
398 E The Bochner Integral

E.2. (Proposition) Let (X ,A ) be a measurable space, let E be a real or complex
Banach space, and let f : X → E be strongly measurable. Then there is a sequence
{ fn} of strongly measurable simple functions such that

f (x) = lim
n

fn(x)

and
| fn(x)| ≤ | f (x)|, for n = 1, 2, . . . ,

hold at each x in X.

Proof. We can certainly assume that f (X) contains at least one nonzero element of
E . Let C be a countable dense subset of f (X), let C∼ be the set of rational multiples
of elements of C, and let {yn} be an enumeration of C∼. We can assume that y1 = 0.
It is easy to check (do so) that

for each y in f (X) and each positive number ε there is a term

ym of {yn} that satisfies |ym| ≤ |y| and |ym − y|< ε . (1)

For each x in X and each positive integer n define a subset An(x) of E by

An(x) = {y j : j ≤ n and |y j| ≤ | f (x)|}.

Since y1 = 0, each An(x) is nonempty.
We now construct the required sequence { fn} by letting fn(x) be the element of

An(x) that lies closest to f (x) (in case

| f (x)− y j|= inf{| f (x)− yi| : yi ∈ An(x)} (2)

holds for several elements y j of An(x), let fn(x) be y j0 , where j0 is the smallest
value of j for which y j belongs to An(x) and satisfies (2)). It is clear that each fn

is a simple function and that | fn(x)| ≤ | f (x)| holds for each n and x. Since the sets
{x ∈ X : fn(x) = y j} can be described by means of inequalities involving | f (x)|,
|yi|, i = 1, . . . , n, and | f (x)− yi|, i = 1, . . . , n, each fn is strongly measurable.
Finally, observation (1) implies that { fn} converges pointwise to f (if ym satisfies
the inequalities |ym| ≤ | f (x)| and |ym − f (x)| < ε , then | fn(x)− f (x)| < ε holds
whenever n ≥ m). �	

Let us note two consequences of Propositions E.1 and E.2. The first is immediate:
a function from X to E is strongly measurable if and only if it is the pointwise limit
of a sequence of Borel (or strongly) measurable simple functions. The second is
given by the following corollary (see, however, Exercise 2).

E.3. (Corollary) Let (X ,A ) be a measurable space, and let E be a real or complex
Banach space. Then the set of all strongly measurable functions from X to E is a
vector space.
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Proof. Suppose that f and g are strongly measurable and that a and b are real
(or complex) numbers. Choose sequences { fn} and {gn} of strongly measurable
simple functions that converge pointwise to f and g respectively (Proposition E.2).
Since {a fn + bgn} converges pointwise to a f + bg, and since each a fn + bgn is
strongly measurable (it is simple and each of its values is attained on a measurable
set), Proposition E.1 implies that a f + bg is strongly measurable. �	

We turn to the integration of functions with values in a Banach space. Let
(X ,A ,μ) be a measure space, and let E be a real or complex Banach space.
A function f : X → E is integrable (or strongly integrable, or Bochner integrable)
if it is strongly measurable and the function x → | f (x)| is integrable.1

The integral of such functions is defined as follows. First suppose that f : X → E
is simple and integrable. Let a1, . . . , an be the nonzero values of f , and suppose that
these values are attained on the sets A1, . . . , An. Then Proposition 2.3.10, applied to
the real-valued function x �→ | f (x)|, implies that each Ai has finite measure under μ .
Thus the expression ∑n

i=1 aiμ(Ai) makes sense; we define the integral of f , written∫
f dμ , to be this sum. It is easy to see that

∣
∣
∣
∣

∫

f dμ
∣
∣
∣
∣≤
∫

| f |dμ . (3)

It is also easy to see that if f and g are simple integrable functions and a and b are
real (or complex) numbers, then a f + bg is a simple integrable function, and

∫
(a f + bg)dμ = a

∫
f dμ + b

∫
gdμ . (4)

