
Chapter 2
Functions and Integrals

This chapter is devoted to the definition and basic properties of the Lebesgue
integral. We first introduce measurable functions—the functions that are simple
enough that the integral can be defined for them if their values are not too
large (Sect. 2.1). After a brief look in Sect. 2.2 at properties that hold almost
everywhere (that is, that may fail on some set of measure zero, as long as they hold
everywhere else), we turn to the definition of the Lebesgue integral and to its basic
properties (Sects. 2.3 and 2.4). The chapter ends with a sketch of how the Lebesgue
integral relates to the Riemann integral (Sect. 2.5) and then with a few more details
about measurable functions (Sect. 2.6).

2.1 Measurable Functions

In this section we introduce measurable functions and study some of their basic
properties. We begin with the following elementary result.

Proposition 2.1.1. Let (X ,A ) be a measurable space, and let A be a subset of X
that belongs to A . For a function f : A → [−∞,+∞] the conditions

(a) for each real number t the set {x ∈ A : f (x) ≤ t} belongs to A,
(b) for each real number t the set {x ∈ A : f (x) < t} belongs to A,
(c) for each real number t the set {x ∈ A : f (x) ≥ t} belongs to A, and
(d) for each real number t the set {x ∈ A : f (x) > t} belongs to A

are equivalent.

Proof. The identity

{x ∈ A : f (x)< t}=
⋃

n

{x ∈ A : f (x) ≤ t − 1/n}
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42 2 Functions and Integrals

implies that each of the sets appearing in condition (b) is the union of a sequence of
sets appearing in condition (a); hence condition (a) implies condition (b). The sets
appearing in condition (c) can be expressed in terms of those appearing in condition
(b) by means of the identity

{x ∈ A : f (x)≥ t}= A−{x ∈ A : f (x)< t};

thus condition (b) implies condition (c). Similar arguments, the details of which are
left to the reader, show that condition (c) implies condition (d) and that condition
(d) implies condition (a). �	

Let (X ,A ) be a measurable space, and let A be a subset of X that belongs to A .
A function f : A → [−∞,+∞] is measurable with respect to A if it satisfies one,
and hence all, of the conditions of Proposition 2.1.1. A function that is measurable
with respect to A is sometimes called A -measurable or, if the σ -algebra A is clear
from context, simply measurable. In case X =R

d , a function that is measurable with
respect to B(Rd) is called Borel measurable or a Borel function, and a function that
is measurable with respect to Mλ ∗ is called Lebesgue measurable (recall that Mλ ∗
is the σ -algebra of Lebesgue measurable subsets of R

d). Of course every Borel
measurable function on R

d is Lebesgue measurable.
We turn to a few examples and then to some of the basic facts about measurable

functions.

Examples 2.1.2. (a) Let f : Rd → R be continuous. Then for each real number
t the set {x ∈ R

d : f (x) < t} is open and so is a Borel set. Thus f is Borel
measurable.

(b) Let I be a subinterval of R, and let f : I → R be nondecreasing. Then for each
real number t the set {x ∈ I : f (x) < t} is a Borel set (it is either an interval, a
set consisting of only one point, or the empty set). Thus f is Borel measurable.

(c) Let (X ,A ) be a measurable space, and let B be a subset of X . Then χB, the
characteristic function of B, is A -measurable if and only if B ∈ A .

(d) A function is called simple if it has only finitely many values. Let (X ,A ) be a
measurable space, let f : X → [−∞,+∞] be simple, and let α1, . . . , αn be the
values of f . Then f is A -measurable if and only if {x ∈ X : f (x) = αi} ∈A for
i = 1, . . . , n. �	

Proposition 2.1.3. Let (X ,A ) be a measurable space, let A be a subset of X that
belongs to A , and let f and g be [−∞,+∞]-valued measurable functions on A. Then
the sets {x ∈ A : f (x) < g(x)}, {x ∈ A : f (x) ≤ g(x)}, and {x ∈ A : f (x) = g(x)}
belong to A .

Proof. Note that the inequality f (x) < g(x) holds if and only if there is a rational
number r such that f (x) < r < g(x). Thus

{x ∈ A : f (x)< g(x)}=
⋃

r∈Q
({x ∈ A : f (x)< r}∩{x ∈ A : r < g(x)}),
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and so {x ∈ A : f (x) < g(x)}, as the union of a countable collection of sets that
belong to A , itself belongs to A . The set {x ∈ A : g(x)< f (x)} likewise belongs to
A . This and the identity

{x ∈ A : f (x)≤ g(x)}= A−{x ∈ A : g(x)< f (x)}
imply that {x ∈ A : f (x) ≤ g(x)} belongs to A . Finally {x ∈ A : f (x) = g(x)} is
the difference of {x ∈ A : f (x) ≤ g(x)} and {x ∈ A : f (x) < g(x)} and so belongs
to A . �	

Let f and g be [−∞,+∞]-valued functions having a common domain A. The
maximum and minimum of f and g, written f ∨g and f ∧g, are the functions from
A to [−∞,+∞] defined by

( f ∨g)(x) = max( f (x),g(x))

and

( f ∧g)(x) = min( f (x),g(x)).

Equivalently, we can define f ∨g by

( f ∨g)(x) =

{
f (x) if f (x) > g(x) and,

g(x) otherwise,

with f ∧g getting a corresponding definition.
If { fn} is a sequence of [−∞,+∞]-valued functions on A, then supn fn : A →

[−∞,+∞] is defined by

(sup
n

fn)(x) = sup{ fn(x) : n = 1, 2, . . . }

and infn fn, limsupn fn, liminfn fn, and limn fn are defined in analogous ways.
The domain of limn fn consists of those points in A at which limsupn fn and
liminfn fn agree; the domain of each of the other four functions is A. Each of these
functions can have infinite values, even if all the fn’s have only finite values; in
particular, limn fn(x) can be +∞ or −∞.

Proposition 2.1.4. Let (X ,A ) be a measurable space, let A be a subset of X that
belongs to A , and let f and g be [−∞,+∞]-valued measurable functions on A. Then
f ∨g and f ∧g are measurable.

Proof. The measurability of f ∨g follows from the identity

{x ∈ A : ( f ∨g)(x)≤ t}= {x ∈ A : f (x) ≤ t}∩{x ∈ A : g(x)≤ t},
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and the measurability of f ∧g follows from the identity

{x ∈ A : ( f ∧g)(x)≤ t}= {x ∈ A : f (x) ≤ t}∪{x ∈ A : g(x)≤ t}. �	

Proposition 2.1.5. Let (X ,A ) be a measurable space, let A be a subset of X that
belongs to A , and let { fn} be a sequence of [−∞,+∞]-valued measurable functions
on A. Then

(a) the functions supn fn and infn fn are measurable,
(b) the functions limsupn fn and liminfn fn are measurable, and
(c) the function limn fn (whose domain is {x ∈ A : limsupn fn(x) = liminfn fn(x)})

is measurable.

Proof. The measurability of supn fn and infn fn follows from the identities

{x ∈ A : sup
n

fn(x)≤ t}=
⋂

n

{x ∈ A : fn(x)≤ t}

and

{x ∈ A : inf
n

fn(x)< t}=
⋃

n

{x ∈ A : fn(x)< t}.

For each positive integer k define functions gk and hk by gk = supn≥k fn and hk =
infn≥k fn. Part (a) of the proposition implies first that each gk is measurable and
that each hk is measurable and then that infk gk and supk hk are measurable. Since
limsupn fn and liminfn fn are equal to infk gk and supk hk, they too are measurable.

Let A0 be the domain of limn fn. Then A0 is equal to {x ∈ A : limsupn fn(x) =
liminfn fn(x)}, which according to Proposition 2.1.3 belongs to A . Since

{x ∈ A0 : lim
n

fn(x)≤ t}= A0 ∩{x ∈ A : limsup
n

fn(x)≤ t},

the measurability of limn fn follows. �	
In the following two propositions we deal with arithmetic operations on [0,+∞]-

valued measurable functions (see B.4) and on R-valued measurable functions.
Arithmetic operations on [−∞,+∞]-valued functions are trickier and are seldom
needed.

Proposition 2.1.6. Let (X ,A ) be a measurable space, let A be a subset of X that
belongs to A , let f and g be [0,+∞]-valued measurable functions on A, and let α
be a nonnegative real number. Then α f and f + g are measurable.1

Proof. For the measurability of α f , note that if α = 0, then α f is identically 0 and
so measurable, while if α > 0, then for each t the set {x ∈ A : α f (x)< t} is equal to
{x ∈ A : f (x) < t/α} and so belongs to A .

