, |,
X125, - -.). In other words, {t = n}, the event that you stop just after observing X,
should belong to .%,,.

10n this section we are dealing with discrete-time processes. On the other hand, a filtration
{%:}1er in continuous time is defined by requiring that .%, C .%, holds whenever #; and #, are
elements of 7 such that t; < 1. If {7 },cr is a filtration with T = [0, +<o), then a stopping time
for it is a function T: Q — [0, +oo| such that {T <t} € .% holds for all # in 7. Except for a few
exercises involving Brownian motion, we will not be dealing with filtrations in continuous time.
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Example 10.4.5. Suppose that you take a random walk on the integers in the
following way. You begin at 0, and every minute you toss a fair coin and move
to the right by a distance of 1 if the coin yields a head and to the left by a distance
of 1 if it yields a tail. To formalize this, we let {Y;};, be a sequence of independent
and identically distributed random variables such that

P({Yi=—-1}) =P({Yi=1})=1/2

holds for each i, and then we define {X,}> by Xo =0and X, =Y +---+7Y,
if n > 0. Finally, we define the filtration {.%,} by letting .%, be o(Xy,...,X,) for
each n.

Let us consider a rather simple stopping time for this process. The time you first
reach 1 (if you ever reach it) is given by

171y (@) = inf{n € No : X, (@) = 1}. (4)

Note that 7y, (w) = oo if the set on the right side of (4) is empty—in other words,
if you never reach the point 1. Since

{T{l} <n}= U{Xi =1} € %,

i<n

the variable 7(yy is in fact a stopping time. O

Example 10.4.6. Now suppose we have an arbitrary real-valued process {X,}_,
that is adapted to some filtration {.%, } and we want to know the first time that X,, is
in some Borel subset A of R. The same reasoning as in Example 10.4.5 works if we
replace (4) with

(o) =inf{ne Ny : X,(w) €A}. O

Let us now turn to martingales. Suppose that (Q,.27, P) is a probability space, that
{Fn};_ is afiltration on (Q, <7, P), and that {X,,};-_, is a discrete-time process on
(Q, 7 ,P). Then ({Xu} o, {-Fn}ip). or simply {X,,};r_. is a martingale if

(a) {Xu}_ is adapted to {.Z,}7 .
(b) each X, has a finite expected value, and
(c) for each n we have X,, = E(X,,11|-%,) almost surely.

Sometimes we will say that {X,} is a martingale relative to {.%,}. If condition (c)
is replaced with

for each n we have X,, < E(X,+1|-%,) almost surely

or with
for each n we have X,, > E(X,+1|-%,) almost surely,
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then ({ X}, {Fn}io) or {Xn}ir_ is @ submartingale or a supermartingale. Note
that we can verify condition (c) in the definition of a martingale by checking that
JXndP = [3X,.1dP holds for each n in Ny and each B in .%,. Similar remarks
apply to submartingales and supermartingales.

Examples 10.4.7.

(a)

(b)

(c)

(d)

Let (Q,/,P) be a probability space, and let {¥,};7_, be a sequence of
independent (real-valued) random variables on Q with finite expectations.
Define {S,};> by So=0and S, =Y, +---+Y, if n > 1, and define a filtration
{Fn}r_ by Zu=0(S0,...,8). fE(Y,) =0forn=1,2,..., then we can use
parts (a), (d), and (f) of Proposition 10.4.3, together with the independence of
the sequence {Y,};;_,, to show that

E(Sn+l|<9\n) = E(Sn+Yn+l|§n) = Sn+E(Yn+l|§n) =S

holds almost surely for each n, and hence that {S,};7_ is a martingale. Similar
calculations show that if E(Y,) >0forn=1,2,...(orif E(¥,;) <0 forn=1,
2,...), then {S,}7_ is a submartingale (or a supermartingale).

Suppose that you are gambling, making a sequence of wagers. Let {X,,}>" ,bea
sequence of random variables with finite expected values and defined on some
probability space (Q, .o, P), and suppose that Xy represents your capital at the
start and that X,, represents your capital after n wagers. Define a filtration by
letting .%, = 6(Xo, ...,X,) hold for each n. Then {X,} _ is a martingale if the
wagers are fair (that is, if at each stage the conditional expectation of your gain
from the next wager, namely E (X, 11|%,) — Xy, is 0); it is a submartingale if the
wagers favor you and is a supermartingale if they favor your opponent.

Let (Q, <7, P) be a probability space, let {.%,}_ be a filtration on (Q, <7, P),
and let X be an integrable <7 -measurable function on Q. For each n define X, by
X, = E(X|%#,). Let us check that {X,,}7*_, is a martingale. Condition (¢) in the
definition of martingales is the only thing to check, and that condition follows
from the calculation

EXui1|Fn) = E(E(X|Fi1)|F0) = E(X|F0) = X,

(see part (e) of Proposition 10.4.3).

We define a martingale on the probability space ((0,1],%((0,1]),A) as follows.
Let .7 be the o-algebra that contains only the sets & and (0, 1]. For positive n
let &2, be the partition of (0, 1] that consists of the intervals (i/2",(i+1)/2"],
i=0,...,2"—1; then let %, = 6(Z,). Now suppose that {1 is a finite Borel
measure on (0, 1], and for each n define X,,: (0,1] — R by X,,(x) = u(1)/A (1),
where I is the interval in &2, that contains x. Then each interval I in &2, satisfies

/X,,d)t —u(l) = /x,,ﬂdx.
1 1
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It follows that the same equation holds if 7 is replaced with an arbitrary set in
Fn; hence X, = E(X,1]|%,) and {X,} is a martingale. There are a couple of
things to note here. First, if we consider the behavior of the sequence {X,(x)} as
n goes to infinity, we seem to be dealing with some sort of derivative. We’ll look
harder at this later in this section. Second, we are dealing with pure analysis in
this example; no probability seems to be involved. O

The following is one of the major results of martingale theory.

Theorem 10.4.8 (Doob’s Martingale Convergence Theorem). Let (Q, .o/, P) be
a probability space, and let ({X,,}7>_o,{-Fn}rr_) be a submartingale on (L, <7, P)
such that sup,E(X,) < +eo. Then the limit lim, X, exists almost surely, and
E(|lim, X, |) < +oe.

We need a few preliminary results before we prove the martingale convergence
theorem.

Lemma 10.4.9. Suppose that {F,} is a filtration on the probability space
(Q,o,P) and that {X,} and {Y,} are submartingales on Q relative to {F,}.
Then {X,VY,} is a submartingale relative to { %, }.

Proof. Tt is clear that each X, VY, has a finite expectation and is .%,-measurable.
Define sets C,, n =0, 1, ..., by C, = {X,, > Y, }. Then each C, belongs to the
corresponding .%,, and for each B in .%, we have

/(X,,\/Y,,)dP:/ X,dP+ | Y,dP
B BNCy BNCE

< / Xpr1dP+ / Y,11dP < /(Xn+1\/Yn+1)dP.
BNG, JBrcg B

Thus {X,, VY, } is a submartingale relative to {.%, }. O

Let us for a moment view a martingale (or sub- or supermartingale) {X,} in
terms of gambling, with X,, representing our capital after the nth of a sequence
of games. It is sometimes useful to modify {X,} by allowing ourselves to skip
certain of the games. More precisely, let {€,} be a sequence of {0,1}-valued
random variables, with g, having value 1 if we participate in the nth game and
having value O otherwise. Since X, — X,,—1 would be our gain or loss from the
nth game of the original sequence, &,(X, — X,—1) will be our gain or loss in the
modified sequence. Thus we can describe our fortunes in the modified situation with
a sequence {Y,}, where ¥y = Xy and ¥, = Y,,_| + &,(X,, — X,,—1), or, equivalently,
Y, =Xo+ X" &(X; —Xi—1). For this formalization to be reasonable, we must make
our decisions about which games to play and which to skip using only information
that is available at the time of the decision. Hence it is natural to assume that g, is
%,_1-measurable.
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We have the following proposition, which says that if we transform a submartin-
gale {X,} as in the preceding paragraph, then the resulting sequence {Y,} is also a
submartingale, with expected values no larger than those for the original sequence.