Now suppose that f is an arbitrary integrable function. Choose a sequence { fn}
of simple integrable functions such that f (x) = limn fn(x) holds at each x in X
and such that the function x �→ supn | fn(x)| is integrable (see Proposition E.2). The
dominated convergence theorem for real-valued functions (Theorem 2.4.5) implies
that limn

∫ | fn − f |dμ = 0, and hence that limm,n
∫ | fm − fn|dμ = 0. Thus (see (3)

and (4)) {∫ fn dμ} is a Cauchy sequence in E , and so is convergent. The integral
(or Bochner integral) of f , written

∫
f dμ , is defined to be the limit of the sequence

{∫ fn dμ}. (It is easy to check that the value of
∫

f dμ does not depend on the choice
of the sequence { fn}: if {gn} is another sequence having the properties required of
{ fn}, then limn

∫ | fn −gn|dμ = 0, from which it follows that limn
∫
( fn −gn)dμ = 0

and hence that limn
∫

fn dμ = limn
∫

gn dμ .)
Let us note a few basic properties of the Bochner integral.

E.4. (Proposition) Let (X ,A ,μ) be a measure space, and let E be a real or
complex Banach space. Suppose that f ,g : X → E are integrable and that a and
b are real (or complex) numbers. Then a f + bg is integrable, and

1See Exercise 4 for an indication of another standard definition of Bochner integrability.
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∫

(a f + bg)dμ = a
∫

f dμ + b
∫

gdμ . (5)

Proof. The integrability of a f + bg follows from Corollary E.3 and the inequality
|(a f + bg)(x)| ≤ |a| | f (x)|+ |b| |g(x)|. Let { fn} and {gn} be sequences of simple
integrable functions that converge pointwise to f and g respectively and are such that
x �→ supn | fn(x)| and x �→ supn |gn(x)| are integrable. Then the functions a fn + bgn

are simple and integrable, and they satisfy

∫

(a fn + bgn)dμ = a
∫

fn dμ + b
∫

gn dμ (6)

(see (4)). Furthermore x �→ supn |(a fn + bgn)(x)| is integrable, and so according to
the definition of the integral, we can take limits in (6), obtaining (5). �	
E.5. (Proposition) Let (X ,A ,μ) be a measure space, and let E be a real or
complex Banach space. If f : X → E is integrable, then |∫ f dμ | ≤ ∫ | f |dμ .

Proof. Let f be an integrable function, and let { fn} be a sequence of simple
integrable functions such that supn | fn(x)| ≤ | f (x)| and f (x) = limn fn(x) hold at
each x in X (Proposition E.2). Then

∣
∣
∣
∣

∫

fn dμ
∣
∣
∣
∣≤
∫

| fn|dμ ≤
∫

| f |dμ

(see (3)); since
∫

f dμ = limn
∫

fn dμ , the proposition follows. �	
The dominated convergence theorem can be formulated as follows for E-valued

functions.

E.6. (Theorem) Let (X ,A ,μ) be a measure space, let E be a real or complex
Banach space, and let g be a [0,+∞]-valued integrable function on X. Suppose that
f and f1, f2, . . . are strongly measurable E-valued functions on X such that the
relations

f (x) = lim
n

fn(x)

and
| fn(x)| ≤ g(x), for n = 1, 2, . . . ,

hold at almost every x in X. Then f and f1, f2, . . . are integrable, and
∫

f dμ =
limn

∫
fn dμ .

Proof. The integrability of f and f1, f2, . . . is immediate. Since | fn − f | ≤ 2g holds
almost everywhere, the dominated convergence theorem for real-valued functions
(Theorem 2.4.5) implies that limn

∫ | fn − f |dμ = 0. In view of Propositions E.4
and E.5, this implies that

∫
f dμ = limn

∫
fn dμ . �	

Let L 1(X ,A ,μ ,E) be the set of all E-valued integrable functions on X . Then
L 1(X ,A ,μ ,E) is a vector space (see Proposition E.4). It is easy to check that the
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collection L1(X ,A ,μ ,E) of equivalence classes (under almost everywhere equality)
of elements of L 1(X ,A ,μ ,E) can be made into a vector space in the natural way,
and that the formula

‖ f‖1 =

∫

| f |dμ (7)

induces a norm on L1(X ,A ,μ ,E) (and, of course, a seminorm on L 1(X ,A ,μ ,E)).
The proof of Theorem 3.4.1 can be modified so as to show that L1(X ,A ,μ ,E) is
complete under ‖ · ‖1.