1Recall that 0 · (+∞) = 0 and that if x �=−∞, then x+(+∞) = (+∞)+ x =+∞. See Appendix B.
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We turn to f + g. It is easy to check that ( f + g)(x)< t holds if and only if there
is a rational number r such that f (x)< r and g(x)< t − r. Thus

{x ∈ A : ( f + g)(x)< t}
=
⋃

r∈Q
({x ∈ A : f (x)< r}

⋂
{x ∈ A : g(x)< t − r}),

and so {x ∈ A : ( f + g)(x) < t}, as the union of a countable collection of sets that
belong to A , itself belongs to A . The measurability of f + g follows. �	
Proposition 2.1.7. Let (X ,A ) be a measurable space, let A be a subset of X that
belongs to A , let f and g be measurable real-valued functions on A, and let α be
a real number. Then α f , f + g, f − g, f g, and f/g (where the domain of f/g is
{x ∈ A : g(x) �= 0}) are measurable.

Proof. The measurability of α f and f + g can be verified by modifying the proof
of Proposition 2.1.6, and so the details are omitted (note that if α < 0, then {x ∈ A :
α f (x) < t} = {x ∈ A : f (x) > t/α}). The measurability of f − g follows from the
identity f − g = f +(−1)g.

We turn to the product of measurable functions and begin by showing that if
h : A → R is measurable, then h2 is measurable. For this note that if t ≤ 0, then

{x ∈ A : h2(x)< t}=∅,

while if t > 0, then

{x ∈ A : h2(x)< t}= {x ∈ A : −√
t < h(x)<

√
t};

the measurability of h2 follows. Hence if f and g are measurable, then f 2, g2, and
( f + g)2 are measurable, and the measurability of f g follows from the identity

f g =
1
2
(( f + g)2 − f 2 − g2).

Let A0 = {x ∈ A : g(x) �= 0}, so that A0 is the domain of f/g. It is easy to check
(do so) that A0 belongs to A . Since for each t the set {x ∈ A0 : ( f/g)(x)< t} is the
union of

{x ∈ A : g(x)> 0}∩{x ∈ A : f (x) < tg(x)}
and

{x ∈ A : g(x)< 0}∩{x ∈ A : f (x)> tg(x)},
the measurability of f/g follows (see Proposition 2.1.3). �	
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Let A be a set, and let f be an extended real-valued function2 on A. The positive
part f+ and the negative part f− of f are the extended real-valued functions
defined by

f+(x) = max( f (x),0)

and

f−(x) =−min( f (x),0).

Thus f+ = f ∨0 and f− =(− f )∨0. It is easy to check that if (X ,A ) is a measurable
space and if f is a [−∞,+∞]-valued function defined on a subset of X , then f
is measurable if and only if f+ and f− are both measurable. It follows from this
remark, together with Proposition 2.1.6, that the absolute value | f | of a measurable
function f is measurable (note that | f |= f++ f−).

Let (X ,A ) be a measurable space, let A be a subset of X that belongs to A ,
and let f be a [−∞,+∞]-valued function on A. The following relationships between
the measurability of f and the measurability of restrictions of f to subsets of A are
sometimes useful:

(a) If f is A -measurable and if B is a subset of A that belongs to A , then the
restriction fB of f to B is A -measurable; this follows from the identity

{x ∈ B : fB(x)< t}= B∩{x ∈ A : f (x) < t}.
(b) If {Bn} is a sequence of sets that belong to A , if A = ∪nBn, and if for each n

the restriction fBn of f to Bn is A -measurable, then f is A -measurable; this
follows from the identity

{x ∈ A : f (x)< t}=
⋃

n

{x ∈ Bn : fBn(x)< t}.

We will repeatedly have need for the following basic result.

Proposition 2.1.8. Let (X ,A ) be a measurable space, let A be a subset of X that
belongs to A , and let f be a [0,+∞]-valued measurable function on A. Then there
is a sequence { fn} of simple [0,+∞)-valued measurable functions on A that satisfy

f1(x)≤ f2(x)≤ . . . (1)

and

f (x) = lim
n

fn(x) (2)

at each x in A.

2An extended real-valued function is, of course, a [−∞,+∞]-valued function.
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Proof. For each positive integer n and for k = 1, 2, . . . , n2n let An,k = {x ∈ A :
(k−1)/2n ≤ f (x)< k/2n}. The measurability of f implies that each An,k belongs to
A . Define a sequence { fn} of functions from A to R by requiring fn to have value
(k− 1)/2n at each point in An,k (for k = 1, 2, . . . , n2n) and to have value n at each
point in A−∪kAn,k. The functions so defined are simple and measurable, and it is
easy to check that they satisfy (1) and (2) at each x in A. �	

Suppose that (X ,A ) is a measurable space and that f is a [−∞,+∞]-valued A -
measurable function defined on an A -measurable subset A of X . Then by applying
Proposition 2.1.8 to the positive and negative parts of f , we can construct a sequence
{ fn} of simple A -measurable functions from A to R such that f (x) = limn fn(x)
holds at each x in A.

The following proposition gives some additional ways of viewing measur-
able functions; part (d) suggests a way to deal with more general situations
(see Sect. 2.6).

Proposition 2.1.9. Let (X ,A ) be a measurable space, and let A be a subset of X
that belongs to A . For a function f : A →R, the conditions

(a) f is measurable with respect to A,
(b) for each open subset U of R the set f−1(U) belongs to A,
(c) for each closed subset C of R the set f−1(C) belongs to A, and
(d) for each Borel subset B of R the set f−1(B) belongs to A

are equivalent.

Proof. Let F = {B ⊆ R : f−1(B) ∈ A }. Then the fact that f−1(R) = A and the
identities

f−1(Bc) = A− f−1(B)

and

f−1
(
⋃

n

Bn

)

=
⋃

n

f−1(Bn)

imply that F is a σ -algebra on R. To require that f be measurable is to require
that F contain all the intervals of the form (−∞,b] or equivalently (since F is a σ -
algebra) to require that F include the σ -algebra on R generated by these intervals.
Since the σ -algebra generated by these intervals is the σ -algebra of Borel subsets of
R (Proposition 1.1.4), conditions (a) and (d) are equivalent. However the σ -algebra
of Borel subsets of R is also generated by the collection of all open subsets of R
and by the collection of all closed subsets of R, and so conditions (b) and (c) are
equivalent to the others. �	

We close this section by returning to one of the promises made in Sect. 1.3 and
proving that there are Lebesgue measurable subsets of R that are not Borel sets.
For this we will use the following example.
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Example 2.1.10. Recall the construction of the Cantor set given in Sect. 1.4. There
we let K0 be the interval [0,1], and for each positive integer n we constructed a
compact set Kn by removing from Kn−1 the open middle third of each of the intervals
making up Kn−1. The Cantor set K is given by K = ∩nKn.

The Cantor function (also known as the Cantor singular function) is the function
f : [0,1]→ [0,1] defined as follows (the concept of singularity will be defined and
studied in Chap. 4). For each x in the interval (1/3,2/3) let f (x) = 1/2. Thus f is
now defined at each point removed from [0,1] in the construction of K1. Next define
f at each point removed from K1 in the construction of K2 by letting f (x) = 1/4 if
x ∈ (1/9,2/9) and letting f (x) = 3/4 if x ∈ (7/9,8/9). Continue in this way, letting
f (x) be 1/2n, 3/2n, 5/2n, . . . on the various intervals removed from Kn−1 in the
construction of Kn. After all these steps, f is defined on the open set [0,1]−K, is
nondecreasing, and has values in [0,1]. Extend it to all of [0,1] by letting f (0) = 0
and letting

f (x) = sup{ f (t) : t ∈ [0,1]−K and t < x}
if x ∈ K and x �= 0. This completes the definition of the Cantor function.

It is easy to check that f is nondecreasing and continuous, and it is clear that
f (0) = 0 and f (1) = 1. The intermediate value theorem (Theorem C.13) thus
implies that for each y in [0,1] there is at least one x in [0,1] such that f (x) = y,
and so we can define a function g : [0,1]→ [0,1] by

g(y) = inf{x ∈ [0,1] : f (x) = y}. (3)

The continuity of f implies that f (g(y)) = y holds for each y in [0,1]; hence g is
injective. It is easy to check that all the values of g lie in the Cantor set. The fact
that f is nondecreasing implies that g is nondecreasing and hence that g is Borel
measurable (see Example 2.1.2(b)). �	
Proposition 2.1.11. There is a Lebesgue measurable subset of R that is not a
Borel set.

