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Preface

In this new edition there are two types of changes: I have made improvements to the
text of the first edition and have added some new topics.

In addition to making some corrections and reworking some arguments from the
first edition, I have added an introduction before Chap. 1, in which I have said a
bit about how the Lebesgue integral arose and indicated something about how the
topics covered are related to one another. I hope that this will make it easier for the
reader to see the structure of what he or she is studying. I have also improved the
layout of the pages a bit, with the examples now easier to find.

There are a number of new topics. These main additions are the Henstock—
Kurzweil integral, the Banach—Tarski paradox, and an introduction to measure-
theoretic probability theory. These are, of course, supplementary to the main lines
of the book, but they should give the reader a better feel for the relationship
between measure theory and other parts of mathematics. As minor additions there
are introductions to the Daniell integral and to the theory of liftings.

The mathematical level of the book and the background expected of the reader
have not changed from the first edition.

There are several people and organizations that I would like to thank. Suffolk
University’s College of Arts and Sciences, together with its Department of Mathe-
matics and Computer Science, made possible a sabbatical leave to work on this new
edition. Richard Dudley and the Department of Mathematics at MIT provided office
space and library access during that leave. Henry Cohn, Carl Offner, and Xinxin
Jiang read and commented on parts of the manuscript. A number of people, some
of whom I can no longer name, sent me useful comments on and corrections for the
first edition. Ann Kostant, Tom Grasso, Kate Ghezzi, and Allen Mann, along with
the production staff at Birkhéduser, were very helpful. My wife, Linda, typed parts
of the manuscript, did a large amount of proofreading, and put up with my schedule
as I worked on the book. I thank them all.

vii



viii Preface
The Preface from the First Edition

This book is intended as a straightforward treatment of the parts of measure
theory necessary for analysis and probability. The first five or six chapters form an
introduction to measure and integration, while the last three chapters should provide
the reader with some tools that are necessary for study and research in any of a
number of directions. (For instance, one who has studied Chaps. 7 and 9 should be
able to go on to interesting topics in harmonic analysis, without having to pause to
learn a new theory of integration and to reconcile it with the one he or she already
knows.) I hope that the last three chapters will also prove to be a useful reference.

Chapters 1 through 5 deal with abstract measure and integration theory and
presuppose only the familiarity with the topology of Euclidean spaces that a student
should acquire in an advanced calculus course. Lebesgue measure on R (and on RY)
is constructed in Chap. 1 and is used as a basic example thereafter.

Chapter 6, on differentiation, begins with a treatment of changes of variables
in R? and then gives the basic results on the almost everywhere differentiation of
functions on R (and measures on R?). The first section of this chapter makes use of
the derivative (as a linear transformation) of a function from R4 to RY; the necessary
definitions and facts are recalled, with appropriate references. The rest of the chapter
has the same prerequisites as the earlier chapters.

Chapter 7 contains a rather thorough treatment of integration on locally compact
Hausdorff spaces. I hope that the beginner can learn the basic facts from Sects. 7.2
and 7.3 without too much trouble. These sections, together with Sect. 7.4 and the
first part of Sect. 7.6, cover almost everything the typical analyst needs to know
about regular measures. The technical facts needed for dealing with very large
locally compact Hausdorff spaces are included in Sects. 7.5 and 7.6.

In Chap. 8 I have tried to collect those parts of the theory of analytic sets that
are of everyday use in analysis and probability. I hope it will serve both as an
introduction and as a useful reference.

Chapter 9 is devoted to integration on locally compact groups. In addition to a
construction and discussion of Haar measure, I have included a brief introduction
to convolution on L' (G) and on the space of finite signed or complex regular Borel
measures on G. The details are provided for arbitrary locally compact groups but in
such a way that a reader who is interested only in second countable groups should
find it easy to make the appropriate omissions.

Chapters 7 through 9 presuppose a little background in general topology.
The necessary facts are reviewed, and so some facility with arguments involving
topological spaces and metric spaces is actually all that is required. The reader who
can work through Sects. 7.1 and 8.1 should have no trouble.

