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Proof. Let U consist of those open subintervals I of U that are maximal, in the
sense that the only open interval J that satisfies I ⊆ J ⊆ U is I itself. Of course
∪U ⊆ U . One can verify the reverse inclusion by noting that if x ∈ U , then the
union of those open intervals that contain x and are included in U is an open interval
that contains x and belongs to U . It is easy to check (do so) that the intervals in U
are disjoint from one another. If for each I in U we choose a rational number xI

that belongs to I, then (since the sets in U are disjoint from one another) the map
I �→ xI is an injection; thus U has the same cardinality as some subset of Q, and so
is countable (see item A.6 in Appendix A). �	
C.5. A sequence {xn} of elements of R

d converges to the element x of R
d if

limn ‖xn − x‖ = 0; x is then called the limit of the sequence {xn} (note that here
x and x1, x2, . . . are elements of Rd ; in particular, x1, x2, . . . are not the components
of x). A sequence in R

d is convergent if it converges to some element of Rd .

C.6. Let A be a subset of R
d , and let x0 belong to A. A function f : A → R is

continuous at x0 if for each positive number ε there is a positive number δ such
that | f (x)− f (x0)| < ε holds whenever x belongs to A and satisfies ‖x− x0‖ < δ ;
f is continuous if it is continuous at each point in A. The function f : A → R is
uniformly continuous if for each positive number ε there is a positive number δ such
that | f (x)− f (x′)|< ε holds whenever x and x′ belong to A and satisfy ‖x−x′‖< δ .
A function f : A → R is continuous on (or uniformly continuous on) the subset A0

of A if the restriction of f to A0 is continuous (or uniformly continuous).

C.7. Let A be a subset of R
d , let f be a real- or complex-valued function on

A, and let a be a limit point of A. Then f (x) has limit L as x approaches a,
written limx→a f (x) = L, if for every positive ε there is a positive δ such that
| f (x)− f (a)|< ε holds whenever x is a member of A that satisfies 0 < ‖x−a‖< δ .

One can check that limx→a f (x) = L if and only if limn f (xn) = L for every
sequence {xn} of elements of A, all different from a, such that limn xn = a. (Let
us consider the more difficult half of that assertion, namely that if limn f (xn) = L
for every sequence {xn} of elements of A, all different from a, such that limn xn = a,
then limx→a f (x) = L. We prove this by proving its contrapositive. So assume that
limx→a f (x) = L is not true. Then there exists a positive ε such that for every positive
δ there is a value x in A such that 0 < ‖x− a‖ < δ and | f (x)−L| ≥ ε . If for each
n we let δ = 1/n and choose an element xn of A such that 0 < ‖xn − a‖ < 1/n and
| f (xn)−L| ≥ ε , we will have a sequence {xn} of elements of A, all different from a,
that satisfy limn xn = a but not limn f (xn) = L.)

C.8. Let A be a subset of Rd . An open cover of A is a collection S of open subsets
of Rd such that A ⊆∪S . A subcover of the open cover S is a subfamily of S that
is itself an open cover of A.

Proofs of the following results can be found in almost any text on advanced
calculus or basic analysis (see, for example, Bartle [4], Hoffman [60], Rudin [104],
or Thomson et al. [117]).
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C.9. (Theorem) Let A be a closed bounded subset of Rd. Then every open cover
of A has a finite subcover.

Theorem C.9 is often called the Heine–Borel theorem.

C.10. (Theorem) Let A be a closed bounded subset of Rd. Then every sequence of
elements of A has a subsequence that converges to an element of A.

C.11. It is easy to check that the converses of Theorems C.9 and C.10 hold: if A
satisfies the conclusion of Theorem C.9 or of Theorem C.10, then A is closed and
bounded. The subsets of Rd that satisfy the conclusion of Theorem C.9 (hence the
closed bounded subsets of Rd) are often called compact. See also Appendix D.

C.12. (Theorem) Let C be a nonempty closed bounded subset of R
d, and let

f : C →R be continuous. Then

(a) f is uniformly continuous on C, and
(b) f is bounded on C. Moreover, there are elements x0 and x1 of C such that

f (x0)≤ f (x) ≤ f (x1) holds at each x in C.

C.13. (The Intermediate Value Theorem) Let A be a subset of R, and let f : A →
R be continuous. If the interval [x0,x1] is included in A, then for each real number y
between f (x0) and f (x1) there is an element x of [x0,x1] such that y = f (x).

C.14. (The Mean Value Theorem) Let a and b be real numbers such that a < b.
If f : [a,b] → R is continuous on the closed interval [a,b] and differentiable at
each point in the open interval (a,b), then there is a number c in (a,b) such that
f (b)− f (a) = f ′(c)(b− a).



Appendix D
Topological Spaces and Metric Spaces

A number of the results in this appendix are stated without proof. For additional
details, the reader should consult a text on point-set topology (for example, Kelley
[69], Munkres [91], or Simmons [109]).

D.1. Let X be a set. A topology on X is a family O of subsets of X such that

(a) X ∈ O ,
(b) ∅ ∈ O ,
(c) if S is an arbitrary collection of sets that belong to O , then ∪S ∈ O , and
(d) if S is a finite collection of sets that belong to O , then ∩S ∈ O .

A topological space is a pair (X ,O), where X is a set and O is a topology on X (we
will generally abbreviate the notation and simply call X a topological space). The
open subsets of X are those that belong to O . An open neighborhood of a point x in
X is an open set that contains x.

The collection of all open subsets of Rd (as defined in Appendix C) is a topology
on R

d ; it is sometimes called the usual topology on R
d .

D.2. Let (X ,O) be a topological space. A subset F of X is closed if Fc is open.
The union of a finite collection of closed sets is closed, as is the intersection of an
arbitrary collection of closed sets (use De Morgan’s laws and parts (c) and (d) of the
definition of a topology). It follows that if A ⊆ X , then there is a smallest closed set
that includes A, namely the intersection of all the closed subsets of X that include A;
this set is called the closure of A and is denoted by A or by A−. A point x in X is a
limit point of A if each open neighborhood of x contains at least one point of A other
than x (the point x itself may or may not belong to A). A set is closed if and only if
it contains each of its limit points. The closure of the set A consists of the points in
A, together with the limit points of A.

D.3. Let (X ,O) be a topological space, and let A be a subset of X . The interior of
A, written Ao, is the union of the open subsets of X that are included in A; thus Ao is
the largest open subset of A. It is easy to check that Ao = ((Ac)−)c.
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