Proof. Let g be the function constructed above, let A be a subset of [0,1] that is
not Lebesgue measurable (see Theorem 1.4.9), and let B = g(A). Then B is a subset
of the Cantor set and so is Lebesgue measurable (recall that λ (K) = 0 and that
Lebesgue measure on the σ -algebra of Lebesgue measurable sets is complete). If B
were a Borel set, then g−1(B) would also be a Borel set (recall that g is Borel
measurable, and see Proposition 2.1.9). However the injectivity of g implies that
g−1(B) is the set A, which is not Lebesgue measurable and hence is not a Borel set.
Consequently the Lebesgue measurable set B is not a Borel set. �	
Example 2.1.12. The proof of Proposition 2.1.11 gives a Borel set of Lebesgue
measure 0 (the Cantor set) that has a subset that is not a Borel set. It follows that
Lebesgue measure on (R,B(R)) is not complete. �	
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Exercises

1. Let X be a set, let {Ak} be a sequence of subsets of X , let B = ∪∞
n=1 ∩∞

k=n Ak, and
let C = ∩∞

n=1 ∪∞
k=n Ak. Show that

(a) liminfk χAk = χB, and
(b) limsupk χAk = χC.

2. Show that the supremum of an uncountable family of [−∞,+∞]-valued Borel
measurable functions on R can fail to be Borel measurable.

3. Show that if f : R→ R is differentiable everywhere on R, then its derivative f ′
is Borel measurable.

4. Let (X ,A ) be a measurable space, and let { fn} be a sequence of [−∞,+∞]-
valued measurable functions on X . Show that

{x ∈ X : lim
n

fn(x) exists and is finite}

belongs to A .
5. Let (X ,A ) be a measurable space.

(a) Show directly (i.e., without using Proposition 2.1.6 or Proposition 2.1.7) that
if f ,g : X → R are A -measurable simple functions, then f + g and f g are
A -measurable.

(b) Now let f ,g : X → R be arbitrary A -measurable functions. Use Proposi-
tions 2.1.4, 2.1.5, and 2.1.8, together with part (a) of this exercise, to show
that f + g and f g are A -measurable.

6. Let (X ,A ) be a measurable space, and let f ,g : X →R be measurable. Give still
another proof of the measurability of f + g, this time by checking that for each
real t the function x �→ t − f (x) is measurable and then using Proposition 2.1.3.
(Hint: Consider {x : g(x)< t − f (x)}.)

7. Let f be the Cantor function, and let μ be the Borel measure on R associated
to f by Proposition 1.3.10 (actually, one should apply Proposition 1.3.10 to the
function from R to R that agrees with f on [0,1], vanishes on (−∞,0), and is
identically 1 on (1,+∞)). Show that
(a) each of the 2n intervals remaining after the nth step in the construction of the

Cantor set has measure 1/2n under μ ,
(b) the Cantor set has measure 1 under μ , and
(c) each x in R satisfies μ({x}) = 0.
Thus all the mass of μ is concentrated on a set of Lebesgue measure zero (the
Cantor set), but μ is not a sum of multiples of point masses.

8. Let g be the inverse of the Cantor function (that is, let g be defined by formula
(3)). Show that the points x that have the form x = g(y) for some y in [0,1] are
exactly those that belong to the Cantor set and are not right-hand endpoints of
intervals removed from [0,1] during the construction of the Cantor set.

9. Let (X ,A ) be a measurable space and let C be a subset of X that does not belong
to A . Show that a function f : X → R is σ(A ∪{C})-measurable if and only if
there exist A -measurable functions f1, f2 : X → R such that f = f1χC + f2χCc .
(See part (a) of Exercise 1.5.12.)
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10. Let V0 be the collection of all Borel measurable functions from R to R. Show
that V0 is the smallest of those collections V of functions from R to R for
which

(i) V is a vector space over R,
(ii) V contains each continuous function, and

(iii) if { fn} is an increasing sequence of nonnegative functions in V and if
limn fn(x) is finite for each x in R, then limn fn belongs to V .

(Hint: Suppose that V satisfies conditions (a), (b), and (c), and define S(V )
by S(V ) = {A ⊆ R : χA ∈ V }. Show that S(V ) contains each interval of the
form (−∞,a), and then use Theorem 1.6.2 to show that S(V ) contains each
Borel set.)

2.2 Properties That Hold Almost Everywhere

Let (X ,A ,μ) be a measure space. A property of points of X is said to hold μ-almost
everywhere if the set of points in X at which it fails to hold is μ-negligible. In other
words, a property holds μ-almost everywhere if there is a set N that belongs to A ,
satisfies μ(N) = 0, and contains every point at which the property fails to hold. More
generally, if E is a subset of X , then a property is said to hold μ-almost everywhere
on E if the set of points in E at which it fails to hold is μ-negligible. The expression
μ-almost everywhere is often abbreviated to μ-a.e. or to a.e.[μ ]. In cases where the
measure μ is clear from context, the expressions almost everywhere and a.e. are also
used.

Consider a property that holds almost everywhere, and let F be the set of points in
X at which it fails. Then it is not necessary that F belong to A ; it is only necessary
that there be a set N that belongs to A , includes F , and satisfies μ(N) = 0. Of
course, if μ is complete, then F will belong to A .

Examples 2.2.1. Suppose that f and g are functions on X . Then f = g almost
everywhere if the set of points x at which f (x) �= g(x) is μ-negligible, and f ≥ g
almost everywhere if the set of points x at which f (x) < g(x) is μ-negligible. Note
that the sets {x ∈ X : f (x) �= g(x)} and {x ∈ X : f (x) < g(x)} belong to A if f
and g are A -measurable; otherwise these sets may fail to belong to A . If { fn} is a
sequence of functions on X and f is a function on X , then { fn} converges to f almost
everywhere if the set of points x at which the relation f (x) = limn fn(x) fails to hold
is μ-negligible. In this case one also says that f = limn fn almost everywhere. �	
Proposition 2.2.2. Let (X ,A ,μ) be a measure space, and let f and g be extended
real-valued functions on X that are equal almost everywhere. If μ is complete and
if f is A -measurable, then g is A -measurable.

Proof. Let t be a real number and let N be a set that belongs to A , satisfies
μ(N) = 0, and is such that f and g agree everywhere outside N. Then

{x ∈ X : g(x)≤ t}= ({x ∈ X : f (x) ≤ t}∩Nc)∪ ({x ∈ X : g(x)≤ t}∩N). (1)
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The measurability of f and N implies that {x ∈ X : f (x) ≤ t}∩Nc belongs to A ,
while the completeness of μ implies that {x ∈ X : g(x)≤ t}∩N belongs to A . The
measurability of g follows. �	
Corollary 2.2.3. Let (X ,A ,μ) be a measure space, let { fn} be a sequence of
extended real-valued functions on X, and let f be an extended real-valued function
on X such that { fn} converges to f almost everywhere. If μ is complete and if each
fn is A -measurable, then f is A -measurable.

Proof. According to Proposition 2.1.5 the function liminfn fn is A -measurable.
Since f and liminfn fn agree almost everywhere, Proposition 2.2.2 implies that f
is A -measurable. �	
Example 2.2.4. Suppose that (X ,A ,μ) is a measure space that is not complete,
and let N be a μ-negligible subset of X that does not belong to A . Then the
characteristic function χN and the constant function 0 agree almost everywhere,
but 0 is A -measurable while χN is not. Thus Proposition 2.2.2 would fail if the
hypothesis of completeness were removed. Furthermore, the sequence each term of
which is 0 converges almost everywhere to χN ; consequently Corollary 2.2.3 would
also fail if the hypothesis of completeness were removed. �	
Proposition 2.2.5. Let (X ,A ,μ) be a measure space, and let Aμ be the completion
of A under μ . Then a function f : X → [−∞,+∞] is Aμ -measurable if and only if
there are A -measurable functions f0, f1 : X → [−∞,+∞] such that

f0 ≤ f ≤ f1 holds everywhere on X (2)

and

f0 = f1 holds μ-almost everywhere on X. (3)

In the context of Proposition 2.2.5, it is natural to ask whether it is always
possible, given an Aμ -measurable function f with values in R, rather than in
[−∞,+∞], to find real-valued functions f0 and f1 that satisfy (2) and (3). It turns
out that the answer is no; see Exercise 8.3.3.

Proof. First suppose that there exist A -measurable functions f0 and f1 that satisfy
(2) and (3). Then f0 is Aμ-measurable and f = f0 holds μ-almost everywhere,
and so Proposition 2.2.2, applied to the space (X ,Aμ ,μ), implies that f is Aμ -
measurable.