Proposition 10.4.10. Suppose that ({X,},{%n}) is a submartingale on the prob-
ability space (Q,</,P) and that {&,};>_, is a sequence of {0,1}-valued random
variables on Q such that €, is %, _1-measurable for each n. Then the sequence
{Ya}r defined by Yo = Xo and Y, = Y, + €,(Xy —Xy—1) forn=1,2, ... isa
submartingale, and E (Y,) < E(X,) holds for each n.

Proof. Tt is clear that each Y, is .%,-measurable and has a finite expected value.
Since {X, } is a submartingale,
E(Xn _Xn71|<g\nfl) = E(Xn|§nfl) —Xp 120

holds almost surely forn =1, 2, ..., and so (see Proposition 10.4.3)

E(Yn|g\n71) = E(Yn71|g\n71) +E(€n(Xn _Xn71)|§n71)

=Y,1+ gnE(Xn _Xn71|fg.n71)

> Y1
almost surely; thus {Y,} is a submartingale. We prove that E(Y,) < E(X,) by
induction. This inequality certainly holds when n = 0. For the induction step, note
that, since E(X,, — X,—1|-%n—1) > 0, we have

E(Yn) = E(Ynfl) + E(gn(Xn - anl))

(Yn 1) ""E(gnE(Xn —Xn-1 |g\n71))

E(Y,_
E(Xy_1)+EXy—Xo_1) = E(X,). 0

IN

In order to prove the martingale convergence theorem, we will look a bit at how
a sequence {x,} of real numbers might fail to converge. One way for this to happen
is for liminf, x, to be less than limsup,, x,,. In that case, there are real numbers a and
b such that

limninfx,, <a<b<limsupx,,
n
from which it follows that there is a subsequence {x,, } of {x,} such that x,, <a,
Xp, > b, x4y <a,.... This suggests the following definition. A sequence {x,} is said
to have an upcrossing of the interval [a, b] as n increases from p to g if x, < a, x, <b
for n satisfying p <n < g, and x, > b.

Now suppose that (Q, 7, P) is a probability space, that {.%#,} is a filtration on
(Q, 7, P), and that {X,} , is a sequence of random variables adapted to {.%,}.
Let a and b be real numbers such that a < b. Our immediate goal is to count the
upcrossings of the interval [a,b] made by these random variables, and for this we
use sequences {0, } and {1, } of stopping times defined as follows. We define ; by
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o1(w) =inf{i € Np: Xi(w) <a},
and then we continue inductively, defining 6,,, n > 2, and 7, n > 1, by
(o) =inf{i € Ny: i > 0, (w) and X;(w) > b}

and
oy(0) =inf{i € Ny: i > 7,_| (@) and X;(®) < a}

(recall that the infimum of the empty set is +o0). We can check inductively that o,
and 7, are indeed stopping times by noting that

{01 <k} =Uio{Xi <a} € 7,

{0, <k} =U" {1, 1 <iandX; <a} €. ifn>2 and
{1, <k} =UL {0, <iand X; > b} € F.

The finite sequence {X;(®)}"_, contains k or more upcrossings'! of [a,b] if and

only if 7 (@) < n. Thus, if we define functions Ut QSR by letting yle?! (w) be

the number of upcrossings of [a, b] in the sequence {X;(w)}" ), then {U,Ea’b] >k} =

{t < n}; since each 1 is a stopping time, it follows that U,La’b] is .%,-measurable.

Proposition 10.4.11 (The upcrossing inequality). Ler (Q, <7, P) be a probability
space and let ({X,},{%}) be a submartingale on (Q, </ ,P). If a and b are real
numbers such that a < b, then for each n the number U,Ea’b] of upcrossings of |a,b)
by {Xi}!, satisfies
E((X,—a)")

b—a '
Proof. Let us suppose that a and b are fixed. We can assume that each X, satisfies
a < X,, since replacing {X,} with {max(X,,a)} gives a new sequence that is a
submartingale (see Lemma 10.4.9), has the same number of upcrossings of [a,b] as
the original sequence, and is such that E((X,, —a)™) is the same for the old and new
sequences. Let {0, } and {7,} be the sequences of stopping times defined before the
statement of the proposition, and define functions?g,: Q >R, n=1,2, ..., by

E(Ui*) <

&(w) =

1 if there is an i such that 6;(w) < n < 7;(w), and
0 otherwise.

Then

Here we are, of course, counting non-overlapping upcrossings, where we call a sequence of
upcrossings of [a, b] non-overlapping if the sets of times (i.e., of subscripts) during which they
occur are non-overlapping.

12The intuitive meaning of &, is that it tells whether X,, is part of an upcrossing.
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{8,, = 1} ZUL‘({O',' <n— l}ﬁ{Tign—l}C) € Zi,

and so g, is %, j-measurable. Let {Y¥,} be the submartingale (see Proposition
10.4.10) defined by ¥, = Xo + X1, &(Xi — Xi—1). We will use {Y¥,} to bound the
number of upcrossings of [a,b] by {X;}!_,.

For an arbitrary element @ of Q let us analyze the set of those k that satisfy
k < nand g(w) = 1. Such values of k can arise in two ways. First, for each i such
that 7;(@) < n we have the set of k that satisfy 0;(w) < k < 7;(w). Those values
correspond to the steps in the upcrossing of [a, ] that begins at o;(®) and ends at
7;(®), and so we have

7i()

b—a< Y (X(0)—X (o). )

k=0;(@)+1

The other way that such k can arise is for there to be an i such that 0;(®) < k <
n < 7;(®). These k correspond to a potential upcrossing that has started but has not
finished by time 7, and in this case we have

n

Y, (X(0) = X1 (o) =X, (®) —a> 0. (6)
k=0i(w)+1

We are now ready to relate the number of upcrossings to the submartingale {Y,, }.
In view of (5) and (6), we have
0.5 3
Xo+ (b—a)Uy™" < Xo+ Y, &(Xx —Xp—1) = Yos
k=1

since a < Xp and E(Y,) < E(X,,) (see Proposition 10.4.10), it follows that

a+(b—a)EWU") <E(Y,) <E(X,)

and hence that

(b—a)E(UM) <E(X,—a) <E(Xp—a)t).

With this the proof of the upcrossing lemma is complete. a
We are now in a position to prove the martingale convergence theorem.

Proof of the Martingale Convergence Theorem. As in the statement of the theorem,
let {X,};_, be a submartingale such that sup, E(X,) < +eo. We begin by showing
that liminf, X,, = limsup, X, almost surely, which we do by counting upcrossings.
For each pair a, b of real numbers such that a < b we define U d. Q 5 R
by letting U [“*b](a)) be the total number of upcrossings of [a,b] in the sequence

{Xu(®)}_,- (This differs from U,Ea’b], which only counts the upcrossings in the first
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n—+1terms of {X;(w)}7 ). Note that the sequence {U,Ea’b] +_, is increasing and has
Ul** as its limit, and also that (X, —a)* < X} 4 |a|. The monotone convergence
theorem and the upcrossing inequality, together with assumption that sup, E (X,") <
+o0, imply that

[a,b]

E(X,—a)" EXF
E(U[a,h}) _ llmE(Un ) < sup (( n a) ) < sup, n T |a|
n n

b—a - b—a

< oo

It follows that U, the number of upcrossings of [a,b], is almost surely finite.
Since

{liminfX, < limsupX,} = Uy, {U" = 4o},
n

where a and b range over all rational numbers such that a < b, we have liminf, X, =
limsup, X, almost surely. Thus lim, X, exists almost surely, as an element of
[—o0,4-o0]. We still need to show that E(|lim, X,|) < +eo and hence that lim, X,
is finite almost surely.