One often finds it useful to be able to deal with vector-valued functions in terms
of real- (or complex-) valued functions. For this we need to recall the Hahn–Banach
theorem.

E.7. (Hahn–Banach Theorem) Let E be a real or complex normed linear space,
let F be a linear subspace of E, and let ϕ0 be a continuous linear functional on
F. Then there is a continuous linear functional ϕ on E such that ‖ϕ‖ = ‖ϕ0‖ and
such that ϕ0 is the restriction of ϕ to F. In other words, ϕ0 can be extended to a
continuous linear functional on all of E without increasing its norm.

A proof of the Hahn–Banach theorem can be found in almost any basic text on
functional analysis (see, for example, Conway [31], Kolmogorov and Fomin [73],
Royden [102], or Simmons [109]).

We also need the following consequence of the Hahn–Banach theorem.

E.8. (Corollary) Let E be a real or complex normed linear space that does not
consist of 0 alone. Then for each y in E there is a continuous linear functional ϕ on
E such that ‖ϕ‖= 1 and ϕ(y) = ‖y‖.

Proof. Let y be a nonzero element of E , let F be the subspace of E consisting
of all scalar multiples of y, and let ϕ0 be the linear functional on F defined by
ϕ0(ty) = t‖y‖. Then ϕ0 satisfies ‖ϕ0‖= 1 and ϕ0(y) = ‖y‖, and we can produce the
required functional ϕ by applying Theorem E.7 to ϕ0. (In case y = 0, let ϕ be an
arbitrary linear functional on E that satisfies ‖ϕ‖= 1.) �	

Let us now apply Theorem E.7 and Corollary E.8 to the study of vector-valued
functions.

E.9. (Theorem) Let (X ,A ) be a measurable space, and let E be a real or complex
Banach space. A function f : X → E is strongly measurable if and only if

(a) the image f (X) of X under f is separable, and
(b) for each ϕ in E∗ the function ϕ ◦ f is A -measurable.

We will use the following lemma in our proof of Theorem E.9.

E.10. (Lemma) Let E be a separable normed linear space over R or C. Then there
is a sequence {ϕn} of elements of E∗ such that

‖y‖= sup{|ϕn(y)| : n = 1, 2, . . .} (8)

holds for each y in E.
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Proof. We can assume that E does not consist of 0 alone. Choose a sequence {yn}
whose terms form a dense subset of E . According to Corollary E.8, we can choose,
for each n, an element ϕn of E∗ that satisfies ‖ϕn‖ = 1 and ϕn(yn) = ‖yn‖. Let us
check that the sequence {ϕn} meets the requirements of the lemma. Since each ϕn

satisfies ‖ϕn‖= 1, it follows that

sup{|ϕn(y)| : n = 1, 2, . . . } ≤ ‖y‖

holds for each y in E . For an arbitrary y in E we can find terms in the sequence {yn}
that lie arbitrarily close to y, and so the calculations

ϕn(y) = ϕn(y− yn)+ϕn(yn) = ϕn(y− yn)+ ‖yn‖

and |ϕn(y− yn)| ≤ ‖ϕn‖‖y− yn‖= ‖y− yn‖ imply that

‖y‖= sup{|ϕn(y)| : n = 1, 2, . . . }.

Relation (8) follows. �	
Proof of Theorem E.9. Let us assume that we are dealing with Banach spaces over
R; the case of Banach spaces over C is similar.

If f is strongly measurable, then (a) is immediate and (b) follows from
Lemma 7.2.1 and Proposition 2.6.1.