Now suppose that f : X → [−∞,+∞] is Aμ -measurable. If f is simple and
[0,+∞)-valued, say attaining values a1, . . . , ak on the sets A1, . . . , Ak, then there
are sets B1, . . . , Bk and C1, . . . , Ck that belong to A and satisfy Ci ⊆ Ai ⊆ Bi and
μ(Bi −Ci) = 0 for each i. The functions f0 and f1 defined by f0 = ∑i aiχCi and
f1 = ∑i aiχBi then satisfy (2) and (3).

We can deal with the case where f is simple and real-valued by applying the
preceding argument to the positive and negative parts of f .
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Finally, let f : X → [−∞,+∞] be an arbitrary Aμ -measurable function, and
choose a sequence {gn} of simple Aμ -measurable functions from X to R such
that f (x) = limn gn(x) holds at each x in X (see the remark following the proof
of Proposition 2.1.8). If for each n we choose A -measurable functions g0,n and g1,n

such that

g0,n ≤ gn ≤ g1,n holds everywhere on X

and

g0,n = g1,n holds μ-almost everywhere on X ,

then the required functions f0 and f1 can be constructed by letting f0 be limn g0,n

and f1 be limn g1,n. �	

Exercises

1. Give Borel functions f ,g : R→ R that agree on some dense subset of R but are
such that f (x) �= g(x) holds at λ -almost every x in R.

2. Let {xn} be a sequence of real numbers, and define μ on (R,B(R)) by μ =

∑n δxn (see Exercise 1.2.6). Show that functions f ,g : R → R agree μ-almost
everywhere if and only if f (xn) = g(xn) holds for each n.

3. Let f and g be continuous real-valued functions on R. Show that if f = g
λ -almost everywhere, then f = g (i.e., f (x) = g(x) for every x in R).

4. Let μ be the finite Borel measure on R that is associated to the Cantor function
by Proposition 1.3.10 (see Exercise 2.1.7). Show that continuous real-valued
functions on R agree μ-almost everywhere if and only if they agree at every
point in the Cantor set.

5. Let (X ,A ,μ) be a measure space, and let f and f1, f2, . . . be [−∞,+∞]-
valued A -measurable functions on X . Show that if { fn} converges to f almost
everywhere, then there are A -measurable functions g1, g2, . . . that are equal to
f1, f2, . . . almost everywhere and satisfy f = limn gn everywhere.

6. Show that the function f : R→ R defined by

f (x) =

{
0 if x is irrational,

1 if x is rational

is nowhere continuous and that the function g : R→ R defined by

g(x) =

{
0 if x = 0 or x is irrational,
1
q if x = p

q , where p and q are relatively prime and q > 0

is continuous λ -almost everywhere.
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2.3 The Integral

In this section we construct the integral and study some of its basic properties.
The construction will take place in three stages.

We begin with the simple functions. Let (X ,A ) be a measurable space. We will
denote by S the collection of all simple real-valued A -measurable functions on X
and by S+ the collection of nonnegative functions in S .

Let μ be a measure on (X ,A ). If f belongs to S+ and is given by f =∑m
i=1 aiχAi ,

where a1, . . . , am are nonnegative real numbers and A1, . . . , Am are disjoint subsets
of X that belong to A , then

∫
f dμ , the integral of f with respect to μ , is defined

to be ∑m
i=1 aiμ(Ai) (note that this sum is either a nonnegative real number or +∞).

We need to check that
∫

f dμ depends only on f and not on a1, . . . , am and A1, . . . ,
Am. So suppose that f is also given by ∑n

j=1 b jχB j , where b1, . . . , bn are nonnegative
real numbers and B1, . . . , Bn are disjoint subsets of X that belong to A . We can
assume that ∪m

i=1Ai = ∪n
j=1B j (if necessary eliminate those sets Ai for which ai = 0

and those sets B j for which b j = 0). Then the additivity of μ and the fact that ai = b j

if Ai ∩B j �= 0 imply that

m

∑
i=1

aiμ(Ai) =
m

∑
i=1

n

∑
j=1

aiμ(Ai ∩B j)

=
m

∑
i=1

n

∑
j=1

b jμ(Ai ∩B j) =
n

∑
j=1

b jμ(B j);

hence
∫

f dμ does not depend on the representation of f used in its definition.
Before proceeding to the next stage of our construction, we verify a few

properties of the integral of a nonnegative simple function.

Proposition 2.3.1. Let (X ,A ,μ) be a measure space, let f and g belong to S+,
and let α be a nonnegative real number. Then

(a)
∫

α f dμ = α
∫

f dμ ,
(b)

∫
( f + g)dμ =

∫
f dμ +

∫
gdμ , and

(c) if f (x)≤ g(x) holds at each x in X, then
∫

f dμ ≤ ∫ gdμ .

Proof. Suppose that f = ∑m
i=1 aiχAi , where a1, . . . , am are nonnegative real numbers

and A1, . . . , Am are disjoint subsets of X that belong to A , and that g = ∑n
j=1 b jχB j ,

where b1, . . . , bn are nonnegative real numbers and B1, . . . , Bn are disjoint subsets
of X that belong to A . We can again assume that ∪m

i=1Ai = ∪n
j=1B j. Then parts (a)

and (b) follow from the calculations

∫

α f dμ =
m

∑
i=1

αaiμ(Ai) = α
m

∑
i=1

aiμ(Ai) = α
∫

f dμ
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and
∫

( f + g)dμ =
m

∑
i=1

n

∑
j=1

(ai + b j)μ(Ai ∩B j)

=
m

∑
i=1

n

∑
j=1

aiμ(Ai ∩B j)+
m

∑
i=1

n

∑
j=1

b jμ(Ai ∩B j)

=
m

∑
i=1

aiμ(Ai)+
n

∑
j=1

b jμ(B j) =

∫

f dμ +

∫

gdμ .

Next suppose that f (x) ≤ g(x) holds at each x in X . Then g− f belongs to S+,
and so part (c) follows from the calculation

∫
gdμ =

∫
( f +(g− f ))dμ =

∫
f dμ +

∫
(g− f )dμ ≥

∫
f dμ . �	

Proposition 2.3.2. Let (X ,A ,μ) be a measure space, let f belong to S+, and let
{ fn} be a nondecreasing sequence of functions in S+ such that f (x) = limn fn(x)
holds at each x in X. Then

∫
f dμ = limn

∫
fn dμ .

This proposition is a weak version of one of the fundamental properties of the
Lebesgue integral, the monotone convergence theorem (Theorem 2.4.1). We need
this weakened version now for use as a tool in completing the definition of the
integral.

Proof. It follows from Proposition 2.3.1 that
∫

f1 dμ ≤
∫

f2 dμ ≤ ·· · ≤
∫

f dμ ;

hence limn
∫

fn dμ exists and satisfies limn
∫

fn dμ ≤ ∫ f dμ . We turn to the reverse
inequality. Let ε be a number such that 0< ε < 1. We will construct a nondecreasing
sequence {gn} of functions in S+ such that gn ≤ fn holds for each n and such
that limn

∫
gn dμ = (1 − ε)

∫
f dμ . Since

∫
gn dμ ≤ ∫ fn dμ , this will imply that

(1− ε)
∫

f dμ ≤ limn
∫

fn dμ and, since ε is arbitrary, that
∫

f dμ ≤ limn
∫

fn dμ .
Consequently

∫
f dμ = limn

∫
fn dμ .

We turn to the construction of the sequence {gn}. Suppose that a1, . . . , ak are the
nonzero values of f and that A1, . . . , Ak are the sets on which these values occur.
Thus f = ∑k

i=1 aiχAi . For each n and i let

A(n, i) = {x ∈ Ai : fn(x)≥ (1− ε)ai}.
Then each A(n, i) belongs to A , and for each i the sequence {A(n, i)}∞

n=1 is
nondecreasing and satisfies Ai = ∪nA(n, i). If we let gn = ∑k

i=1(1− ε)aiχA(n,i), then
gn belongs to S+ and satisfies gn ≤ fn, and we can use Proposition 1.2.5 to conclude
that
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lim
n

∫

gn dμ = lim
n

k

∑
i=1

(1− ε)aiμ(A(n, i))

=
k

∑
i=1

(1− ε)aiμ(Ai) = (1− ε)
∫

f dμ . �	

As our next step, we define the integral of an arbitrary [0,+∞]-valued A -
measurable function on X . For such a function f , let

∫

f dμ = sup
{∫

gdμ : g ∈ S+ and g ≤ f
}
.