Note that |X,| = 2X, — X, and so if we use Fatou’s lemma (Theorem 2.4.4), plus
the fact that {X,,}, as a submartingale, satisfies E(Xy) < E(X,), we find

/ |limX, | dP — / liminf |X,|dP
. n n
< liminf/ |X,|dP < ZSup/X,f—/XodP< +oo.
n n

With this the proof of the martingale convergence theorem is complete. O
Let us return to a couple of the examples discussed above. We first look at
Example 10.4.7(c), which we can extend as follows:

Proposition 10.4.12. Let (Q,.o7,P) be a probability space, let X be an integrable
random variable on Q, let {F,} be a filtration on (Q,</,P), and let F.. =
0 (Uy%,). Then the martingale {X,} defined by X, = E(X|-%#,) converges almost
surely and in mean (i.e., in the norm || - ||1) to E(X|%=).

Proof. Since

B = [ %= [ x<|xl,
{Xu>0} {Xu>0}

the martingale convergence theorem (Theorem 10.4.8) implies that the sequence
{X,} converges almost surely, say to Xjn.

Let X.. = E(X|-%.). Part (e) of Proposition 10.4.3 implies that {X,, } is also given
by X, = E(X-|-%,). Let us show that lim, ||X;, — X.||; = 0. Suppose that € is a
positive real number. It follows from Proposition 3.4.2 and Lemma 3.4.6 that there
is a simple function X of the form Y} a;x4,;, where each A; belongs to U,.%#,, such
that | X — X.||1 < €. Since each A; is in .%, for some n, there is a positive integer N
such that X is .Zy-measurable. It follows that if n > N, then E(X¢|.-%,) = X, and
so (see also part (c) of Proposition 10.4.3)
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[1Xn = Xeol [t = [|E (Xeo| F) — Xeo11
< ||E(Xeo| Fn) — E(Xe| Fn) 11 + | E (Xe| Fn) — Xel[1 + |1 Xe — Xeo] 1
< 1Xe — Xoo|| 1 + 0+ [|Xe — X1 < 26

Since € was arbitrary, we have lim, || X;, — X.||; = 0.

We still need to show that {X,} converges to X.. almost surely. Since we have
lim, | X;, — X|[1 = 0, there is a subsequence of {X,} that converges to X.. almost
surely (see the discussion that follows the proof of Proposition 3.1.5). Since we
already know that the sequence {X,} converges almost surely to Xj,, we can
conclude that X.. = Xj;;, and hence that {X,,} converges to X.. both almost surely
and with respect to || - [|1. O

See Exercise 11 for another proof of Proposition 10.4.12.

Example 10.4.13. Let us now look at Example 10.4.7(d), which hinted at some
relationships between martingales and derivatives. Let y be the measure from that
example, and define F by F(x) = u((0,x]). The martingale convergence theorem
says that the limit

lim F(b") — F(a")

n b, —ay

exists for almost every x in (0, 1], where for each n we let (ay,by] be the interval
in &, that contains x. In case u is absolutely continuous with respect to Lebesgue
measure, Proposition 10.4.12 identifies this limit as the Radon—Nikodym derivative
of u with respect to Lebesgue measure. See Exercise 12 for the case of singular
measures.

Note that the argument in the preceding paragraph is not a derivation of the
almost everywhere differentiability of monotone functions from the martingale con-
vergence theorem—there are uncountably many possible choices for the sequence
{P,} of partitions of (0,1], and different sequences of partitions could give rise
to different sets of values where the limit does not exist. Nevertheless, as noted by
Doob [38, p. 347], these ideas can be made to work; see Chatterji [27] for the details.

O

Exercises

1. Let (Q,</,P) be a probability space, let X and Y be random variables
on (Q,.o,P) such that the joint distribution of (X,Y) on R? is absolutely
continuous with respect to Lebesgue measure, and let p: R> — R be the
density function for that joint distribution. Suppose that F: R?> — R is a Borel
measurable function such that F o (X,Y) has a finite expected value. Define a
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function f: R — R by letting

_ JF(xy)p(xy)dy
[ p(x,y)dy

for those x for which the expression above is defined and finite and by letting
f(x) = 0 for other x. Show that f o X is a version of the conditional expectation
E(Fo(X,Y)|o(X)).

fx)

. Suppose that (Q,.27, P) is a probability space and that {.%,} is a filtration on

(Q, o, P).

(a) Show that if 7; and 7, are stopping times and n is a positive integer, then
T +n, T + T, T VT, and T A Tp are stopping times.

(b) Show that if {7,} is a sequence of stopping times, then inf, 7,, sup, T,
liminf, 7,, and limsup,, 7, are stopping times.

. Let (Q, <7, P) be a probability space, let {.Z,}5 be a filtration on (Q, </, P),

and let T be a stopping time. Define .%; to be the set of all sets A in o (U%,)

such that AN {7 < n} € .%, holds for each nonnegative integer n.

(a) Show that .#; is a sub-o-algebra of ..

(b) Show that a set A belongs to .% if and only if it satisfies AN{t =n} € %,
for each nonnegative integer n, along with AN {7 = 4o} € o(UF,).

. Suppose that {X,, }7 is a sequence of independent identically distributed random

variables on (Q,.27, P). Define a filtration {.%,}5 by %y = {@,Q} and %, =
o(Xi,...,X,) forn=1, 2, .... Suppose that T is a stopping time such that
P(7 < +o0) = 1. Define a sequence {Y,} of random variables by

X o) if 7(w) < 4o, and
Yn(a)) — T+”( ) 1 ( ) + an
0 otherwise.

(a) Show that the random variables {Y,} are independent and identically
distributed, with the same distributions as the X,,’s. (Hint: Consider the
probabilities of events of the form {t=m}N{Y; € A} N{V, € A }N---N
{Y, €A,})

(b) Show that the o-algebra .%; and the process {Y, } are independent. That is,
show that the o-algebras %#; and 6(¥,,n = 1,2,...) are independent.

. (Jensen’s inequality for conditional expectations) Let ¢ : R — R be a convex

function, let (Q,.7,P) be a probability space, let Z be a sub-c-algebra of
</, and let X be a random variable on (Q,./, P) such that both X and ¢ o X
have finite expected values. Show that ¢ o E(X|#) < E(¢ 0 X|#) holds almost
surely. (Hint: Use ideas from Exercise 3.3.8 to show that there is a family .# of
functions, each of the form x +— ax + b, such that

¢(x) =sup{f(x): f €7}
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10.

11.

holds for each x in R and such that f o E(X|2) < E(¢ o X|%) holds almost
surely for each f in .#. To conclude that ¢ o E(X|%) < E(¢ o X|%) holds
almost surely, choose a countable subset .% of .% such that ¢ is the pointwise
supremum of the functions in .%y. (Why do we need .% to be countable?) The
existence of such a subset can be derived from item D.11 in the appendices.)

. Show that if {X, } is a submartingale relative to {.%,}, then it is a submartingale

relative to {0 (X0, X1,...,Xn)}-

. Show that if ({X,},{%,}) is a submartingale and if 7 is a stopping time, then

({Xean}, {#n}) is a submartingale.

. (This exercise has nothing to do with martingales or conditional expectations.

It appears here as preparation for Exercise 10.) Suppose that {a, } is a sequence

of real numbers such that the sequence {e/®} is convergent for all ¢ in some

Lebesgue measurable set of positive measure.

(a) Show that {e“} is convergent for all real ¢. (Hint: Use Proposition 1.4.10.)

(b) Show that {a,} is convergent. (Hint: Choose an interval [b,c] such that
J; lime™@ dt # 0. Then consider the sequence { [; e dt}.)

. Suppose that {X,} is a sequence of independent random variables on some

probability space. For each n define .%, and S, by %, = 0(X1,Xa,...,X,) and
S, = X1 +X>+ -+ X,,. Suppose that ¢ is a real number such that lim,, E (¢/*5")
exists and is not equal to 0. Check that for such ¢ we have E (e*5%) # 0 for all n.
Let Y, = ¢ /E(e*5") for each n.

(a) Verify that ({Y,},{%#,}) is a martingale.

(b) Conclude that the sequence {5} is almost surely convergent.

