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D.4. Let (X ,O) be a topological space, let Y be a subset of X , and let OY be the
collection of all subsets of Y that have the form Y ∩U for some U in O . Then OY is
a topology on Y ; it is said to be inherited from X , or to be induced by O . The space
(Y,OY ) (or simply Y ) is called a subspace of (X ,O) (or of X).

Note that if Y is an open subset of X , then the members of OY are exactly the
subsets of Y that are open as subsets of X . Likewise, if Y is a closed subset of X ,
then the closed subsets of the topological space (Y,OY ) are exactly the subsets of Y
that are closed as subsets of (X ,OX).

D.5. Let X and Y be topological spaces. A function f : X → Y is continuous if
f−1(U) is an open subset of X whenever U is an open subset of Y . It is easy to
check that f is continuous if and only if f−1(C) is closed whenever C is a closed
subset of Y. A function f : X → Y is a homeomorphism if it is a bijection such
that f and f−1 are both continuous. Equivalently, f is a homeomorphism if it is a
bijection such that f−1(U) is open exactly when U is open. The spaces X and Y are
homeomorphic if there is a homeomorphism of X onto Y .

D.6. We will on occasion need the following techniques for verifying the continuity
of a function. Let X and Y be topological spaces, and let f be a function from X to
Y . If S is a collection of open subsets of X such that X = ∪S , and if for each U
in S the restriction fU of f to U is continuous (as a function from U to Y ), then
f is continuous (to prove this, note that if V is an open subset of Y , then f−1(V ) is
the union of the sets f−1

U (V ), and so is open). Likewise, if S is a finite collection
of closed sets such that X = ∪S , and if for each C in S the restriction of f to C is
continuous, then f is continuous.

D.7. If O1 and O2 are topologies on the set X , and if O1 ⊆O2, then O1 is said to be
weaker than O2.

Now suppose that A is an arbitrary collection of subsets of the set X . There exist
topologies on X that include A (for instance, the collection of all subsets of X). The
intersection of all such topologies on X is a topology; it is the weakest topology on
X that includes A and is said to be generated by A .

We also need to consider topologies generated by sets of functions. Suppose that
X is a set and that { fi} is a collection of functions, where for each i the function
fi maps X to some topological space Yi. A topology on X makes all these functions
continuous if and only if f−1

i (U) is open (in X) for each index i and each open
subset U of Yi. The topology generated by the family { fi} is the weakest topology
on X that makes each fi continuous, or equivalently, the topology generated by the
sets f−1

i (U).

D.8. A subset A of a topological space X is dense in X if A = X . The space X is
separable if it has a countable dense subset.

D.9. Let (X ,O) be a topological space. A collection U of open subsets of X is a
base for (X ,O) if for each V in O and each x in V there is a set U that belongs to
U and satisfies x ∈ U ⊆ V . Equivalently, U is a base for X if the open subsets of
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X are exactly the unions of (possibly empty) collections of sets in U . A topological
space is said to be second countable, or to have a countable base, if it has a base
that contains only countably many sets.

D.10. It is easy to see that if X is second countable, then X is separable (if U is a
countable base for X , then we can form a countable dense subset of X by choosing
one point from each nonempty set in U ). The converse is not true. (Construct a
topological space (X ,O) by letting X = R and letting O consist of those subsets A
of X such that either A =∅ or 0 ∈ A. Then {0} is dense in X , and so X is separable;
however, X is not second countable. Exercise 7.1.8 contains a more interesting
example.)

D.11. If X is a second countable topological space, and if V is a collection of open
subsets of X , then there is a countable subset V0 of V such that ∪V0 = ∪V . (Let U
be a countable base for X , and let U0 be the collection of those elements U of U
for which there is a set in V that includes U . For each U in U0 choose an element
of V that includes U . The collection of sets chosen is the required subset of V .)

D.12. A topological space X is Hausdorff if for each pair x,y of distinct points in
X there are open sets U,V such that x ∈U , y ∈V , and U ∩V =∅.