It is easy to see that for functions f in S+, this agrees with the previous definition.
Let us check a few properties of the integral on the class of [0,+∞]-valued meas-

urable functions. The first of these properties is an extension of Proposition 2.3.2 and
will itself be generalized in Theorem 2.4.1 (the monotone convergence theorem).
It is included here so that it can be used in the proof of Proposition 2.3.4.

Proposition 2.3.3. Let (X ,A ,μ) be a measure space, let f be a [0,+∞]-valued A -
measurable function on X, and let { fn} be a nondecreasing sequence of functions
in S+ such that f (x) = limn fn(x) holds at each x in X. Then

∫
f dμ = limn

∫
fn dμ .

Proof. It is clear that

∫
f1 dμ ≤

∫
f2 dμ ≤ ·· · ≤

∫
f dμ ;

hence limn
∫

fn dμ exists and satisfies limn
∫

fn dμ ≤ ∫ f dμ . We turn to the reverse
inequality. Recall that

∫
f dμ is the supremum of those elements of [0,+∞] of the

form
∫

gdμ , where g ranges over the set of functions that belong to S+ and satisfy
g ≤ f . Thus to prove that

∫
f dμ ≤ limn

∫
fn dμ , it is enough to check that if g is

a function in S+ that satisfies g ≤ f , then
∫

gdμ ≤ limn
∫

fn dμ . Let g be such a
function. Then {g∧ fn} is a nondecreasing sequence of functions in S+ for which
g = limn(g∧ fn), and so Proposition 2.3.2 implies that

∫
gdμ = limn

∫
(g∧ fn)dμ .

Since
∫
(g∧ fn)dμ ≤ ∫ fn dμ , it follows that

∫
gdμ ≤ limn

∫
fn dμ , and the proof is

complete. �	
Proposition 2.3.4. Let (X ,A ,μ) be a measure space, let f and g be [0,+∞]-valued
A -measurable functions on X, and let α be a nonnegative real number. Then

(a)
∫

α f dμ = α
∫

f dμ ,
(b)

∫
( f + g)dμ =

∫
f dμ +

∫
gdμ , and

(c) if f (x)≤ g(x) holds at each x in X, then
∫

f dμ ≤ ∫ gdμ .

Proof. Choose nondecreasing sequences { fn} and {gn} of functions in S+ such
that f = limn fn and g = limn gn (see Proposition 2.1.8). Then {α fn} and { fn + gn}
are nondecreasing sequences of functions in S+ that satisfy α f = limn α fn and
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f + g = limn( fn + gn), and so we can use Proposition 2.3.3, together with the
homogeneity and additivity of the integral on S+, to conclude that

∫

α f dμ = lim
n

∫

α fn dμ = lim
n

α
∫

fn dμ = α
∫

f dμ

and
∫

( f + g)dμ = lim
n

∫

( fn + gn)dμ

= lim
n

(∫
fn dμ +

∫

gn dμ
)
=

∫

f dμ +

∫

gdμ .

Thus parts (a) and (b) are proved. For part (c), note that if f ≤ g, then the class of
functions h in S+ that satisfy h ≤ f is included in the class of functions h in S+

that satisfy h ≤ g; it follows that
∫

f dμ ≤ ∫ gdμ . �	
Finally, let f be an arbitrary [−∞,+∞]-valued A -measurable function on X . If∫

f+ dμ and
∫

f− dμ are both finite, then f is called integrable (or μ-integrable or
summable), and its integral

∫
f dμ is defined by

∫
f dμ =

∫
f+ dμ −

∫
f− dμ .

The integral of f is said to exist if at least one of
∫

f+ dμ and
∫

f− dμ is finite,
and again in this case,

∫
f dμ is defined to be

∫
f+ dμ − ∫ f− dμ . In either case one

sometimes writes
∫

f (x)μ(dx) or
∫

f (x)dμ(x) in place of
∫

f dμ .
Suppose that f : X → [−∞,+∞] is A -measurable and that A ∈ A . Then f is

integrable over A if the function f χA is integrable, and in this case
∫

A f dμ , the
integral of f over A, is defined to be

∫
f χA dμ . Likewise, if A ∈ A and if f is a

measurable function whose domain is A (rather than the entire space X), then the
integral of f over A is defined to be the integral (if it exists) of the function on X that
agrees with f on A and vanishes on Ac. In case μ(Ac) = 0, one often writes

∫
f dμ

in place of
∫

A f dμ and calls f integrable, rather than integrable over A.
In case X = R

d and μ = λ , one often refers to Lebesgue integrability and the
Lebesgue integral. The Lebesgue integral of a function f on R is often written∫

f (x)dx. In case we are integrating over the interval [a,b], we may write
∫ b

a f or
∫ b

a f (x)dx or, if we need to emphasize that we mean the Lebesgue integral, (L)
∫ b

a f
or (L)

∫ b
a f (x)dx.

We define L 1(X ,A ,μ ,R) (or sometimes simply L 1) to be the set of all real-
valued (rather than [−∞,+∞]-valued) integrable functions on X . According to
Proposition 2.3.6 below, L 1(X ,A ,μ ,R) is a vector space and the integral is a linear
functional on L 1(X ,A ,μ ,R).

Lemma 2.3.5. Let (X ,A ,μ) be a measure space, and let f1, f2, g1, and g2 be
nonnegative real-valued integrable functions on X such that f1 − f2 = g1−g2. Then∫

f1 dμ − ∫ f2 dμ =
∫

g1 dμ − ∫ g2 dμ .
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Proof. Since the functions f1, f2, g1, and g2 satisfy f1 − f2 = g1 − g2, they also
satisfy f1 + g2 = g1 + f2 and so satisfy

∫

f1 dμ +

∫

g2 dμ =

∫

g1 dμ +

∫

f2 dμ

(Proposition 2.3.4); since all the integrals involved are finite, this implies that
∫

f1 dμ −
∫

f2 dμ =

∫

g1 dμ −
∫

g2 dμ . �	

Proposition 2.3.6. Let (X ,A ,μ) be a measure space, let f and g be real-valued
integrable functions on X, and let α be a real number. Then

(a) α f and f + g are integrable,
(b)

∫
α f dμ = α

∫
f dμ ,

(c)
∫
( f + g)dμ =

∫
f dμ +

∫
gdμ , and

(d) if f (x) ≤ g(x) holds at each x in X, then
∫

f dμ ≤ ∫ gdμ .

Proof. The integrability of α f and the relation
∫

α f dμ = α
∫

f dμ are clear if
α = 0. If α is positive, then (α f )+ = α f+ and (α f )− = α f−; thus (α f )+ and
(α f )−, and hence α f , are integrable, and

∫

α f dμ =

∫

(α f )+ dμ −
∫

(α f )− dμ

= α
∫

f+ dμ −α
∫

f− dμ = α
∫

f dμ .

If α is negative, then (α f )+ =−α f− and (α f )− =−α f+, and we can modify the
preceding argument so as to show that α f is integrable and that

∫
α f dμ =α

∫
f dμ .

Now consider the sum of f and g. Note that ( f +g)+ ≤ f++g+ and ( f +g)− ≤
f−+ g−; thus (Proposition 2.3.4)

∫

( f + g)+dμ ≤
∫

f+ d μ +

∫

g+dμ <+∞

and
∫

( f + g)−dμ ≤
∫

f− d μ +

∫

g− dμ <+∞,

and so f + g is integrable. Since f + g is equal to ( f + g)+ − ( f + g)− and to
f++ g+− ( f−+ g−), it follows from Lemma 2.3.5 that

∫

( f + g)dμ =

∫

( f++ g+)dμ −
∫

( f−+ g−)dμ ,

and hence that
∫
( f + g)dμ =

∫
f dμ +

∫
gdμ .

If f (x) ≤ g(x) holds at each x in X , then g − f is a nonnegative integrable
function; hence

∫
(g− f )dμ ≥ 0, and so

∫
gdμ − ∫ f dμ =

∫
(g− f )dμ ≥ 0. �	
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Examples 2.3.7.

(a) If μ is a finite measure, then every bounded measurable function on (X ,A ,μ)
is integrable.

(b) In particular, every bounded Borel function, and hence every continuous
function, on [a,b] is Lebesgue integrable. (We’ll see in Sect. 2.5 that the
Lebesgue integral of a continuous function on [a,b] can be found by calculating
its Riemann integral.)

(c) Suppose that A is the σ -algebra on N containing all subsets of N and that μ
is counting measure on A . It follows from Proposition 2.3.3 that a nonnegative
function f on N is μ-integrable if and only if the infinite series ∑n f (n) is
convergent, and that in that case the integral and the sum of the series agree.
Since a not necessarily nonnegative function f is integrable if and only if f+

and f− are integrable, it follows that f is integrable if and only if the infinite
series ∑n f (n) is absolutely convergent. Once again, the integral and the sum of
the series have the same value.