Let {X,} be a sequence of independent random variables, let ¥, X, be the
corresponding infinite series, let y,, n =1, 2, ... be the distributions of the
partial sums of the series, and let ¢y, n =1, 2, ... be the corresponding
characteristic functions. Consider the following conditions:

(1) The series Y, X, converges almost everywhere.
(ii) The series Y, X,, converges in probability.
(iii) The series Y, X, converges in distribution (that is, the sequence {u,}
converges in distribution to some probability measure).
(iv) The sequence of characteristic functions {¢,,} has a nonzero pointwise
limit on a set of positive measure. That is, lim, ¢y, () exists and is nonzero
for all ¢ in some set of positive measure.

We have seen that condition (i) implies condition (ii), condition (ii) implies
condition (iii), and condition (iii) implies condition (iv) (see Proposition 3.1.2,
Exercise 10.3.7, and Proposition 10.3.15). Now prove that condition (iv)
implies condition (i). (Hint: Use Exercises 8 and 9.)

Let ({X,},{-%,}) be a martingale on (Q, <7, P) such that the sequence {X,} is
uniformly integrable. (See Exercises 4.2.12—4.2.16.)

(a) Show that {X,} converges almost surely and in mean to some random

variable X.
(b) Show that for each n the equality X, = E(X|.%,) holds almost surely.
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Suppose that g is a finite measure on ((0,1],%((0,1])) and that {X,,} is the
martingale defined in Example 10.4.7(d). Show that if u is singular with respect
to Lebesgue measure, then lim, X, = 0 holds A-almost everywhere on (0, 1].
Let (Q,.7,P) be a probability space. In this exercise we consider sequences
{X, } and {.%,} that are indexed by the negative integers. The pair ({X, },{%u})
is called a reverse martingale if

(i) each .%, is a sub-c-algebra of <7,
(i) F,, C %, holds whenever m < n,
(iii) each X, is measurable with respect to the corresponding .%, and has a finite
expected value, and
(iv) X, = E(Xy41|-%) holds forn = -2, -3, ....

Prove the convergence theorem for reverse martingales: if ({X,},{%,}) is a
reverse martingale, then there is a function X_.. such that X_.. = lim,,—,_« X
holds almost surely and in mean. Furthermore, X_.. = E(X_1| N, %,). (Hint:
Use the upcrossing inequality, and verify and use the fact that the sequence
{X,} is uniformly integrable. See Exercises 4.2.12-4.2.16
In this exercise we derive the strong law of large numbers from the convergence
theorem for reverse martingales (see Exercise 13). Suppose that (Q,.7,P)
is a probability space and that {X;} is a sequence of independent identically
distributed random variables on (Q, <7, P) that have finite expected values. For
each positive integer n let S,, = X; + Xo + - - - + X,, and define the o-algebra .%_,
to be O-(Sn,Xn+1,Xn+2, . )
(a) Let & = o(S,). Show that E(X||.F) = E(Xz|.%) = --- = E(X,|-%) and
conclude that E(X;|-%#) = S,/n. (Hint: Using the map

o~ (X1(0),X%(o),...,X,(0))

to convert this to a calculation on R” might be useful.)

(b) Show that ({S,/n},{%,}) is a reverse martingale.

(c) Use the convergence theorem for reverse martingales, together with Kol-
mogorov’s zero—one law (see Exercise 10.2.2), to conclude that lim,, S, /n =
E(X;) holds almost surely.

10.5 Brownian Motion

In this section we look at a continuous-time stochastic process that models Brownian
motion, the random movement of a very small particle suspended in a fluid. Einstein
seems to have been one of the first to study Brownian motion mathematically, and
Norbert Wiener was the first to build a probability measure with which to describe
Brownian motion. In fact, the basic probability measure defining a Brownian motion
process is generally called a Wiener measure.
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As we noted in Sect. 10.4, a continuous-time process is a stochastic process
{X; }+er for which the index set T is a reasonable subset of R—typically an interval
such as [0,1] or [0,+e0). We will first construct a Brownian motion in which the
index set is [0, 1] and then we’ll note how to build one with index set [0, 4o).

Since one usually thinks of particles moving in three-dimensional space, it seems
natural to construct a process {X; };cr for which the variables X; have values in
R3. However, the trick of taking three independent one-dimensional process and
using them to build a three-dimensional process works. More precisely, suppose that
{Xi}1er is a one-dimensional Brownian motion on a probability space (Q,.<7,P).
Then it turns out that the three-dimensional process {X/};cr that is defined on the
product of three copies of (Q, <7, P) by X/ ((w;, @, @3)) = (X (1), X, (), X (@3))
has suitable properties. In any case, we will devote our attention to one-dimensional
Brownian motion. We begin with a precise definition.

Suppose that (Q, o7, P) is a probability space and that T is either [0, 1] or [0, +o).
A stochastic process {X; };cr with values in R is a Brownian motion'? if

(2) Xo(w) =0 for all ® in Q,

(b) for each choice of 1, t, ..., t, in T such that fy < t; < --- < t,, the increments
X, —X;,_,,i=1, ..., n, are independent, with X;, — X;, |, having distribution
N(0,#; — ;1 ), that is, a normal distribution with mean O and variance #; — f;_1,
and

(c) foreach  in Q the function X, (®): T — R defined by ¢ — X;(®) is continuous.

Given a process {X; }ser, the functions ¢ — X;(®) are called the paths of the
process. Thus condition (c) says that we are requiring the paths of a Brownian
motion process to be continuous.

Theorem 10.5.1. Let T = [0,1]. Then a one-dimensional Brownian motion with
parameter set T exists. That is, there exist a probability space (Q, o , P) and random
variables X;, t € T, on Q such that the stochastic process {X; },er is a Brownian
motion.

Proof. Let (Q,<7,P) be a probability space on which there exists a sequence
{2}, of independent random variables, each of which has a normal distribution
with mean O and variance 1. (Recall that according to Corollary 10.1.16, such a
sequence can be constructed on the probability space ([0, 1], 2([0,1]),24).) We will
use such a sequence {Z,} to build a sequence of piecewise linear approximations to
a Brownian motion process. More precisely, we will construct processes {X/"}scr,
n=20,1,...,such that

(a") for each n the paths of {X/'},cr satisfy X[/(w) = 0 for all @ and are piecewise
linear, with the paths being linear on the intervals of the form [(i —1)/2",i/2"],

13Some authors only require conditions (a) and (c) in the definition of a Brownian motion to hold
for all @ outside some P-null subset of Q.
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(b") for each n the process {X/};cr, when restricted to the points #;/n, i =0, ...,
2", looks like a Brownian motion (that is, it has independent increments whose
distributions are normal and have the required means and variances),

(¢') for almost every o the sequence of functions {t — X/'(®)}7_, converges
uniformly on [0, 1] as n approaches infinity, and

(d") these processes satisfy X/'(w) = X" (®) = X""*(w) = ... for each n and ®
and each ¢ of the form i/2".

Now assume that we have constructed such a sequence of processes {X/" };cr, and let
A be an event of probability 1 such that if @ € A, then the sequence {r — X/*(®)},
converges uniformly on 7. Define a process {X; }cr by

lim,, X" ift €T and w €A, and
X,(w)_{lm” o) i and ® an

0 ift €T and o ¢ A.

Then, in view of the uniform convergence of the paths, condition (a’) implies that
Xo = 0 and that all the paths of {X;};er are continuous. Conditions (b’) and (d’)
imply that if 7, 1, ..., #; are dyadic rationals such that 7y < #; < --- < #, then
the increments X;, — X;,_, i = 1, ..., k, are independent, with X;, — X;, | having
distribution N(0,#; —#;_1). We need to extend this to the case where the #; are not
necessarily dyadic rationals.