D.13. Let A be a subset of the topological space X . An open cover of A is a
collection S of open subsets of X such that A ⊆ ∪S . A subcover of the open
cover S is a subfamily of S that is itself an open cover of A. The set A is compact
if each open cover of A has a finite subcover. A topological space X is compact if
X , when viewed as a subset of the space X , is compact.

D.14. A collection C of subsets of a set X satisfies the finite intersection property
if each finite subcollection of C has a nonempty intersection. It follows from
De Morgan’s laws that a topological space X is compact if and only if each collection
of closed subsets of X that satisfies the finite intersection property has a nonempty
intersection.

D.15. If X and Y are topological spaces, if f : X → Y is continuous, and if K is a
compact subset of X , then f (K) is a compact subset of Y .

D.16. Every closed subset of a compact set is compact. Conversely, every compact
subset of a Hausdorff space is closed (this is a consequence of Proposition 7.1.2; in
fact, the first half of the proof of that proposition is all that is needed in the current
situation).

D.17. It follows from D.15 and D.16 that if X is a compact space, if Y is a Hausdorff
space, and if f : X → Y is a continuous bijection, then f is a homeomorphism.

D.18. If X is a nonempty compact space, and if f : X → R is continuous, then f is
bounded and attains its supremum and infimum: there are points x0 and x1 in X such
that f (x0)≤ f (x) ≤ f (x1) holds at each x in X .
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D.19. Let {(Xα ,Oα )} be an indexed family of topological spaces, and let ∏α Xα
be the product of the corresponding indexed family of sets {Xα} (see A.5). The
product topology on ∏α Xα is the weakest topology on ∏α Xα that makes each of the
coordinate projections πβ : ∏α Xα →Xβ continuous (the projection πβ is defined by
πβ (x) = xβ ); see D.7. If U is the collection of sets that have the form ∏α Uα for
some family {Uα} for which

(a) Uα ∈ Oα holds for each α and
(b) Uα = Xα holds for all but finitely many values of α ,

then U is a base for the product topology on ∏α Xα .

D.20. (Tychonoff’s Theorem) Let {(Xα ,Oα )} be an indexed collection of topo-
logical spaces. If each (Xα ,Oα ) is compact, then ∏α Xα , with the product topology,
is compact.

D.21. Let X be a set. A collection F of functions on X separates the points of
X if for each pair x, y of distinct points in X there is a function f in F such that
f (x) �= f (y). A vector space F of real-valued functions on X is an algebra if f g
belongs to F whenever f and g belong to F (here f g is the product of f and g,
defined by ( f g)(x) = f (x)g(x)). Now suppose that F is a vector space of bounded
real-valued functions on X . A subset of F is uniformly dense in F if it is dense in F
when F is given the topology induced by the uniform norm (see Example 3.2.1(f)
in Sect. 3.2).

D.22. (Stone–Weierstrass Theorem) Let X be a compact Hausdorff space. If A
is an algebra of continuous real-valued functions on X that contains the constant
functions and separates the points of X, then A is uniformly dense in the space C(X)
of continuous real-valued functions on X.

D.23. (Stone–Weierstrass Theorem) Let X be a locally compact1 Hausdorff
space, and let A be a subalgebra of C0(X) such that

(a) A separates the points of X, and
(b) for each x in X there is a function in A that does not vanish at x.

Then A is uniformly dense in C0(X).

Theorem D.23 can be proved by applying Theorem D.22 to the one-point
compactification of X .

D.24. Suppose that X is a set and that ≤ is a linear order on X . For each x in X
define intervals (−∞,x) and (x,+∞) by

(−∞,x) = {z ∈ X : z < x}
and

(x,+∞) = {z ∈ X : x < z}.

1Locally compact spaces are defined in Sect. 7.1, and C0(X) is defined in Sect. 7.3.
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The order topology on X is the weakest topology on X that contains all of these
intervals. The set that consists of these intervals, the intervals of the form {z ∈ X :
x < z < y}, and the set X , is a base for the order topology on X .

D.25. Let X be a set. A metric on X is a function d : X ×X → R that satisfies

(a) d(x,y)≥ 0,
(b) d(x,y) = 0 if and only if x = y,
(c) d(x,y) = d(y,x), and
(d) d(x,z) ≤ d(x,y)+ d(y,z)

for all x, y, and z in X . A metric space is a pair (X ,d), where X is a set and d is a
metric on X (of course, X itself is often called a metric space).

