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D4. Let (X,0) be a topological space, let Y be a subset of X, and let Oy be the
collection of all subsets of Y that have the form Y NU for some U in €. Then Oy is
a topology on Y it is said to be inherited from X, or to be induced by ©. The space
(Y, Oy) (or simply Y) is called a subspace of (X, 0) (or of X).

Note that if Y is an open subset of X, then the members of Oy are exactly the
subsets of Y that are open as subsets of X. Likewise, if Y is a closed subset of X,
then the closed subsets of the topological space (Y, Oy) are exactly the subsets of ¥
that are closed as subsets of (X, O).

D.S. Let X and Y be topological spaces. A function f: X — Y is continuous if
f~Y(U) is an open subset of X whenever U is an open subset of Y. It is easy to
check that f is continuous if and only if f~!(C) is closed whenever C is a closed
subset of Y. A function f: X — Y is a homeomorphism if it is a bijection such
that f and f~! are both continuous. Equivalently, f is a homeomorphism if it is a
bijection such that f~!(U) is open exactly when U is open. The spaces X and Y are
homeomorphic if there is a homeomorphism of X onto Y.

D.6. We will on occasion need the following techniques for verifying the continuity
of a function. Let X and Y be topological spaces, and let f be a function from X to
Y. If .7 is a collection of open subsets of X such that X = U., and if for each U
in . the restriction fy of f to U is continuous (as a function from U to Y), then
f is continuous (to prove this, note that if V is an open subset of Y, then f -1 (V) is
the union of the sets f; 1 (V), and so is open). Likewise, if .7 is a finife collection
of closed sets such that X = U.¥, and if for each C in . the restriction of f to C is
continuous, then f is continuous.

D.7. If 0 and 0, are topologies on the set X, and if &) C &, then 0 is said to be
weaker than 0.

Now suppose that <7 is an arbitrary collection of subsets of the set X. There exist
topologies on X that include .o (for instance, the collection of all subsets of X). The
intersection of all such topologies on X is a topology; it is the weakest topology on
X that includes %7 and is said to be generated by <7 .

We also need to consider topologies generated by sets of functions. Suppose that
X is a set and that {f;} is a collection of functions, where for each i the function
fi maps X to some topological space ¥;. A topology on X makes all these functions
continuous if and only if ffl(U ) is open (in X) for each index i and each open
subset U of Y;. The topology generated by the family {f;} is the weakest topology
on X that makes each f; continuous, or equivalently, the topology generated by the

sets £, (U).

D.8. A subset A of a topological space X is dense in X if A = X. The space X is
separable if it has a countable dense subset.

D.9. Let (X, ) be a topological space. A collection % of open subsets of X is a
base for (X, 0) if for each V in € and each x in V there is a set U that belongs to
% and satisfies x € U C V. Equivalently, % is a base for X if the open subsets of
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X are exactly the unions of (possibly empty) collections of sets in %. A topological
space is said to be second countable, or to have a countable base, if it has a base
that contains only countably many sets.

D.10. It is easy to see that if X is second countable, then X is separable (if 7 is a
countable base for X, then we can form a countable dense subset of X by choosing
one point from each nonempty set in %/). The converse is not true. (Construct a
topological space (X, 0) by letting X = R and letting & consist of those subsets A
of X such that either A = @& or 0 € A. Then {0} is dense in X, and so X is separable;
however, X is not second countable. Exercise 7.1.8 contains a more interesting
example.)

D.11. If X is a second countable topological space, and if ¥ is a collection of open
subsets of X, then there is a countable subset % of ¥ such that U%y =UY . (Let
be a countable base for X, and let % be the collection of those elements U of %
for which there is a set in ¥ that includes U. For each U in % choose an element
of ¥ that includes U. The collection of sets chosen is the required subset of 7".)

D.12. A topological space X is Hausdorff if for each pair x,y of distinct points in
X there are open sets U,V suchthatx e U,y € V,andUNV = &.