So suppose that 7;, i =0, ..., k, are elements of [0,1] such that tp <7} < -+ <
fy. Let us approximate these values by choosing sequences {t;,}n, i =0, ..., k,
of dyadic rationals in [0,1] such that #; = lim,;, holds for all i and #;_, < t;,
holds for all i and n. Then for each n the increments X;,, — X, | ,i=1, ..., k, are
independent, with X, —X;,_, , having distribution N (0, t'i,,, —tiq n) The increments
Xy, — Xi,_,, converge pointwise (and so'* in distribution) to the increments X, —
Xti;l, and so it follows that the increments X, —X;,_,,i=1,..., k, are independent
(see Corollary 10.3.12), with X;, — X;. | having distribution N(0,#; — #;—1). This will
complete the proof, as soon as we construct the processes {X" };er, n =0, ....

We turn to the construction of processes {X/' };er, n =0, . .. satisfying conditions
(@’)—(d"). Recall that we have a sequence {Z,,}::O of independent normal random
variables, each with mean O and variance 1. We define the process {X°},cr by
letting X () = tZo(®) hold for each @ and each ¢. This process certainly satisfies
conditions (a’) and (b’) above.

Given the process {X/" ' },c7, we form the process {X/},cr as follows. For each
t of the form i/2"~! we let X" = X"~ !. For each 1 of the form (2i+1)/2",i=0, ...,
21—l _ 1 we let

X[n _ th,1 +27(n+1)/222”*1+i'

14Use the definition of convergence in distribution, together with the dominated convergence
theorem.
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2i 2i+1 2042
2 2n o

Fig. 10.1 Constructing X” from X"~ . Solid line: path of X"~ !. Dashed line: path of X". Vertical
line: 2=("1/27,, .,

Then we use straight line segments to interpolate between the points (¢, X/’ (®)), for
which 7 has the form i/2" for some i. See Fig. 10.1. (The choice of Z,,-1; from
the sequence of Z’s is made so that the new Z’s used in the construction of {X;'};cr
are all distinct from those used earlier—that is, from those used in the construction
of {X}}icr, where k < n. The coefficient of Z,, 1; will turn out to be what is
needed to make the increments of {X;'};cr be independent and have the required
distributions.) To simplify the notation a bit, let us denote i/2" by #;, fori =0, ...,
2". Then the increment X, — X/ is given by

Xn

i1

-Xp, = x4 27(”“)/222"*1% -Xpn!

Dit1 ()]

=(1/2)X X ) 422z, X

D2 Di

=(1/2)xp L =xp ) 4272z,

Dit2

A similar calculation shows that

Xn

Diy2

— X"

Dit1

= (1/2)(x7) —xpy — =27,

12i+2 Ii
The variables (1 /2)(X,§;; —Xg:l) and 2=("*D/2z,, | . are independent, with
each having distribution N(0,1/2"*1), from which it follows that the increments
Xp.., —Xp, and X7 — X/ both have distribution N(0,1/2"). Finally, if one
calculates the characteristic function of the joint distribution of the increments
X;,, — X, one obtains the product of the characteristic functions of normal variables
with mean 0 and variance 1/2", and the independence of the increments follows.
With this we have verified conditions (a’), (b’), and (d').

We turn to condition (c), the almost sure uniform convergence of the sequence
{X"(®)}. Suppose that we can find a sequence {¢&,} of positive numbers such that

Yn€n < +eoand Y, P(A,) < 4o, where A, is defined by
A= {sup|X"—X""!| > g,}.
t
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Then the Borel-Cantelli lemma says that P({A, i.0.}) = 0; since if @ ¢ {4, i.0.},
then sup, |X"(®) — X" '(w)| < &, holds for all large n, the almost sure uniform
convergence of the sequence {r — X/'(w)};_, will follow from the condition
S En < oo

We still need to construct the sequence {&,}. In view of the way {X/"};cr was
constructed from {X/"~'},c7, we have

P(Ay) = P({sup| X" = X["| > &,})
t
_ 2y
P(oglilflzf*l |2 Zon-1,;] > &)

2117171
< ¥ P2z, 0 > &)
i=0

= 2" P(|Zy1| > 20T 2,

Since Zy,-1 has a normal distribution with mean 0 and variance 1, it follows from
Lemma 10.1.6 that

2 il 2L
PA <2n71—ef(1/2)2 & — —372 8,1.
W) <2 g, Vren
If, for example, we let g, be 271/ then > < tooand Y, P(A,) < 4oo, and the
proof is complete. a

Corollary 10.5.2. A one-dimensional Brownian motion with parameter set [0, +oo)
exists.

Proof. We will use a sequence {X,(n)},€[071], n=1, 2, ..., of independent
Brownian motion processes, which we can construct as follows. According to
Corollary 10.1.16 there exists a sequence {Z,} of independent normal random
variables, each with mean O and variance 1. Using ideas from the proof of
Corollary 10.1.14, we can divide the sequence {Z,} into a sequence of sequences
{Z,’M}m, n =1, 2, .... Finally, for each n, the construction in Theorem 10.5.1

can be applied to the sequence {Z, ,} to produce the process {X,(”)},G[OJ]; the
independence of these processes follows from the independence of the sequences
{Zymn=1,2,....

Next we define a process {Xl}t€[0,+w) by splicing together the paths of the

processes {X,(")},e[ovl]—that is, by letting X; (@) = X,(l) (w) ifr < 1, letting X; (@) =
Xl(l)(a)) —i—Xt(E)l (w)if 1 <t <2,.... More precisely, we define X; recursively by

XV (w) if0<r<1,and
Xi(0) = (n)
Xp1(0) +X, (w) ifn>landn—1<t<n.
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It is clear that the paths of {Xt}ze[o, ) are continuous and that Xy = 0. Now suppose

that we have a sequence fy, #1, ..., ty in [0,4o0) such that ;| <1f,i=1, ..., m.
Add to this sequence those integers between #y and t,, that are not in the original
sequence, forming a new sequence o, Si, ..., Sy such that s;_1 < s;,i=1,..., n.
Since {Xt(")},e[ovl], n=1,2,...,is a collection of independent Brownian motions,
the increments X;;, — X, ,,i=1, ..., n, are independent normal variables with mean
0 and the appropriate variances. It follows that the increments X;, — X, ,i=1,...,
m, are independent and have the required distributions. O

Here is an interesting fact about the paths of a Brownian motion process.

Theorem 10.5.3. Almost all the paths of a one-dimensional Brownian motion are
nowhere differentiable. More precisely, let T = [0,1] and let {X;};cr be a one-
dimensional Brownian motion on the probability space (Q, <7 ,P). Then there is a
set A in &/ such that P(A) = 0 and such that for each ® outside A the patht — X;(®)
is nowhere differentiable.

Proof. Let K be a positive integer, which we hold fixed for the moment. We will
construct a sequence {B,} of </-measurable subsets of Q such that

(a) lim, P(B,) =0, and
(b) if w is a element of Q such that the path ¢ — X, (@) is differentiable at some #,
in [0, 1], with |X; (@)| < K, then @ belongs to B, for all large n.

Suppose we have constructed such a sequence {B,}. Let Ax be Uy, Ny>m By, the set
of points @ such that @ € B,, holds for all large n. Then P(N,>,By) <lim, P(B,) =0
holds for all m, and so P(Ax) = 0. Now suppose that we let K vary through the
positive integers, and we define A by A = Ug_;Ag. Then A has P-measure 0, and it
follows from condition (b) that A contains every @ for which the path r — X;(®) is
differentiable at one or more points; in other words, A is as described in the statement
of the theorem.

Now we turn to our remaining task, the construction of a sequence'® {B,,} of sets
satisfying conditions (a) and (b) above. We once again consider K to be fixed; we do
so through the end of the proof. For each n, where n > 3, we define sets Cp, 4, k =1,
...,nby

3K
Cog = {(D? 1Xi/n (@) = X(g—1y/n(@)] < 7},

and then we define sets Dy, k=2, ...,n—1by

Dy =Chri—1NCiNGCy g1

Finally, we define sets B, by B, = C,,1 UCy, U (UZ;%D,,J{). We will show that the
sets B, satisfy (a) and (b).