In addition to the main body of the text, there are five appendices. The first
four explain the notation used and contain some elementary facts from set theory,
calculus, and topology; they should remind the reader of a few things he or she may
have forgotten and should thereby make the book quite self-contained. The fifth
appendix contains an introduction to the Bochner integral.



Preface ix

Each section ends with some exercises. They are, for the most part, intended
to give the reader practice with the concepts presented in the text. Some contain
examples, additional results, or alternative proofs and should provide a bit of
perspective. Only a few of the exercises are used later in the text itself; these few are
provided with hints, as needed, that should make their solution routine.

I believe that no result in this book is new. Hence the lack of a bibliographic
citation should never be taken as a claim of originality. The notes at the ends
of chapters occasionally tell where a theorem or proof first appeared; most often,
however, they point the reader to alternative presentations or to sources of further
information.

The system used for cross-references within the book should be almost self-
explanatory. For example, Proposition 1.3.5 and Exercise 1.3.7 are to be found in
Sect. 1.3 of Chap. 1, while C.1 and Theorem C.8§ are to be found in Appendix C.

There are a number of people to whom I am indebted and whom I would like to
thank. First there are those from whom I learned integration theory, whether through
courses, books, papers, or conversations; [ won’t try to name them, but I thank them
all. I would like to thank R.M. Dudley and W.J. Buckingham, who read the original
manuscript, and J.P. Hajj, who helped me with the proofreading. These three read the
book with much care and thought and provided many useful suggestions. (I must, of
course, accept responsibility for ignoring a few of their suggestions and for whatever
mistakes remain.) Finally, I thank my wife, Linda, for typing and providing editorial
advice on the manuscript, for helping with the proofreading, and especially for her
encouragement and patience during the years it took to write this book.

Boston, MA, USA Donald L. Cohn
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Introduction

In this introduction we

* briefly review the Riemann integral as studied in calculus and elementary
analysis,

* sketch how some difficulties with the Riemann integral led to the Lebesgue
integral, and

 outline the main topics in this book and note how they relate to the Riemann and
Lebesgue integrals.

The Riemann Integral—Darboux’s Definition

Let [a,b] be a closed bounded interval. A partition of [a,b] is a finite sequence
{a;}*_, of real numbers such that

a=ayp<a;<---<ap=>h.

Sometimes we will call the values a; the division points of the partition. We will
generally denote a partition by a symbol such as .

Suppose that f is a bounded real-valued function on [a,b] and that &7 is a
partition of [a,b], say with division points {@;}*_ . Fori =1, ..., k define numbers
m; and M; by m; = inf{f(x) : x € [a;_1,a;]} and M; = sup{f(x) : x € [a;_1,ai]}. Then
the lower sum I(f, &) corresponding to f and & is defined to be ¥X_, m;(a; —a;_1).
Similarly, the upper sum u(f,?) corresponding to f and & is defined to be
>k Mj(a;—a;_). See Fig. 1 below.

Since f is bounded, there are real numbers m and M such that m < f(x) <M
holds for each x in [a,b]. Then each lower sum of f satisfies

1, 2) = Y milai—ai-1) ai—ai 1) = M(b—a),

7 M»
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XVvi Introduction

Fig. 1 A lower sum and an upper sum

and so the set of lower sums of f is bounded above, in fact by M(b — a). It follows
that the set of lower sums has a supremum (a least upper bound); this supremum is
called the lower integral of f over [a,b] and is denoted by [ b ¢ A similar argument
shows that the set of upper sums of f is bounded below, and so one can define

the upper integral of f, written Ta f, to be the infimum (the greatest lower bound)
of the set of upper sums. It is not difficult to show (see Sect. 2.5 for details) that

—b . —b
JOf < Jof X JUf = [of, then f is said to be Riemann integrable on [a,b], and the
common value of iz f and TZ f is called the Riemann integral of f over |a,b] and is
denoted by [’ f or [? f(x)dx.