D.13. Let A be a subset of the topological space X. An open cover of A is a
collection . of open subsets of X such that A C U.”. A subcover of the open
cover . is a subfamily of .# that is itself an open cover of A. The set A is compact
if each open cover of A has a finite subcover. A topological space X is compact if
X, when viewed as a subset of the space X, is compact.

D.14. A collection % of subsets of a set X satisfies the finite intersection property
if each finite subcollection of % has a nonempty intersection. It follows from
De Morgan’s laws that a topological space X is compactif and only if each collection
of closed subsets of X that satisfies the finite intersection property has a nonempty
intersection.

D.15. If X and Y are topological spaces, if f: X — Y is continuous, and if K is a
compact subset of X, then f(K) is a compact subset of Y.

D.16. Every closed subset of a compact set is compact. Conversely, every compact
subset of a Hausdorff space is closed (this is a consequence of Proposition 7.1.2; in
fact, the first half of the proof of that proposition is all that is needed in the current
situation).

D.17. Itfollows from D.15 and D.16 that if X is a compact space, if Y is a Hausdorff
space, and if f: X — Y is a continuous bijection, then f is a homeomorphism.

D.18. If X is a nonempty compact space, and if f: X — R is continuous, then f is
bounded and attains its supremum and infimum: there are points xo and x; in X such
that f(xp) < f(x) < f(x1) holds at each x in X.
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D.19. Let {(Xq, Oy)} be an indexed family of topological spaces, and let [T, Xq
be the product of the corresponding indexed family of sets {X} (see A.5). The
product topology on [], X, is the weakest topology on [],, X, that makes each of the
coordinate projections 75 : [, X — Xp continuous (the projection g is defined by
mg(x) = xp); see D.7. If % is the collection of sets that have the form [, Ug for
some family {Uy } for which

(a) Uy € Oy holds for each o and
(b) Uy = Xq holds for all but finitely many values of ¢,

then 7 is a base for the product topology on [],, X

D.20. (Tychonoff’s Theorem) Ler {(Xy, Oy )} be an indexed collection of topo-
logical spaces. If each (Xo, O) is compact, then [1y, X, with the product topology,
is compact.

D.21. Let X be a set. A collection .# of functions on X separates the points of
X if for each pair x, y of distinct points in X there is a function f in .% such that
f(x) # f(y). A vector space .% of real-valued functions on X is an algebra if fg
belongs to .# whenever f and g belong to .# (here fg is the product of f and g,
defined by (fg)(x) = f(x)g(x)). Now suppose that .Z is a vector space of bounded
real-valued functions on X. A subset of .F is uniformly dense in % if it is dense in .7
when .Z is given the topology induced by the uniform norm (see Example 3.2.1(f)
in Sect. 3.2).

D.22. (Stone—Weierstrass Theorem) Let X be a compact Hausdorff space. If A
is an algebra of continuous real-valued functions on X that contains the constant
functions and separates the points of X, then A is uniformly dense in the space C(X)
of continuous real-valued functions on X.

D.23. (Stone-Weierstrass Theorem) Let X be a locally compact' Hausdorff
space, and let A be a subalgebra of Cy(X) such that

(a) A separates the points of X, and
(b) for each x in X there is a function in A that does not vanish at x.

Then A is uniformly dense in Cy(X).

Theorem D.23 can be proved by applying Theorem D.22 to the one-point
compactification of X.

D.24. Suppose that X is a set and that < is a linear order on X. For each x in X
define intervals (—oo,x) and (x,40) by
(—oox) ={z€X:z2<x}

and
(x,4o0) ={z€X 1 x <z}

Locally compact spaces are defined in Sect. 7.1, and Cy(X) is defined in Sect. 7.3.
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The order topology on X is the weakest topology on X that contains all of these
intervals. The set that consists of these intervals, the intervals of the form {z € X :
x < z <y}, and the set X, is a base for the order topology on X.