150ur sequence will start with n equal to 3, rather than equal to 0 or 1.
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We begin our verification of condition (a) by estimating the probabilities of the
sets Cy k. Since the difference X;/, — X(x_1)/, is normal with mean 0 and variance
1/n, it has the same distribution as the variable Z/ \/n, where Z is a normal variable
with mean 0 and variance 1. Thus

PCos) = P X — X1yl < ) = p (12 < 2K
nk) = k/n (k—1)/n n ) \/ﬁ

3K
! e 2 dx < wi)

- Vo J- % vn'

where K; is the constant 6K /+/27. The independence of the events Co k=1,...,
n, implies that

P(Dyz) = P(Coi1)P(Cos)P(Crri1) < Ki3 /n/2.

Since By, = Cy,1 UG, U(Uj—3 Dy ), we have P(B,,) < 2K /\/n+ (n—2)K,3 /n3/2,
and lim, P(B,) = 0 follows. Thus condition (a) holds.

We turn to condition (b). Suppose that # — X;(®) is differentiable at the point #y,
and that |X; (@) < K. Let n be large enough that

X (@) — Xy ()] < K|t —10] (1)

holds when | —fo| < 2/n. It follows that if 7o € [=1, £], then

1Xi/n (@) = X(j—1)/n(@)| < K/n,

while if 7 lies in an interval of length 1/n adjacent to the interval [%, %], then

1Xi/n (@) = X(5—1)/n(@)] < [Xp/n (@) — Xiy (@)] + [ X (@) — X(k—1)/n(@)]
<K/n+2K/n=3K/n.

Now suppose that k is such that ¢y € [%, 1;‘] The estimates we have just made show
that w € G, UGy, if kis 1 or n and that @ € D, otherwise. In any case, ® € By,
and the verification of condition (b) is complete. O

Exercises

1. Suppose that we have a stochastic process {X;} with index set [0,1]NQ that
satisfies properties (a) and (b) in the definition of Brownian motion (where the
values ¢; are restricted to lie in [0, 1]N@Q). In this exercise we prove that almost all
the paths of this process are uniformly continuous on [0, 1] N Q. In the following
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exercise we use this to give another construction of a Brownian motion process
on [0,1].

(a) Show that if a and b are rational numbers that satisfy 0 <a < b <1 andif C
is a positive constant, then

P(sup{X; — X, :t € [a,b]NQ} > C) <2P(X, — X, > C). (2)

(Hint: First suppose thata <t} <, < --- <t < b and let A; be the event that
i is the smallest value of j for which X,j — X, > C. Check that

P(A;) = P(Ain{Xy — X; = 0}) + P(Ain{X, — X;, <0})
<2P(AiN{Xy — X, > C}),

and then use this estimate to prove the analogue of (2) in which the supremum
is taken as ¢ ranges over {f1,1,...,t, }. Finally, take limits as more and more
points from [a,b] N Q are considered in the supremum.)

(b) For each positive & define v(J) by

v(8) = sup{|X; — X;| : s,¢ € [0,1]NQand |t —s| < J}.

Use part (a), together with Lemma 10.1.6, to show that there exist sequences
{&n} and {5, } of positive numbers such that lim, &, = lim,, §, = 0 and

ZP(V(5,,) > &) < oo

from this derive the almost sure uniform continuity of the paths.

2. In Exercise 10.6.4 we will construct a stochastic process {X;} with index set
[0,1]NQ that satisfies properties (a) and (b) in the definition of Brownian motion.
Given that result, use Exercise 1 to give a proof of the existence of Brownian
motion on [0, 1] that is quite different from the proof in the text.

3. Let T = [0,+e0), let (Q,7,P) be a probability space, and let {X;};cr be a
Brownian motion process on (Q,./, P). Define a filtration {.% },cr by letting
F =0({X;:5<t})hold foreachzin T.

(a) Let a be a real number. Show that the function 7: Q — [0, +oo] defined by
7(®) =inf{z : X;(®) = a} is a stopping time.
(b) Suppose 7 is a stopping time. Show that if n is a positive integer, then

(o) = inf{i/2" : 1(0) < i/2"}

defines a stopping time (of course, T,(®) = +oo if T(@) = +o0).
(c) Show that if 7 is a stopping time, then X; is .%;-measurable.

4. Let T = [0,+o0) and let {X; };cr be a Brownian motion process.



364 10 Probability

(a) Fix a value fy such that 0 < fy < 4oo and define a process {Y; };er by ¥; =
Xi 41, — Xy, for ¢ in T. Show that {Y; };cr is a Brownian motion and that it is
independent of .%;, (in other words, the o-algebras o(Y,,t €T) and F are
independent).

(b) Suppose that 7 is a stopping time that is finite almost surely, and define a
process {Y; };er by

. Xt+‘r(w)(a)) _Xr(a))(w> if T(CO) < oo, and
Y (o) = :
0 otherwise.
Show that if the stopping time 7 has only finitely many values, then {Y; };er
is a Brownian motion that is independent of .%.
(c) Show that the assumption that T has only finitely many values can be
removed from part (b). (Hint: See Exercise 3.)

10.6 Construction of Probability Measures

This section contains two constructions of possibly infinite families of random
variables with specified distributions. The first construction gives sequences of
independent random variables, while the second gives families of not necessarily
independent random variables.

Let us recall the methods we have been using to construct sequences of
independent real-valued random variables. In simple cases, where we need only
finitely many independent random variables, say with distributions uy, o, ..., Uy,
we saw that we can take the product measure iy x --- x tg on R? and then let the
random variables be the coordinate functions on R¥. On the other hand, to construct
an infinite sequence of independent real-valued random variables, we used a perhaps
awkward-seeming ad hoc construction based on the binary expansion of numbers
in the unit interval, together with a kind of inverse for distribution functions of
probability measures (see the end of Sect. 10.1).

Here we will look at the use of product spaces to construct infinite families of
random variables. Note that the random variables we construct do not need to be
real valued—in our first construction, they can have values in arbitrary measurable
spaces, while in our second construction, they can have values in rather general, but
not arbitrary, spaces.

We begin by defining the measurable spaces on which we will construct families
of random variables. Let I be an index set, and let {(€;, o7 ) }ics be an indexed family
of measurable spaces. (In typical situations the measurable spaces (Q;, %) will be
equal to one another.) The product of these measurable spaces is the measurable
space (Q, <) defined as follows: The underlying set Q is the product [;€; of the
sets {Q;};; that is, Q is the set of all functions @: I — U;Q; such that o(i) € Q;
for each i in I. For each i we define the coordinate function X;: Q — Q; by
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Xi(@) = o(i). Finally, we let o7 be the smallest -algebra on Q that makes each X;
measurable with respect to .7 and <. Equivalently, we can let 7 be the c-algebra
on € generated by the collection of all sets that have the form

{w € Q: w(i) € A; holds for each i in Ip}

for some finite subset Iy of I and some sets A; that satisfy A; € .of; for each i in .
Let us turn to the construction of sequences of independent random variables.

Proposition 10.6.1. Let {(Q;, o7, P)}icn be a family of probability spaces indexed
by the set N of positive integers, let (Q,.2/) be the product of the measurable spaces
{(Qi, %%) }ien, and for each i in N let X; be the coordinate projection from Q to Q;.
Then there is a unique probability measure P on (Q, o/ ) such that

(a) for each i the distribution of X; is P, and
(b) the random variables {X;};cn are independent.

Proof. What we need here is a product measure with infinitely many factors. In
particular, we need a measure P on (Q, o) such that for each n and each choice of
setsA;in o/, i=1, ..., n, we have

P(A) =P (A|)Py(A2) -+~ Pu(Ay),

where A is the subset
AP X XAy Xy X - 1)

of Q—that is, where A consists of those sequences {x,}j" in Q such that x; € A; holds
fori=1,...,n.