(d) Note that a simple measurable function that vanishes almost everywhere is
integrable, with integral 0. We can reach the same conclusion for arbitrary
measurable functions that vanish almost everywhere by first using Proposi-
tion 2.3.3 to deal with nonnegative functions and then using the decomposition
f = f+− f−. For a converse, see Corollary 2.3.12. �	

We now consider a few elementary properties of the integral; the basic limit
theorems for the integral will be presented in the next section.

Proposition 2.3.8. Let (X ,A ,μ) be a measure space, and let f be a [−∞,+∞]-
valued A -measurable function on X. Then f is integrable if and only if | f | is
integrable. If these functions are integrable, then |∫ f dμ | ≤ ∫ | f |dμ .

Proof. Recall that by definition f is integrable if and only if f+ and f− are
integrable. On the other hand, since | f | = f+ + f−, part (b) of Proposition 2.3.4
implies that | f | is integrable if and only if f+ and f− are integrable. Thus the
integrability of f is equivalent to the integrability of | f |. In case f and | f | are
integrable, the inequality |∫ f dμ | ≤ ∫ | f |dμ follows from the calculation

∣
∣
∣
∣

∫
f dμ

∣
∣
∣
∣=

∣
∣
∣
∣

∫
f+ dμ −

∫
f− dμ

∣
∣
∣
∣≤
∫

f+ dμ +
∫

f− dμ =
∫

| f |dμ . �	

The reader should note that there are functions that are not measurable, and hence
not integrable, but that have an integrable absolute value (see Exercise 3). Hence we
needed to include the measurability of f among the hypotheses of Proposition 2.3.8.

Proposition 2.3.9. Let (X ,A ,μ) be a measure space, and let f and g be [−∞,+∞]-
valued A -measurable functions on X that agree almost everywhere. If either

∫
f dμ

or
∫

gdμ exists, then both exist, and
∫

f dμ =
∫

gdμ .

Proof. First consider the case where f and g are nonnegative. Let A = {x ∈ X :
f (x) �= g(x)}, and let h be the function defined by
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h(x) =

{
+∞ if x ∈ A,

0 if x /∈ A.

Then
∫

hdμ = 0 (apply Proposition 2.3.3 to the sequence {hn} defined by hn =
nχA). In view of Proposition 2.3.4 and the inequality f ≤ g+ h, this implies that∫

f dμ ≤ ∫ gdμ +
∫

hdμ =
∫

gdμ . A similar argument shows that
∫

gdμ ≤ ∫ f dμ .
Thus

∫
f dμ =

∫
gdμ .

The case where f and g are not necessarily nonnegative can be reduced to the
case just treated through the decompositions f = f+− f− and g = g+− g−. �	
Proposition 2.3.10. Let (X ,A ,μ) be a measure space, and let f be a [0,+∞]-
valued A -measurable function on X. If t is a positive real number and if At is
defined by At = {x ∈ X : f (x)≥ t}, then

μ(At)≤ 1
t

∫

At

f dμ ≤ 1
t

∫
f dμ .

Proof. The relation 0≤ tχAt ≤ f χAt ≤ f and part (c) of Proposition 2.3.4 imply that
∫

tχAt dμ ≤
∫

At

f dμ ≤
∫

f dμ .

Since
∫

tχAt dμ = tμ(At), the proposition follows. �	
Corollary 2.3.11. Let (X ,A ,μ) be a measure space, and let f be a [−∞,+∞]-
valued integrable function on X. Then {x ∈ X : f (x) �= 0} is σ -finite under μ .

Proof. Proposition 2.3.10, applied to the function | f |, implies that the sets A1, A2,
. . . defined by

An =

{

x ∈ X : | f (x)| ≥ 1
n

}

have finite measure under μ . Thus {x ∈ X : f (x) �= 0}, since it is equal to ∪nAn, is
σ -finite under μ . �	
Corollary 2.3.12. Let (X ,A ,μ) be a measure space, and let f be a [−∞,+∞]-
valued A -measurable function on X that satisfies

∫ | f |dμ = 0. Then f vanishes
μ-almost everywhere.

Proof. Proposition 2.3.10, applied to the function | f |, implies that

μ
({

x ∈ X : | f (x)| ≥ 1
n

})

≤ n
∫

| f |dμ = 0
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holds for each positive integer n. Since

{x ∈ X : f (x) �= 0}=
⋃

n

{

x ∈ X : | f (x)| ≥ 1
n

}

,

the countable subadditivity of μ implies that μ({x ∈ X : f (x) �= 0}) = 0. Thus f
vanishes almost everywhere. �	
Corollary 2.3.13. Let (X ,A ,μ) be a measure space, and let f be a [−∞,+∞]-
valued integrable function on X such that

∫
A f dμ ≥ 0 holds for all A in A (or even

just for all A in the smallest σ -algebra on X that makes f measurable). Then f ≥ 0
holds μ-almost everywhere.

Proof. Let A = {x ∈ X : f (x) < 0}. Then
∫

f χA dμ =
∫

A f dμ = 0 (since f < 0 on
A, yet we are assuming that

∫
A f dμ ≥ 0). It follows from Corollary 2.3.12 that f χA

vanishes almost everywhere and hence that f ≥ 0 holds almost everywhere. �	
Corollary 2.3.14. Let (X ,A ,μ) be a measure space, and let f be a [−∞,+∞]-
valued integrable function on X. Then | f (x)| <+∞ holds at μ-almost every x in X.

Proof. Proposition 2.3.10, applied to the function | f |, implies that

μ({x ∈ X : | f (x)| ≥ n})≤ 1
n

∫

| f |dμ

holds for each positive integer n. Thus

μ({x ∈ X : | f (x)| =+∞})≤ μ({x ∈ X : | f (x)| ≥ n})≤ 1
n

∫

| f |dμ

holds for each n, and so μ({x ∈ X : | f (x)| =+∞}) = 0 �	
Corollary 2.3.15. Let (X ,A ,μ) be a measure space, and let f be a [−∞,+∞]-
valued A -measurable function on X. Then f is integrable if and only if there is a
function in L 1(X ,A ,μ ,R) that is equal to f almost everywhere.

In other words, a measurable [−∞,+∞]-valued function f is integrable if and
only if there is an R-valued function that is integrable and equal to f μ-almost
everywhere.

Proof. If there is a function in L 1(X ,A ,μ ,R) that is equal to f almost everywhere,
then the integrability of f follows from Proposition 2.3.9. Next suppose that f is
integrable, and let A = {x ∈ X : | f (x)| = +∞}. Then A ∈ A , and Corollary 2.3.14
implies that μ(A) = 0. It follows that the function f0 defined by f0 = f χAc is A -
measurable and agrees with f almost everywhere. Proposition 2.3.9 now implies
that f0 is integrable and hence a member of L 1(X ,A ,μ ,R). �	
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Exercises

1. Let (X ,A ,μ) be a measure space, and let f and g belong to L 1(X ,A ,μ ,R).
Show that f ∨g and f ∧g belong to L 1(X ,A ,μ ,R).

2. Give Borel functions f ,g : R→ R that are Lebesgue integrable but are such that
f g is not Lebesgue integrable.

3. Show that there is a function f : R → R that is not Lebesgue integrable, but is
such that | f | is Lebesgue integrable. (Hint: Let f = χA − χB, where A and B are
suitable subsets of R.)

4. Let (X ,A ,μ) be a measure space, let f ,g : X → [−∞,+∞] be integrable, and let
h : X → [−∞,+∞] be an A -measurable function that satisfies h(x) = f (x)+g(x)
at μ-almost every x in X . Show that h is integrable and that

∫
hdμ =

∫
f dμ +∫

gdμ .
5. Let (X ,A ,μ) be a measure space, and let f : X → [−∞,+∞] be an A -

measurable function whose integral exists and is not equal to −∞. Show that
if g : X → [−∞,+∞] is an A -measurable function that satisfies f ≤ g μ-almost
everywhere, then the integral of g exists and satisfies

∫
f dμ ≤ ∫ gdμ .