D.25. Let X be a set. A metric on X is a function d: X x X — R that satisfies

(a) d(x,y) >0,

(b) d(x,y)=0if and only if x =y,
(¢) d(x,y) =d(y,x), and

(d) d(x,z) <d(x,y) +d(y,2)

for all x, y, and z in X. A metric space is a pair (X,d), where X is a set and d is a
metric on X (of course, X itself is often called a metric space).
Let (X,d) be a metric space. If x € X and if r is a positive number, then the set
B(x,r) defined by
B(x,r)={yeX:d(x,y) <r}

is called the open ball with center x and radius r; the closed ball with center x and
radius r is the set
{yeX:dx,y) <r}.

A subset U of X is open if for each x in U there is a positive number r such that
B(x,r) CU. The collection of all open subsets of X is a topology on X it is called the
topology induced or generated by d.> The open balls form a base for this topology.

D.26. A topological space (X, &) (or atopology ) is metrizable if there is a metric
d on X that generates the topology ’; the metric d is then said to metrize X (or
(X,0)).

D.27. Let X be a metric space. The diameter of the subset A of X, written diam(A),
is defined by
diam(A) = sup{d(x,y) : x,y € A}.

The set A is bounded if diam(A) is not equal to 4. The distance between the point
x and the nonempty subset A of X is defined by

d(x,A) =inf{d(x,y) : y € A}.
Note that if x; and x, are points in X, then
d(x1,A) <d(x1,x) +d(x2,A).
Since we can interchange the points x| and x; in the formula above, we find that

|d(x17A) - d(x27A)| < d(x17x2)7

2When dealing with a metric space (X,d), we will often implicitly assume that X has been given
the topology induced by d.
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from which it follows that x — d(x,A) is continuous (and, in fact, uniformly
continuous).

D.28. Each closed subset of a metric space is a G5, and each open subset is an Fg.
To check the first of these claims, note that if C is a nonempty closed subset of the
metric space X, then

C:ﬂ{xeX:d(x,C)<%}7

and so C is the intersection of a sequence of open sets. Now use De Morgan’s laws
(see Sect. A.1) to check that each open set is an Fg.

D.29. Let x and xi, xp, ... belong to the metric space X. The sequence {x,}
converges to x if lim, d(x,,x) = 0; if {x,} converges to x, we say that x is the limit
of {x,}, and we write x = lim,, x,,.

D.30. Let X be a metric space. It is easy to check that a point x in X belongs to the
closure of the subset A of X if and only if there is a sequence in A that converges
to x.

D.31. Let (X,d) and (Y,d") be metric spaces, and give X and Y the topologies
induced by d and d’ respectively. Then a function f: X — Y is continuous (in the
sense of D.5) if and only if for each xg in X and each positive number &€ there is
a positive number & such that d’(f(x), f(xo)) < € holds whenever x belongs to X
and satisfies d(x,xp) < 0. The observation at the end of C.7 generalizes to metric
spaces, and a small modification of the argument given there yields the following
characterization of continuity in terms of sequences: the function f is continuous if
and only if f(x) = lim, f(x,) holds whenever x and xj, x, ... are points in X such
that x = lim,, x;,.

D.32. We noted in D.10 that every second countable topological space is separable.
The converse holds for metrizable spaces: if d metrizes the topology of X, and if D
is a countable dense subset of X, then the collection consisting of those open balls
B(x,r) for which x € D and r is rational is a countable base for X.

D.33. If X is a second countable topological space, and if Y is a subspace of X, then
Y is second countable (if % is a countable base for X, then {UNY : U € Z } is a
countable base for Y). It follows from this, together with D.10 and D.32, that every
subspace of a separable metrizable space is separable.

D.34. Let (X,d) be a metric space. A sequence {x,} of elements of X is a Cauchy
sequence if for each positive number € there is a positive integer N such that
d(xm,xn) < € holds whenever m > N and n > N. The metric space X is complete if
every Cauchy sequence in X converges to an element of X.