The Riemann Integral—Riemann’s Definition

It is sometimes useful to view Riemann integrals as limits of what are called
Riemann sums. For this we need a couple of definitions. A tagged partition of an
interval [a,b] is a partition {a;}X_, of [a,b], together with a sequence {x;}¥_ | of
numbers (called tags) such thata; ;| <x; <a; holdsfori=1, ..., k. (In other words,
each tag x; must belong to the corresponding interval [a;_;,a;].) As with partitions,
we will often denote a tagged partition by a symbol such as &.

The mesh || Z?|| of a partition (or of a tagged partition) & is defined by || 2| =
max;(a; —a;_1), where {a;} is the sequence of division points for &2. In other words,
the mesh of a partition is the length of the longest of its subintervals.

The Riemann sum Z%(f,2?) corresponding to the function f and the tagged
partition &7 is defined by

k
R(f,P) =Y f(x)(ai—ai1).

i=1

Then, according to Riemann’s definition, the function f is integrable over [a,b] if
there is a number L (which will be the value of the integral) such that

lim%(f,?) =L
gl(f,) ,
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where the limit is taken as the mesh of &2 approaches 0. If we express this in terms
of €’s and &’s, we see that the function f is Riemann integrable, with integral L, if
for every positive € there is a positive 8 such that | Z(f, &) — L| < € holds for each
tagged partition & of [a, b] that satisfies || || < 6.

Darboux’s and Riemann’s definitions are equivalent:' they give exactly the
same classes of integrable functions, with the same values for the integrals (see
Proposition 2.5.7).

Another standard result is that every continuous function on [a,b] is Riemann in-
tegrable; see Example 2.5.2 (or, for a somewhat stronger result, see Theorem 2.5.4).

The final thing to recall is the fundamental theorem of calculus (see Exer-
cise 2.5.6 for a sketch of its proof):

Theorem 1 (The Fundamental Theorem of Calculus). Suppose that f: [a,b] —
R is continuous and that F: [a,b] — R is defined by F(x) = [ f(¢)dt. Then F is
differentiable at each x in |a,b] and its derivative is given by F'(x) = f(x).

From Riemann to Lebesgue

In many situations involving integrals (for example, when integrating an infinite
series term by term or when differentiating under the integral sign), it is necessary
to be able to reverse the order of taking limits and evaluating integrals—that is, to
be able to say things like

b b
/ lirIlnf,,(x) dx = lirIln/ Ju(x)dx.

Thus one needs to have theorems of the following sort:

Theorem 2. Suppose that { f,} is a sequence of integrable functions on the interval
[a,b] and that f is a function such that { f,} converges to f in a suitable* way. Then
f is integrable and

/a ? pydx = lim / £ () dx.

In elementary analysis courses one sees that Theorem 2 is valid for the Riemann
integral if by “converges to f in a suitable way,” we mean “converges uniformly
to f7 (see Exercise 2.5.7). On the other hand, if we do not assume uniform

IThe reader may well be asking why people consider two definitions of the Riemann integral.
The general answer is that Darboux’s definition is simpler and more elegant, while Riemann’s is
useful for various calculations of limits (see, for example, Exercise 2.5.8). For our purposes, the
Darboux approach makes our discussion of the relationship between the Riemann and Lebesgue
integrals simpler, while the Riemann approach is more closely related to the Henstock—Kurzweil
and McShane integrals (see Appendix H).

2The problem is, of course, to figure out what “suitable” might mean and to define the integral in
such a way that theorems like this one will be applicable in many situations.
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0,00 (L0) (1,0)

Fig. 2 Function defined in Example 3

convergence of {f,} to f, but only pointwise® convergence, then, as we see in the

following examples, Theorem 2 may fail.