6. Let (X ,A ,μ) be a measure space, let { fn} be a nondecreasing sequence of
[0,+∞]-valued A -measurable functions on X , and let f be the function on X
that satisfies f (x) = limn fn(x) at each x in X .
(a) Show that if g belongs to S+ and satisfies g ≤ f , then for each ε in the

interval (0,1), there is a sequence {gn} in S+ such that gn ≤ fn holds for
each n and such that limn

∫
gn dμ = (1− ε)

∫
gdμ . (Hint: See the proof of

Proposition 2.3.2).
(b) Use part (a) to prove that limn

∫
fn dμ =

∫
f dμ . Thus we have another proof

of Proposition 2.3.3 and, at the same time, of Theorem 2.4.1 below (see,
however, the last paragraph of the proof of Theorem 2.4.1).

2.4 Limit Theorems

In this section we prove the basic limit theorems of integration theory. These results
are extremely important and account for much of the power of the Lebesgue integral.
We will use them often in the rest of the book.

Theorem 2.4.1 (The Monotone Convergence Theorem). Let (X ,A ,μ) be a
measure space, and let f and f1, f2, . . . be [0,+∞]-valued A -measurable functions
on X. Suppose that

f1(x)≤ f2(x)≤ . . . (1)

and

f (x) = lim
n

fn(x) (2)

hold at μ-almost every x in X. Then
∫

f dμ = limn
∫

fn dμ .
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In this theorem the functions f and f1, f2, . . . are only assumed to be nonnegative
and measurable; there are no assumptions about whether they are integrable.

Proof. First suppose that relations (1) and (2) hold at each x in X . The monotonicity
of the integral (part (c) of Proposition 2.3.4) implies that

∫

f1 dμ ≤
∫

f2 dμ ≤ ·· · ≤
∫

f dμ ;

hence the sequence {∫ fn dμ} converges (perhaps to +∞), and its limit satisfies
limn

∫
fn dμ ≤ ∫

f dμ . We turn to the reverse inequality. For each n choose a
nondecreasing sequence {gn,k}∞

k=1 of simple [0,+∞)-valued measurable functions
such that fn = limk gn,k (Proposition 2.1.8). For each n define a function hn by

hn = max(g1,n,g2,n, . . . ,gn,n).

Then {hn} is a nondecreasing sequence of simple [0,+∞)-valued measurable
functions that satisfy hn ≤ fn and f = limn hn. It follows from these remarks,
Proposition 2.3.3, and the monotonicity of the integral that

∫

f dμ = lim
n

∫

hn dμ ≤ lim
n

∫

fn dμ .

Hence
∫

f dμ = limn
∫

fn dμ .
Now suppose that we only require that relations (1) and (2) hold for almost every

x in X . Let N be a set that belongs to A , has measure zero under μ , and contains
all points at which one or more of these relations fails. The function f χNc and the
sequence { fnχNc} satisfy the hypotheses made in the first part of the proof, and so

∫

f χNc dμ = lim
n

∫

fnχNc dμ . (3)

Since fnχNc agrees with fn almost everywhere and f χNc agrees with f almost
everywhere, Eq. (3) and Proposition 2.3.9 imply that

∫

f dμ = lim
n

∫

fn dμ . �	

Corollary 2.4.2 (Beppo Levi’s Theorem). Let (X ,A ,μ) be a measure space, and
let ∑∞

k=1 fk be an infinite series whose terms are [0,+∞]-valued A -measurable
functions on X. Then

∫ ∞

∑
k=1

fk dμ =
∞

∑
k=1

∫

fk dμ .

Proof. Use the linearity of the integral, and apply Theorem 2.4.1 to the sequence
{∑n

k=1 fk}∞
n=1 of partial sums of the series ∑∞

k=1 fk. �	
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Example 2.4.3. Corollary 2.4.2 can be applied as follows to construct a large class
of measures. Suppose that (X ,A ,μ) is a measure space and that f : X → [0,+∞]
is A -measurable. Define a function ν : A → [0,+∞] by ν(A) =

∫
A f dμ . Then

ν(∅) = 0, and Corollary 2.4.2, applied to the series ∑n f χAn , implies that if {An} is
a sequence of disjoint sets in A , then ν(∪nAn) = ∑n ν(An). Thus ν is a measure on
(X ,A ). Moreover ν is a finite measure if and only if f is μ-integrable. �	

The next result is often used to show that a function is integrable or to provide an
upper bound for the value of an integral.

Theorem 2.4.4 (Fatou’s Lemma). Let (X ,A ,μ) be a measure space, and let { fn}
be a sequence of [0,+∞]-valued A -measurable functions on X. Then

∫

lim
n

fn dμ ≤ lim
n

∫

fn dμ .

Proof. For each positive integer n let gn = infk≥n fk. Each gn is A -measurable
(Proposition 2.1.5), and the relations

g1(x)≤ g2(x)≤ . . .

and

lim
n

fn(x) = lim
n

gn(x)

hold at each x in X . It follows from the monotone convergence theorem
(Theorem 2.4.1) and the inequality gn ≤ fn that

∫

lim
n

fn dμ =

∫

lim
n

gn dμ = lim
n

∫

gn dμ ≤ lim
n

∫

fn dμ . �	

Theorem 2.4.5 (Lebesgue’s Dominated Convergence Theorem). Let (X ,A ,μ)
be a measure space, let g be a [0,+∞]-valued integrable function on X, and let f
and f1, f2, . . . be [−∞,+∞]-valued A -measurable functions on X such that

f (x) = lim
n

fn(x) (4)

and

| fn(x)| ≤ g(x), n = 1, 2, . . . (5)

hold at μ-almost every x in X. Then f and f1, f2, . . . are integrable, and
∫

f dμ =
limn

∫
fn dμ .

Proof. The integrability of f and f1, f2, . . . follows from that of g; see Proposi-
tion 2.3.8, Proposition 2.3.9, and part (c) of Proposition 2.3.4.
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Let us begin our proof that
∫

f dμ = limn
∫

fn dμ by supposing that relations (4),
(5), and

g(x)<+∞ (6)

hold at every x in X . Then {g+ fn} is a sequence of nonnegative A -measurable
functions such that (g+ f )(x) = limn(g+ fn)(x) holds at each x in X , and so Fatou’s
lemma (Theorem 2.4.4) implies that

∫

(g+ f )dμ ≤ lim
n

∫

(g+ fn)dμ

and hence that
∫

f dμ ≤ lim
n

∫

fn dμ .

A similar argument, applied to the sequence {g− fn}, shows that
∫
(g− f )dμ ≤ lim

n

∫
(g− fn)dμ

and hence that

lim
n

∫

fn dμ ≤
∫

f dμ .

Consequently
∫

f dμ = limn
∫

fn dμ .
Next suppose that we only require that relations (4), (5), and (6) hold at almost

every x in X (note that, according to Corollary 2.3.14, the hypothesis
∫

gdμ < +∞
implies that relation (6) holds at almost every x in X). We can reduce the present
case to the one we have just dealt with by using a modified version of the final part
of the proof of Theorem 2.4.1; the details are left to the reader. �	
Example 2.4.6. Let us note how Theorem 2.4.5 can be used to justify “differentia-
tion under the integral sign.” Let (X ,A ,μ) be a measure space, let g : X → [0,+∞]
be an integrable function, let I be an open subinterval of R, and let f : X × I →R be
such that

(a) for each t in I the function x �→ f (x, t) is integrable,
(b) for each x in X the function t �→ f (x, t) is differentiable on I, and
(c) the inequality

∣
∣
∣
∣

f (x, t)− f (x, t0)
t − t0

∣
∣
∣
∣≤ g(x) (7)

holds for all t, t0 in I and all x in X .

Define g : I → R by g(t) =
∫

X f (x, t)μ(dx). Let us use the dominated conver-
gence theorem to show that g is differentiable on I, with g′ given by g′(t) =∫

X ft(x, t)μ(dx) at each t in I (here ft(x, t) denotes the partial derivative with respect
to t). Suppose that {tn} is a sequence of elements of I, all different from t0, such that
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limn tn = t0. Then, in view of inequality (7), the dominated convergence theorem
implies that x �→ ft (x, t0) is integrable and that

lim
n

g(tn)− g(t0)
tn − t0

=
∫

X
ft (x, t0)μ(dx).

Combining this with item C.7 in Appendix C finishes the argument. �	

Exercises

1. Give sequences { fn}, {gn}, and {hn} of functions in L 1(R,B(R),λ ,R) that
converge to zero almost everywhere, but satisfy
(a) limn

∫
fn dλ =+∞,

(b) limn
∫

gn dλ = 1, and
(c) limsupn

∫
hn dλ = 1 and liminfn

∫
hn dλ =−1.

2. Prove that the monotone convergence theorem still holds if the assumption that
the functions f1, f2, . . . are nonnegative is dropped, and the assumption that f1

is integrable is added (note that in this case the integrals of the functions f and
f2, f3, . . . exist, but may be +∞).