D.35. (Cantor’s Nested Set Theorem) Let X be a complete metric space. If {A, }
is a decreasing sequence of nonempty closed sets of X such that lim, diam(A,) =0,
then N>_| A, contains exactly one point.
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Proof. For each positive integer n choose an element x, of A,. Then {x,} is a
Cauchy sequence whose limit belongs to N°_, A,,. Thus N>_, A, is not empty. Since
lim, diam(A,) = 0, the set M_,A, cannot contain more than one point. O

D.36. A subset A of a topological space X is nowhere dense if the interior of A is
empty.

D.37. (Baire Category Theorem) Let X be a nonempty complete metric space (or
a nonempty topological space that can be metrized with a complete metric). Then
X cannot be written as the union of a sequence of nowhere dense sets. Moreover; if
{An} is a sequence of nowhere dense subsets of X, then (U,A, )¢ is dense in X.

D.38. The metric space (X,d) is totally bounded if for each positive € there is a
finite subset S of X such that

X = J{B(x,e): xe S}.

D.39. (Theorem) Let X be a metric space. Then the conditions

(a) the space X is compact,

(b) the space X is complete and totally bounded, and

(c) each sequence of elements of X has a subsequence that converges to an
element of X

are equivalent.
D.40. (Corollary) Each compact metric space is separable.

Proof. Let X be a compact metric space. Theorem D.39 implies that X is totally
bounded, and so for each positive integer n we can choose a finite set S, such that
X =U{B(x,1/n) :x € S,}. The set U, S, is then a countable dense subset of X. O

D.41. Note, however, that a compact Hausdorff space can fail to be second
countable and can even fail to be separable (see Exercises 7.1.7,7.1.8, and 7.1.10).

D.42. Let {X,} be a sequence of nonempty metrizable spaces, and for each n let
dy, be a metric that metrizes X,,. Let x and y denote the points {x,} and {y,} of the
product space [],, X;,- Then the formula

d(x,y) = Z%min(l,dn(xn,yn))

defines a metric on [], X,, that metrizes the product topology. This fact, together
with Theorem D.39, can be used to give a fairly easy proof of Tychonoff’s theorem
for countable families of compact metrizable spaces.



Appendix E
The Bochner Integral

Let (X,<7) be a measurable space, let E be a real or complex Banach space (that
is, a Banach space over R or C), and let #(FE) be the c-algebra of Borel subsets
of E (that is, let Z(F) be the c-algebra on E generated by the open subsets of E).
We will sometimes denote the norm on E by |- |, rather than by the more customary
I - ||- This will allow us to use || - || for the norm of elements of certain spaces of
E-valued functions; see, for example, formula (7) below. A function f: X — E is
Borel measurable if it is measurable with respect to <7 and H(E), and is strongly
measurable if it is Borel measurable and has a separable range (here by the range
of f we mean the subset f(X) of E). The function f is simple if it has only finitely
many values. Of course, a simple function is strongly measurable if and only if it is
Borel measurable.

It is easy to see that if f is Borel measurable, then x — | f(x)| is <7-measurable
(use Lemma 7.2.1 and Proposition 2.6.1).

Note that if E is separable, then every E-valued Borel measurable function is
strongly measurable. On the other hand, if E is not separable and if (X,/) =
(E,#(E)), then the identity map from X to E is Borel measurable, but is not
strongly measurable.

E.1. (Proposition) Let (X,</) be a measurable space, and let E be a real or
complex Banach space. Then

(a) the collection of Borel measurable functions from X to E is closed under the
formation of pointwise limits, and

(b) the collection of strongly measurable functions from X to E is closed under the
formation of pointwise limits.

Proof. Part (a) is a special case of Proposition 8.1.10, and so we can turn to part (b).

Let {f,} be a sequence of strongly measurable functions from X to E, and
suppose that { f,,} converges pointwise to f. It follows from the separability of the
sets f,(X),n=1, 2, ..., that U, f,(X) is separable, that the closure of U, f,(X) is
separable, and finally that f(X) is separable (see D.33). Since f is Borel measurable
(part (a)), the proof is complete. O
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