The results in Chap.5 give us a start on the construction of such measures.
Namely for each n those results give us a product measure P; X --- X P, on the
measurable space ([T} €, TI} <%). For each n let proj, be the projection of the
infinite product Q onto [T} Q;, that is, the function that takes an infinite sequence
to the sequence of its first n components. Let <7 (1) be the collection of subsets of Q
defined'® by

O = proj; ([T ).
n 1

Since {proj, ' (IT} %) }:>_, is an increasing sequence of c-algebras on Q, it follows
that 7! is an algebra of sets. Furthermore <7 = o(.27(1)). We need to transfer our
finite-dimensional product measures to .o/ (1), For that, define a function P on «7(!)
by letting

P(proj, ' (A)) = (P x --- X P,)(A)

15Note that if X and Y are sets, if f is a function from X to Y, and if € is a family of subsets of ¥,
then f~1(¢) = {f~1(C): C € ¢}.
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hold for each n and each A in []} <7 (the reader should check that P is well defined).
Certainly P has the necessary value on each rectangular set of the form given in (1).
Furthermore P is countably additive on each proj;l (IT} <) and so is at least finitely
additive on &7 (1) If we show that P is countably additive on &/ (1), then it will have
a countably additive extension to .2/ (see Exercise 1.3.5) and the proof of existence
will be complete.

We need a bit of notation for the proof of countable additivity. For each n we
want the analogue of Q, .o (1), and P, but with the products starting with (€, .<,)
and P,, rather than with (Q;,4%) and P;. Let us use the notation QM o7 and
P for such sets,!” algebras, and finitely additive probabilities. Note that Q1) = Q,
pl) = P, and /U is the algebra discussed above. Note also thatif A is a set in 427(”),
then for each x in Q,, the section A, belongs to . (n+1), Finally, let us introduce the
following temporary notation for sections of sets. Instead of writing A, we will write
A(x), and instead of writing (Ay, )x, we will write A(x,x2). Continuing in this way
gives a reasonable way to express the result of many iterations of the operation of
taking a section of a set.

We prove the countable additivity of P by showing that if {A;} is a decreasing
sequence of sets in 27(!) such that N jAj =@, then lim; P(A;) = 0. 18 We do this by
considering the contrapositive and showing that if {4;} is a decreasing sequence
of sets in .7 (!) such that lim; P(Aj) > 0, then N;A; # @. So let us fix a decreasing
sequence {A;} and a positive number € such that P(A;) > € holds for all j. We
will show that N;A; # @ by constructing an element of M;A;. Suppose that A; is
a member of the sequence {A;}. Then there is a positive integer k and a set B; in
Hlf of; such that A; = proj,;l (B;). We have (see Theorem 5.1.4)

(P <o B)(B)) = [ (P ceee BB (x0) Pr(d),
1
which translates into

P(Aj) = Jo, P@(A;(x1)) Pi(dx1).

Since {A;}; is a decreasing sequence of sets, {P>)(4;(x1))}; is (for each choice of
x1 in Q) a decreasing sequence of numbers, and we can define a function f|: Q; —
R by fi(x1) = lim; P®)(4;(x1)). The function f; is measurable, and it follows from
the dominated convergence theorem that

/ fl X1 Pl dX1 _hm/ P Pl(dxl)—hmP(A ) E.

17Be careful to note that Q) is a product space, while €, is one of (in fact, the first of) its factors.

18See Proposition 1.2.6, whose proof can easily be modified so as to apply to finitely additive
measures on algebras.
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Since P; has total mass 1, there must be an element x; of Q; such that fi(x;) > €
and hence such that P>)(A;(x;)) > € holds for all j; fix such a value x;. We can
apply the same argument to the sequence {A (x;)};, producing an element x, of Q,
such that PG) (A j(x1,x2)) > € holds for each j. By repeating this argument over and
over, we produce a sequence {x, } such that P""D(A;(xy,...,x,)) > € holds for all
j and n.

To complete our proof that P is countably additive on /"), we need to show
that N;A; # @. We do this by verifying that the sequence {x,} constructed above
belongs to N;A;. So fix a set A; in {A;}. Then there is a positive integer k and a set
B; in TT¥ % such that A; = proj, ' (B;). Note that, because of this representation of
Aj, the section A(xy,...,x;) is equal to either QK+ or &, depending on whether
(x1,...,x¢) belongs to B; or not. However, we know that Aj(xi,...,x;) is not
empty (since P*FD(A;(xq,...,x;)) > €). Thus, Aj(xq,...,x) = Q&1 and every
continuation of the finite sequence xi, ..., x; belongs to A;; in particular {x,} €A j-
Since this argument works for every j, we have {x,} € NA j» and the construction of
our product measure is complete.

We turn to the uniqueness of P. The collection of sets of the form (1) (where
A; € o7 holds for each i) is a m-system that generates .7, and so the uniqueness of
P follows from Corollary 1.6.3. O

See Exercise 2 for an extension of Proposition 10.6.1 to the case of uncountably
many random variables.

Now we turn to the construction of families of random variables that are not
necessarily independent. For the construction of such families we will once again
build a suitable measure on an infinite product space. This time, however, the
measure we construct will not be a product measure.

As before, let I be an index set and let {(€;,9%)}icr be an indexed family of
measurable spaces. Let (Q, ) and {X;};cs be the measurable space and coordinate
functions constructed at the beginning of this section. We need to look at how to
describe the dependence between our random variables. To get an idea of what to
do, let us temporarily assume that we already have a probability P on (Q, 7). We
will get a consistency condition that the joint distributions of finite collections of the
random variables {X;} must satisfy; then we will use this consistency condition as
one of the hypotheses in our existence theorem (Theorem 10.6.2).

Let .# be the collection of all nonempty finite subsets of /. For each [ in .#
consider the finite product (IT;c;, €2, [Ticy, #%). Let us call this product (€2, .97, ).
For each I let Xj,: € — Qy, be the projection of Q onto £2;. So in set-theoretic
terms, X, (o) is the restriction of the function @ to the subset Iy of its domain. It is
easy to check that for each Iy the function Xj, is measurable with respect to &/ and
o),. Let Py, be the distribution of X}, (in other words, let Py, be the joint distribution
of the random variables X;, i € Ip); thus Py, (A) = P(X[g1 (A)) holds for each A in o7}, .

We need to look at how these distributions on finite products are related to
one another. So suppose that I; and I, belong to .# and satisfy I, C Ij, and
let projj, ;, : €4, — €2, be the projection of €2, onto €. Certainly proj;, ; is
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measurable and X;, = proj, ;, 0Xj,; thus P(XIQI(A)) = P(XITI (projl;lll (A))) holds
for each A in .7,. That is, the distributions on the finite product spaces satisfy the
condition

Py, = Py, proj,, -,111 forall I, I, in .# such that I, C I;. 2)

This is the consistency condition that will be one of the hypotheses in the following
theorem.

The upcoming theorem would not hold if the spaces (Q;, «%) were allowed to
be completely arbitrary (see Exercise 5). To get around that difficulty, we will
assume that for each i there is a compact metric space K; such that (Q;,.c)
is Borel isomorphic to (K;, #(K;)); in other words, there must be a bijection
fi: Qi — K; such that f; and ffl are both measurable. Such measurable spaces are
called standard."® One can check (see Exercise 1) that (R, %(R)) is isomorphic to
([0,1],4(]0,1]) and hence that (R, %(R)) is standard; from this one can conclude
that (R4, 2(R%)) is also standard.