Now suppose that f satisfies (a) and (b). In view of (a), it suffices to show that f
is Borel measurable. Let E0 be the smallest closed linear subspace of E that includes
f (X). Then E0 is separable (if C is a countable dense subset of f (X), then E0 is the
closure of the set of finite sums of rational multiples of elements of C). We can
show that f is Borel measurable (that is, measurable with respect to A and B(E))
by showing that it is measurable with respect to A and B(E0) (Lemma 7.2.2).

Let {ϕn} be a sequence in (E0)
∗ such that

‖y‖= sup{|ϕn(y)| : n = 1, 2, . . .} (9)

holds for each y in E0 (Lemma E.10). Since each continuous linear functional on E0

is the restriction to E0 of an element of E∗ (Theorem E.7), condition (b) implies that
for each n the function ϕn ◦ f is A -measurable. If B is a closed ball in E0, say with
center y0 and radius r, then f−1(B) is equal to

⋂

n

{x : |ϕn( f (x))−ϕn(y0)| ≤ r},

and so belongs to A . Since each open ball in E0 is the union of a countable
collection of closed balls, and since each open subset of E0 is the union of a
countable collection of open balls (recall that E0 is separable), the collection of
closed balls generates B(E0). It now follows from Proposition 2.6.2 that f is
measurable with respect to A and B(E0) and the proof is complete. �	
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E.11. (Proposition) Let (X ,A ,μ) be a measure space, let E be a real or complex
Banach space, and let f : X → E be integrable. Then

∫

ϕ ◦ f dμ = ϕ
(∫

f dμ
)

(10)

holds for each ϕ in E∗.

The reader should see Exercise 3 for a strengthened form of Proposition E.11.

Proof. It is easy to check (do so) that the integrability of ϕ ◦ f follows from that
of f . If f is a simple integrable function, attaining the nonzero values a1, . . . , ak

on the sets A1, . . . , Ak, then each side of (10) is equal to ∑k
i=1 ϕ(ai)μ(Ai); hence

(10) holds for simple integrable functions. Next suppose that f is an arbitrary
integrable function and that { fn} is a sequence of simple integrable functions such
that f (x) = limn fn(x) and supn | fn(x)| ≤ | f (x)| hold at each x in X (Proposition E.2).
Then Theorems E.6 and 2.4.5 enable us to take limits in the relation

∫
ϕ ◦ fn dμ =

ϕ(
∫

fn dμ), and (10) follows for arbitrary integrable functions. �	
The reader should note Exercises 5 and 7, which show some difficulties that arise

in the extension of integration theory to vector-valued functions. The issues hinted at
in these exercises have been the subject of much research over the years; see Diestel
and Uhl [37] for a summary and for further references.

Exercises

1. Show that a simpler proof of Proposition E.2 could be given if the fn’s were not
required to satisfy the inequality | fn(x)| ≤ | f (x)|.

2. Suppose that (X ,A ) is a measurable space and that E is a Banach space. Show
by example that the set of Borel measurable functions from X to E can fail to be
a vector space. (Hint: Let E be a Banach space with cardinality greater than that
of the continuum, and let (X ,A ) be (E×E,B(E)×B(E)). See Exercise 5.1.8.)

3. Let (X ,A ,μ) be a measure space, let E be a Banach space, and let f : X → E
be Bochner integrable. Show that

∫
f dμ is the only element x0 of E that satisfies

ϕ(x0) =
∫

ϕ ◦ f dμ for each ϕ in E∗. (Hint: Use Corollary E.8.)
4. (This exercise hints at another, rather common, way to define strong meas-

urability and Bochner measurability.) Suppose that (X ,A ,μ) is a measure
space and that E is a Banach space. Let f : X → E be a function for which
there is a sequence { fn} of strongly measurable simple functions such that
f (x) = limn fn(x) holds at μ-almost every x in X .

(a) Show by example that f need not have a separable range.
(b) Show that there is a strongly measurable function g : X → E that agrees with

f μ-almost everywhere.
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(c) Show that x �→ | f (x)| is measurable with respect to the completion Aμ of A
under μ .

(d) How should
∫

f dμ be defined if
∫ | f |dμ is finite? (Of course μ is the

completion of μ .)