Let (X ,d) be a metric space. If x ∈ X and if r is a positive number, then the set
B(x,r) defined by

B(x,r) = {y ∈ X : d(x,y)< r}
is called the open ball with center x and radius r; the closed ball with center x and
radius r is the set

{y ∈ X : d(x,y)≤ r}.
A subset U of X is open if for each x in U there is a positive number r such that
B(x,r)⊆U . The collection of all open subsets of X is a topology on X ; it is called the
topology induced or generated by d.2 The open balls form a base for this topology.

D.26. A topological space (X ,O) (or a topology O) is metrizable if there is a metric
d on X that generates the topology O; the metric d is then said to metrize X (or
(X ,O)).

D.27. Let X be a metric space. The diameter of the subset A of X , written diam(A),
is defined by

diam(A) = sup{d(x,y) : x,y ∈ A}.
The set A is bounded if diam(A) is not equal to +∞. The distance between the point
x and the nonempty subset A of X is defined by

d(x,A) = inf{d(x,y) : y ∈ A}.
Note that if x1 and x2 are points in X , then

d(x1,A)≤ d(x1,x2)+ d(x2,A).

Since we can interchange the points x1 and x2 in the formula above, we find that

|d(x1,A)− d(x2,A)| ≤ d(x1,x2),

2When dealing with a metric space (X ,d), we will often implicitly assume that X has been given
the topology induced by d.
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from which it follows that x �→ d(x,A) is continuous (and, in fact, uniformly
continuous).

D.28. Each closed subset of a metric space is a Gδ , and each open subset is an Fσ .
To check the first of these claims, note that if C is a nonempty closed subset of the
metric space X , then

C =
⋂

n

{

x ∈ X : d(x,C)<
1
n

}

,

and so C is the intersection of a sequence of open sets. Now use De Morgan’s laws
(see Sect. A.1) to check that each open set is an Fσ .

D.29. Let x and x1, x2, . . . belong to the metric space X . The sequence {xn}
converges to x if limn d(xn,x) = 0; if {xn} converges to x, we say that x is the limit
of {xn}, and we write x = limn xn.

D.30. Let X be a metric space. It is easy to check that a point x in X belongs to the
closure of the subset A of X if and only if there is a sequence in A that converges
to x.

D.31. Let (X ,d) and (Y,d′) be metric spaces, and give X and Y the topologies
induced by d and d′ respectively. Then a function f : X → Y is continuous (in the
sense of D.5) if and only if for each x0 in X and each positive number ε there is
a positive number δ such that d′( f (x), f (x0)) < ε holds whenever x belongs to X
and satisfies d(x,x0) < δ . The observation at the end of C.7 generalizes to metric
spaces, and a small modification of the argument given there yields the following
characterization of continuity in terms of sequences: the function f is continuous if
and only if f (x) = limn f (xn) holds whenever x and x1, x2, . . . are points in X such
that x = limn xn.

D.32. We noted in D.10 that every second countable topological space is separable.
The converse holds for metrizable spaces: if d metrizes the topology of X , and if D
is a countable dense subset of X , then the collection consisting of those open balls
B(x,r) for which x ∈ D and r is rational is a countable base for X .

D.33. If X is a second countable topological space, and if Y is a subspace of X , then
Y is second countable (if U is a countable base for X , then {U ∩Y : U ∈ U } is a
countable base for Y ). It follows from this, together with D.10 and D.32, that every
subspace of a separable metrizable space is separable.

D.34. Let (X ,d) be a metric space. A sequence {xn} of elements of X is a Cauchy
sequence if for each positive number ε there is a positive integer N such that
d(xm,xn)< ε holds whenever m ≥ N and n ≥ N. The metric space X is complete if
every Cauchy sequence in X converges to an element of X .