Example 3. For each positive integer n let f, be the piecewise linear function
on [0,1] whose graph is made up of three line segments, connecting the points
(0,0), (%,2n), (1,0), and (1,0). See Fig.2. Then for each n the triangle formed
by the graph of f, and the x-axis has area 1, and so f, satisfies [01 Sfu(x)dx =1.
Furthermore, for each x in [0, 1] we have lim,, £, (x) = 0. Thus lim,, [ f,(x)dx = 1

but jol lim, f, (x)dx = 0, and the conclusion of Theorem 2 fails for the sequence

{fn} O

The failure of the conclusion of Theorem 2 in the preceding example comes from
the fact that the sequence {f;,} is not uniformly bounded—that is, from the fact that
there is no constant M such that | f, (x)| < M holds for all n and x. Next let us look at
an example in which the functions f;, are uniformly bounded, in fact, in which we
have 0 < f,,(x) < 1 for all n and all x, and yet the conclusion to Theorem 2 fails.

Example 4. Recall that the set of rational numbers is countable (see A.6). Hence
we can choose an enumeration {x,} of the rational numbers in the interval [0, 1]
(that is, a sequence whose members are the rational numbers in [0, 1], with each
rational in that interval occurring exactly once in the sequence). For each n define a
function f;,: [0,1] — R by

1 ifxe{x,x0,...,x,}, and
falx) = bt}
0 otherwise.

3Recall that {f,,} converges pointwise to f on [a,b] if lim,, f,(x) = f(x) for each x in [a,b].
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Thus f,(x) has value 1 for n values of x (namely for xj, ..., x,) and has value O
otherwise. It is easy to check that for each n, all the lower sums of f, are O and
hence that the lower integral Ll) fn 18 0. On the other hand, it is not hard to construct,
for each n and each positive 0, a partition & of [0, 1] in which each of x1, x2, ..., x,
is in the interior of some subinterval that belongs to &7 and has length at most § /n.
It follows that u(f,, &) < §. Since this can be done for each positive 8, it follows

that the upper integral T(l) fu is also 0. Consequently f, is Riemann integrable over
[0,1] and [, f,(x)dx = 0.

For each x let us consider the behavior of the sequence {f,(x)}. If x is rational,
then f,(x) = 1 for all large n, while if x is irrational, then f,(x) = O for all n. Thus
{fu(x)} converges pointwise to the function f: [0,1] — R defined by

1 if x is rational and belongs to [0, 1], and
flx) =

0 ifxisirrational and belongs to [0, 1].

Since the rationals are dense in [0, 1], as are the irrationals, it follows that every
lower sum for f has value O and every upper sum for f has value 1. Thus the lower

and upper integrals of f are given by f f=0and [ of =1, and f is not Riemann
integrable. Thus the conclusion of Theorem 2 fails for this example. a

Example 5. It may seem that the difficulty in the previous example comes from
the fact that the functions f; fail to be continuous. However, one can also produce a
sequence { f,, } such that

(a) each f; is continuous,
(b) 0 < f,(x) < 1 holds for each n and each x, and
(c) {fa} converges pointwise to a function that is not Riemann integrable.

(See Exercise 2.5.4.) O

The questions involved in making Theorem 2 precise were important unresolved
issues in the late nineteenth century; they arose, for example, in the study of Fourier
series.

In the early twentieth century, Lebesgue defined a new integral, which he used
to give very useful answers to questions of the sort discussed above. For example,
Lebesgue showed that Theorem 2, when formulated in terms of his new integral,
holds for pointwise convergence of the sequence { f,}, subject only to some rather
natural boundedness conditions on that sequence (see the dominated convergence
theorem, Theorem 2.4.5). It is hard to overemphasize the simplicity and ease of
application of the limit theorems for the Lebesgue integral.