5. Let (X ,A ) be a measurable space, and let E be a Banach space. An E-valued
measure on (X ,A ) is a function ν : A → E such that ν(∅) = 0 and such that
ν(∪∞

i=1Ai) = ∑∞
i=1 ν(Ai) holds for each infinite sequence {Ai} of disjoint sets in

A . The variation |ν| : A → [0,+∞] of the E-valued measure ν is defined by
letting |ν|(A) be the supremum of the sums ∑n

i=1 |ν(Ai)|, where {Ai}n
i=1 ranges

over all finite partitions of A into A -measurable sets.

(a) Show that the variation of an E-valued measure on (X ,A ) is a positive
measure on (X ,A ).

(b) Show by example that the variation of an E-valued measure may not be finite.
(Hint: Let X be N, let A be P(N), let E be �2, and define ν : A → E by
letting ν(A) be the sequence

n �→
{

1
n if n ∈ A,

0 if n /∈ A.)

6. Let (X ,A ,μ) be a measure space, let E be a Banach space, and let f : X → E be
Bochner integrable. Define ν : A → E by ν(A) =

∫
χA f dμ .

(a) Show that ν is an E-valued measure on (X ,A ).
(b) Show that the variation |ν| of ν is finite.

7. Let λ be Lebesgue measure on ([0,1],B([0,1])), and let E be the Banach
space L1([0,1],B([0,1]),λ ,R). Define ν : B([0,1])→ E by letting ν(A) be the
element of E determined by the characteristic function χA of A.

(a) Show that ν is an E-valued measure on ([0,1],B([0,1])).
(b) Show that |ν| is finite.
(c) Show that ν is absolutely continuous with respect to λ (in other words, show

that ν(A) = 0 holds whenever A satisfies λ (A) = 0).
(d) Show that there is no Bochner integrable function f : [0,1]→ E that satisfies

ν(A) =
∫

χA f dλ for each A in B([0,1]). Thus the Radon–Nikodym theorem
fails for the Bochner integral. (Hint: Use Proposition E.11.)



Appendix F
Liftings

Let (X ,A ,μ) be a measure space. Throughout this appendix we will assume that
the measure μ is finite but not the zero measure (see Exercise 2). Recall that
L ∞(X ,A ,μ ,R) is the vector space of all bounded real-valued A -measurable
functions on X and that L∞(X ,A ,μ ,R) is the vector space of equivalence classes
of functions in L ∞(X ,A ,μ ,R), where two functions are considered equivalent
if they are equal μ-almost everywhere.1 For simplicity, we will generally write
L ∞(X ,A ,μ), instead of L ∞(X ,A ,μ ,R). We will occasionally use the norm ‖·‖∞
on L ∞(X ,A ,μ) defined by

‖ f‖∞ = sup{| f (x)| : x ∈ X}.

Note that for this version of the norm ‖ · ‖∞ a function f satisfies ‖ f‖∞ = 0 only if
f vanishes everywhere on X ; it is not enough for it to vanish almost everywhere.

It is natural to ask whether a function in L ∞(X ,A ,μ) can be chosen from
each equivalence class in L∞(X ,A ,μ) in such a way the choice is linear and
multiplicative. Since notation involving functions is simpler than notation involving
equivalence classes, one generally deals with functions and makes the following def-
initions. A lifting of L ∞(X ,A ,μ) is a function ρ : L ∞(X ,A ,μ)→ L ∞(X ,A ,μ)
such that for all f , g in L ∞(X ,A ,μ) and all real numbers a and b we have

1In the present context (i.e., in cases where the measure μ is finite), it is the same to say that two
functions agree almost everywhere as to say that they agree locally almost everywhere. Thus, for
our current discussion the definition of L ∞(X ,A ,μ ,R) given here is consistent with the one in
Chap. 4. We will use the current definition since it makes the exposition that follows simpler. If we
were looking at liftings on very large measure spaces, we would speak of locally null sets and of
equality locally almost everywhere; see [65].
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