D.35. (Cantor’s Nested Set Theorem) Let X be a complete metric space. If {An}
is a decreasing sequence of nonempty closed sets of X such that limn diam(An) = 0,
then ∩∞

n=1An contains exactly one point.
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Proof. For each positive integer n choose an element xn of An. Then {xn} is a
Cauchy sequence whose limit belongs to ∩∞

n=1An. Thus ∩∞
n=1An is not empty. Since

limn diam(An) = 0, the set ∩∞
n=1An cannot contain more than one point. �	

D.36. A subset A of a topological space X is nowhere dense if the interior of A is
empty.

D.37. (Baire Category Theorem) Let X be a nonempty complete metric space (or
a nonempty topological space that can be metrized with a complete metric). Then
X cannot be written as the union of a sequence of nowhere dense sets. Moreover, if
{An} is a sequence of nowhere dense subsets of X, then (∪nAn)

c is dense in X.

D.38. The metric space (X ,d) is totally bounded if for each positive ε there is a
finite subset S of X such that

X =
⋃
{B(x,ε) : x ∈ S}.

D.39. (Theorem) Let X be a metric space. Then the conditions

(a) the space X is compact,
(b) the space X is complete and totally bounded, and
(c) each sequence of elements of X has a subsequence that converges to an

element of X

are equivalent.

D.40. (Corollary) Each compact metric space is separable.

Proof. Let X be a compact metric space. Theorem D.39 implies that X is totally
bounded, and so for each positive integer n we can choose a finite set Sn such that
X = ∪{B(x,1/n) : x ∈ Sn}. The set ∪nSn is then a countable dense subset of X . �	
D.41. Note, however, that a compact Hausdorff space can fail to be second
countable and can even fail to be separable (see Exercises 7.1.7, 7.1.8, and 7.1.10).

D.42. Let {Xn} be a sequence of nonempty metrizable spaces, and for each n let
dn be a metric that metrizes Xn. Let x and y denote the points {xn} and {yn} of the
product space ∏n Xn. Then the formula

d(x,y) = ∑
n

1
2n min(1,dn(xn,yn))

defines a metric on ∏n Xn that metrizes the product topology. This fact, together
with Theorem D.39, can be used to give a fairly easy proof of Tychonoff’s theorem
for countable families of compact metrizable spaces.



Appendix E
The Bochner Integral

Let (X ,A ) be a measurable space, let E be a real or complex Banach space (that
is, a Banach space over R or C), and let B(E) be the σ -algebra of Borel subsets
of E (that is, let B(E) be the σ -algebra on E generated by the open subsets of E).
We will sometimes denote the norm on E by | · |, rather than by the more customary
‖ · ‖. This will allow us to use ‖ · ‖ for the norm of elements of certain spaces of
E-valued functions; see, for example, formula (7) below. A function f : X → E is
Borel measurable if it is measurable with respect to A and B(E), and is strongly
measurable if it is Borel measurable and has a separable range (here by the range
of f we mean the subset f (X) of E). The function f is simple if it has only finitely
many values. Of course, a simple function is strongly measurable if and only if it is
Borel measurable.

It is easy to see that if f is Borel measurable, then x �→ | f (x)| is A -measurable
(use Lemma 7.2.1 and Proposition 2.6.1).

Note that if E is separable, then every E-valued Borel measurable function is
strongly measurable. On the other hand, if E is not separable and if (X ,A ) =
(E,B(E)), then the identity map from X to E is Borel measurable, but is not
strongly measurable.

E.1. (Proposition) Let (X ,A ) be a measurable space, and let E be a real or
complex Banach space. Then

(a) the collection of Borel measurable functions from X to E is closed under the
formation of pointwise limits, and

(b) the collection of strongly measurable functions from X to E is closed under the
formation of pointwise limits.

Proof. Part (a) is a special case of Proposition 8.1.10, and so we can turn to part (b).
Let { fn} be a sequence of strongly measurable functions from X to E , and

suppose that { fn} converges pointwise to f . It follows from the separability of the
sets fn(X), n = 1, 2, . . . , that ∪n fn(X) is separable, that the closure of ∪n fn(X) is
separable, and finally that f (X) is separable (see D.33). Since f is Borel measurable
(part (a)), the proof is complete. �	
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