Let us briefly sketch how the Lebesgue integral is defined. For simplicity, we will
for now restrict our attention to functions f: [a,b] — R that are nonnegative and
bounded (those assumptions are in no way necessary). So let ¢ be a positive number
such that 0 < f(x) < ¢ holds for each x in [a,b]. As we have seen, the definition of
the Riemann integral deals with partitions of the interval [a, b], that is, of the domain
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of f. One way of defining the Lebesgue integral deals with partitions of the range
of f, rather than of the domain. So suppose that & is a partition of [0, c], say given
by a sequence of {a;}*_, of dividing points. Fori =1, ..., k define A; by

Ai={x€a,b]: f(x) € lai_1,ai)}. (1)

(Note that the sets A; are not necessarily subintervals of [a,b]—they can also be
empty, unions of finite collections of subintervals, or even more complicated sets.)
Let us consider the sum s(f, &?) given by

k

s(f, 2) =Y ai_ymeas(4;), 2)

i=1

where meas(4;) is the size, in a sense still to be defined, of the set A;. Subject to
the condition that the function f must be simple enough that meas(A;) makes sense
for all sets A; as defined by (1), the Lebesgue integral of f is defined to be the
supremum of the set of all sums of the form (2), where these sums are considered
for all partitions & of the interval [0,c]. (One can check that this does not depend
on the value of ¢, as long as it is large enough that f(x) < ¢ holds for all x.)

Now let us survey some of the contents of this book.

The first issue that needs resolving is the meaning of the expression meas(A;)
that occurs in Eq. (2). That is the goal of Chap. 1, which begins with the question
of how to describe and organize the subsets of R whose size can reasonably be
measured (that is, the measurable sets) and then continues with the question of how
to measure the sizes of those subsets (the study of Lebesgue measure and of more
general measures). Since it is useful to consider integration not just for functions
defined on R or on subintervals of R but also in more general settings, including
R4, some of the discussion in Chap. 1 is rather abstract. This abstractness does not
add much to the level of difficulty of the chapter.

Appendix G is in some sense a continuation of Chap. 1. It gives an exposition of
the Banach-Tarski paradox, which is a very famous result that quite vividly shows
that Lebesgue measure on R cannot be extended in any reasonable way to all the
subsets of R3. (Appendix G is deeper than Chap. 1 and requires more background
on the reader’s part.)

The main objective of Chap.2 is the definition of the Lebesgue integral.
Section 2.1 deals with measurable functions, those functions that are tame enough
that the sets A; in Eq.(2) are measurable. Section 2.2 introduces properties that
hold almost everywhere and in particular considers convergence almost everywhere,
which can often be used in place of pointwise convergence. The integral is finally
defined in Sect.2.3, and the basic limit theorems for the integral are proved in
Sect. 2.4.

Chapter 3 deals more deeply with limits and convergence in integration theory,
while Chap. 4 deals with measures that have signed or complex values and with
relationships between measures.



Introduction XXi

In multivariable calculus courses one learns how to calculate integrals over
subsets of R¢ by repeatedly calculating one-dimensional integrals. Chapter 5 deals
with such matters for the Lebesgue integral. Section 6.1 deals with another aspect of
integration on R, namely with change of variable in integrals over subsets of R?.

The fundamental theorem of calculus (Theorem 1 above) relates Riemann
integrals to derivatives. Such relationships for the Lebesgue integral are discussed
in the last two sections of Chap. 6.

In the discussion above of Chap.1 we noted that our treatment of measures
and measurable sets is fairly general. This generality is useful for a number of
applications, such as to cases where integration on locally compact topological
spaces is needed (see Chaps.7 and 9) and to the study of probability theory (see
Chap. 10 for a brief introduction to the application of measure theory to probability
theory).

Many deeper questions about measurable sets and functions arise naturally. Some
useful and classical results along these lines are given in Chap. 8.

Let us return for a moment to the second of our definitions of the Riemann
integral, the one expressed in terms of limits of Riemann sums. In the second half
of the twentieth century Henstock and Kurzweil gave what may seem to be a small
modification of this definition. The resulting integral is known as the Henstock—
Kurzweil integral or the generalized Riemann integral. Although their definition
seems very simple, their integral (for functions on R) turns out to be more general
than the Lebesgue integral and to have what is in some ways a more natural
relationship to derivatives. See Appendix H for an introduction to the Henstock—
Kurzweil integral.