Theorem 10.6.2 (Kolmogorov Consistency Theorem). Let [ be a nonempty set,
let {(Qy, %) }icr be an indexed family of measurable spaces, and let ¥ be the col-
lection of all nonempty finite subsets of I. As in the discussion above, define product
measurable spaces (Q,</) and {(Qy, %, ) }iye.s, plus projections Xj,: Q — Qy
and projy,  : Qp — Qp,, where Iy, 11,1 € . and I, C Iy. Let {Pi}iye.r be an
indexed family of probability measures on the spaces {(Qu,, ) }iye.r. If

(a) the measurable spaces {(Q;, <) }icr are all standard, and
(b) the measures {Pj,}cr are consistent, in the sense that they satisfy
condition (2),

then there is a unique probability measure P on (Q,./) such that for each Iy in .9
the distribution of Xy, is Py,

Proof. The hypothesis that the spaces {(Q;, %) }ics are standard implies that for
each i there is a compact metrizable topology on Q; for which #(Q;) = <. Fix
such a topology for each i. It follows from Tychonoff’s theorem (Theorem D.20)
and Proposition 7.1.13 that the product topology on Q is compact Hausdorff and
that for each Iy the product topology on £, is compact and metrizable; furthermore,
PB(Qy,) = 7, holds for each Iy in .7 (see Proposition 7.6.2). We will construct a
suitable positive linear functional L on the space C(€) of continuous real-valued
functions on €. The Riesz representation theorem (Theorem 7.2.8) then gives a
regular Borel measure i on Q such that L(f) = [ fdu holds for each f in C(Q).
We will see that the restriction of p to 7 is the measure we need.

We turn to the definition of the linear functional L. We begin by defining it on
the algebra of functions on € generated by the functions that can be written in the
form g o X; for some i in I and some g in C(;). Let us call this algebra C,. Since the
functions % in C, are finite sums of finite products of functions of the form g o X;,

19See Chap. 8, and especially Sect. 8.6, for more information about standard spaces.
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each can be written in the form 7, o Xj, for some Iy in .# and some Ay, in C(Q2;,). We
want to define L(h) for  in C, by L(h) = fQIO hy, dPy,, where h and hy, are related
by h = hy, 0 Xj,. The potential problem is that a function 4 can in general be written
in many ways, say as hy, o Xy, and as hy, o Xj,, and so we need to check that L(h)
does not depend on how £ is written.? Suppose that I; and I, are as in the previous
sentence, and let /3 = I; U ;. The relation Ay, 0 Xj, = h = hy, o X}, implies that

hll oprojll 713 = hIZ opr0j12,13 :

From this and the consistency condition (2), we find
hy, dPy, = / hy, oprojy ;. dP,
/Q/l heth Q, hOPTn 1 "

= A hIzoproj[zJ3 dpP, = A hy, dPy,

13 I

and it follows that L is well defined on C,. The Stone—Weierstrass theorem
(Theorem D.22) implies that C, is uniformly dense in C(Q2). Thus we can extend L
from C, to C(Q). It is easy to check that the extended L is positive and linear. Thus
the Riesz representation theorem gives a regular Borel measure ¢ on Q such that
L(h) = [ hdp holds for each h in C(Q). In particular, for each Iy in .# and each
in C(Q,) we have

h[o dP[O = L(h[o OX[O) = / h[o OX[0 du = / h[o d(,LLX[gl) 3)
Q]O Q QIU

Let P be the restriction of i to .o7. It follows from Eq. (3) that P, = PX 1;1. In other
words, Py, is the distribution of X, under P. Since this is true for each I in .¥, we
have constructed the required measure on (Q, 7).

We turn to the uniqueness of P. Define &/’ by &/’ = Uloe,legl (<, ). Then <’
is a m-system on Q and o (/') = &/. Suppose that P’ and P" are probabilities on
o that satisfy Py, = P’Xlg1 =P ’Xlgl for each Iy in .#. This means that P’ and P”
agree on «7’, and it follows from Corollary 1.6.3 that P’ = P”. With this the proof is
complete. O

Exercises

1. Check that the measurable spaces (R, Z(R)) and ([0,1], %4(]0,1])) are isomor-
phic. (Hint: This is an immediate consequence of some of the results in Chap. 8.

20This is where we use the consistency condition (2).
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A more elementary proof is possible: start with a homeomorphism of R onto
the open interval (0, 1), and modify it on a countable set so as to get a suitable
bijection from R onto the closed interval [0, 1].)

2. Show that Proposition 10.6.1 also holds for uncountable families of independent
random variables (i.e., for uncountable index sets). (Hint: Suppose that the
index set / is uncountable. Combine the version of Proposition 10.6.1 for
countable products with the fact that the product ¢-algebra on [];c;€2; is the
union of the inverse images (under projection) of the product ¢-algebras on the
countable products [;cz, €2i, where [y ranges over the countable subsets of /. See
Exercise 1.1.7.)

3. Let T =[0,1]. For each ¢ in T let (&, <%) = (R,%(R)), and let (Q, o) be the
product of these spaces. Show that the subset of Q consisting of the continuous
functions from 7T to R does not belong to .7.?! (Hint: See Exercise 1.1.7.)

4. Use Theorem 10.6.2 to construct a stochastic process {X; } with index set [0, 1] N
Q that satisfies properties (a) and (b) in the definition of Brownian motion (where
the values #; are restricted to lie in [0, 1] N Q). (Given this result, Exercises 10.5.1
and 10.5.2 can be used to give a proof of Theorem 10.5.1 that is less technical
than the one given in Sect. 10.5.)

5. Show that the conclusion of the Kolmogorov consistency theorem (Theo-
rem 10.6.2) may fail if the assumption that the measurable spaces (€;,.%7) are
standard is simply omitted. (Hint: Let {A,} be a decreasing sequence of subsets
of [0,1] such that A*(A,) = 1 holds for each n, but for which N,A, = &. See
Exercise 1.4.7. For each n let Q, = A, and let <7, be the trace of Z(R) on A,.
Finally, for index sets Iy of the form {1,2,...,n} define P;, on (Q,.4%,) by
letting it be the image of the trace of Lebesgue measure on A, under the mapping
x = (x,x,...,x).)

6. Assume that we modify the statement of the Kolmogorov consistency theorem
(Theorem 10.6.2) by replacing the assumption that the spaces (€;, ) are
standard with the assumption that each €; is a universally measurable subset
of some compact metric space K; (and adding the assumption that .¢7 is the trace
of A(K;) on K;). Prove that this modified version is true. (Hint: Don’t work too
hard—derive this modified version from the original version of Theorem 10.6.2.)

Notes

Kolmogorov was at the forefront of early work on measure-theoretic probability,
as was Doob a few years later; see Kolmogorov’s book on the foundations of

2IThus one often needs to say things like “There is a set A in .o/ that has probability 1 and is such
that # — X; (@) is continuous for each @ in A.” rather than less pedantic things like “The set of all
o such that 7 — X; (o) is continuous has probability 1.”
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probability [72] and Doob’s book on stochastic processes [38]. Dudley [40] gives
detailed historical citations in his end-of-chapter notes.

See Billingsley [8], Dudley [40], Klenke [71], Lamperti [79], Walsh [124], and
Williams [128] for introductions to probability that carry the ideas in this chapter
much further and are at a level appropriate for people who have completed a course
in measure theory.

Much more on dealing with convergence of probability measures using distances
(see a remark near the start of Sect. 10.3, and see Exercise 10.3.12) can be found in
Dudley [40] and Dudley [41].



Appendix A
Notation and Set Theory

See van Dalen et al. [118], Halmos [55], Hrbacek and Jech [63], or Moschovakis
[90] for further information on the topics discussed in this appendix.

A.l. Let A and B be sets. We write x € A, x ¢ A, and A C B to indicate that x is a
member of A, that x is not a member of A, and that A is a subset of B, respectively.
We will denote the union, intersection, and difference of A and B by AUB, ANB,
and A — B, respectively (of course A —B = {x: x € A and x ¢ B}). In case we are
dealing with subsets of a fixed set X, the complement of A will be denoted by A€,
thus A“ =X — A.

The empty set will be denoted by &.

The symmetric difference of the sets A and B is defined by

AAB=(A—B)U(B—A).

It is clear that A A A = @ and that A A B = A° A B°. Furthermore, x belongs to
AN (BAC) if and only if it belongs either to exactly one, or else to all three, of A,
B, and C; since a similar remark applies to (A A B) A C, we have

AA(BAC)=(AAB)AC.

Suppose that Ay, ..., A, is a finite sequence of sets. The union and intersection
of these sets are defined by

n
UA,~ = {x:x € A; for some i in therange 1, ..., n}
i=1

and
n
ﬂA,- ={x:x€A;foreachiintherange 1,...,n}
i=1
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