3. Let (X ,A ,μ) be a measure space. Use Exercise 2 to show that if { fn} is
a decreasing sequence of measurable functions and if f1 is integrable, then∫

limn fn dμ = limn
∫

fn dμ (as in Exercise 2 the integrals involved exist, but
may be infinite).

4. Let f , g, and f1, f2, . . . be as in the dominated convergence theorem, and define
sequences {pn} and {qn} by pn = infk≥n fk and qn = supk≥n fk. Use Exercises 2
and 3, together with the inequality pn ≤ fn ≤ qn, to give another proof of the
dominated convergence theorem.

5. Use Exercise 3, applied to the sequence {hn} defined by hn = supk≥n | fk − f |,
to give still another proof of the dominated convergence theorem. (Of course
the functions f and f1, f2, . . . can be modified so that they are real valued and
hence so that fk − f makes sense.)

6. Let (X ,A ,μ) be a measure space, and let f : X → [0,+∞] be A -measurable.

(a) Show that if each value of f is a nonnegative integer or +∞, then
∫

f dμ =

∑∞
n=1 μ({x : f (x) ≥ n}).

(b) Now suppose that the values of f are arbitrary elements of [0,+∞] and that
μ is finite. Show that the integrability of f is equivalent to the convergence
of the series ∑∞

n=1 μ({x : f (x) ≥ n}).
7. Let (X ,A ) and (Y,B) be measurable spaces. A function K : X ×B → [0,+∞]

is called a kernel from (X ,A ) to (Y,B) if

(i) for each x in X the function B �→ K(x,B) is a measure on (Y,B), and
(ii) for each B in B the function x �→ K(x,B) is A -measurable.
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Suppose that K is a kernel from (X ,A ) to (Y,B), that μ is a measure on
(X ,A ), and that f is a [0,+∞]-valued B-measurable function on Y . Show that
(a) B �→ ∫

K(x,B)μ(dx) is a measure on (Y,B),
(b) x �→ ∫

f (y)K(x,dy) is an A -measurable function on X , and
(c) if ν is the measure on (Y,B) defined in part (a), then

∫
f (y)ν(dy) =∫

(
∫

f (y)K(x,dy))μ(dx). (Hint: Begin with the case where f is a character-
istic function.)

8. (Continuation.) Now suppose that μ is finite, that sup{K(x,Y ) : x ∈ X} is finite,
and that the measurable function f is bounded but not necessarily nonnegative.
Show that
(a) x �→ ∫

f (y)K(x,dy) is a bounded A -measurable function on X , and
(b)

∫
f (y)ν(dy) =

∫
(
∫

f (y)K(x,dy))μ(dx). (Here again ν is the measure
defined in part (a) of Exercise 7.)

9. Let (X ,A ,μ) be a measure space, let g be a [0,+∞]-valued integrable function
on X , and let f and ft (for t in [0,+∞)) be real-valued A -measurable functions
on X such that

f (x) = lim
t→+∞

ft (x)

and

| ft(x)| ≤ g(x) for t in [0,+∞)

hold at almost every x in X . Show that
∫

f dμ = limt→+∞
∫

ft dμ . (Hint: Give a
simplified version of the argument in Example 2.4.6.)

10. Let I be an open subinterval of R, and let f : R → R be a Borel measurable
function such that x �→ etx f (x) is Lebesgue integrable for each t in I. Define
h : I → R by h(t) =

∫
R

etx f (x)λ (dx). Show that h is differentiable, with
derivative given by h′(t) =

∫
R

xetx f (x)λ (dx), at each t in I. Of course, it is
part of your task to show that x �→ xetx f (x) is integrable for each t in I. (Hint:
Use the Maclaurin expansion of eu to show that |eu −1| ≤ |u|e|u| holds for each
u in R, and use the argument from Example 2.4.6.)

11. Let (X ,A ,μ) be a measure space, and let f and f1, f2, . . . be nonnegative
functions that belong to L 1(X ,A ,μ ,R) and satisfy

(i) { fn} converges to f almost everywhere, and
(ii)

∫
f dμ = limn

∫
fn dμ .

Show that limn
∫ | fn − f |dμ = 0.

2.5 The Riemann Integral

This section contains the standard facts that relate the Lebesgue integral to the
Riemann integral. We begin by recalling Darboux’s definition of the Riemann
integral, as given in the Introduction (we use it as our basic definition), and then
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we give a number of details that we omitted earlier. We also give the standard
characterization of the Riemann integrable functions on a closed bounded interval
as the bounded functions on that interval that are almost everywhere continuous.

Let [a,b] be a closed bounded interval. A partition of [a,b] is a finite sequence
{ai}k

i=0 of real numbers such that

a = a0 < a1 < · · ·< ak = b.

We will generally denote a partition by a symbol such as P or Pn.
If {ai}k

i=0 and {bi} j
i=0 are partitions of [a,b] and if each term of {ai}k

i=0 appears

among the terms of {bi} j
i=0, then {bi} j

i=0 is a refinement of or is finer than {ai}k
i=0.

Let f be a bounded real-valued function on [a,b]. If P is the partition {ai}k
i=0

of [a,b] and if mi = inf{ f (x) : x ∈ [ai−1,ai]} and Mi = sup{ f (x) : x ∈ [ai−1,ai]} for
i = 1, . . . , k, then the lower sum l( f ,P) corresponding to f and P is defined to be
∑k

i=1 mi(ai−ai−1), and the upper sum u( f ,P) corresponding to f and P is defined
to be ∑k

i=1 Mi(ai − ai−1).
It is easy to check that if P is an arbitrary partition of [a,b], then

l( f ,P) ≤ u( f ,P)

and that if P1 and P2 are partitions of [a,b] such that P2 is a refinement of P1,
then

l( f ,P1)≤ l( f ,P2)

and

u( f ,P2)≤ u( f ,P1)

(first consider the case where P2 contains exactly one more point than P1, and
then use induction on the difference between the number of points in P2 and the
number of points in P1). It follows that if P1 and P2 are arbitrary partitions of
[a,b], then

l( f ,P1)≤ u( f ,P2)

(let P3 be a partition of [a,b] that is a refinement of both P1 and P2 and note that

l( f ,P1)≤ l( f ,P3)≤ u( f ,P3)≤ u( f ,P2)).

Hence the set of all lower sums for f is bounded above by each of the upper sums for
f . The supremum of this set of lower sums is the lower integral of f over [a,b] and
is denoted by

∫ b
a

f . The lower integral satisfies
∫ b

a
f ≤ u( f ,P) for each upper sum

u( f ,P) and so is a lower bound for the set of all upper sums for f . The infimum of

this set of upper sums is the upper integral of f over [a,b] and is denoted by
∫ b

a f .

It follows immediately that
∫ b

a
f ≤ ∫ b

a f . If
∫ b

a
f =

∫ b
a f , then f is Riemann integrable
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on [a,b], and the common value of
∫ b

a
f and

∫ b
a f is called the Riemann integral of f

over [a,b] and is denoted by
∫ b

a f or
∫ b

a f (x)dx (we’ll occasionally write (R)
∫ b

a f or
(R)
∫ b

a f (x)dx when we need to make clear which integral we mean).
The following reformulation of the definition of Riemann integrability is often

useful.

Lemma 2.5.1. A bounded function f : [a,b]→R is Riemann integrable if and only
if for every positive ε there is a partition P of [a,b] such that u( f ,P)−l( f ,P)< ε .

Proof. This is an immediate consequence of the fact that f is Riemann integrable if
and only if

sup
P

l( f ,P) = inf
P

u( f ,P),

together with the fact that if P1 and P2 are partitions such that

u( f ,P1)− l( f ,P2)< ε,

then taking a common refinement P of P1 and P2 gives a partition P such that
u( f ,P)− l( f ,P)< ε. �	
Example 2.5.2. Suppose that f is a continuous, and hence bounded, function on
[a,b]. Then f is uniformly continuous (Theorem C.12), and so for each positive
number ε there is a positive number δ such that if x and y are elements of [a,b] that
satisfy |x− y|< δ , then | f (x)− f (y)| < ε . If ε and δ are related in this way and if
P is a partition of [a,b] into intervals each of which has length less than δ , then
u( f ,P)− l( f ,P) ≤ ε(b− a). It follows that every continuous function on [a,b] is
Riemann integrable. �	
Example 2.5.3. Let f : [0,1]→R be the characteristic function of the set of rational
numbers in [0,1]. Then f is Lebesgue integrable, and

∫
[0,1] f dλ = 0. However, as

we noted in the Introduction, every lower sum of f is equal to 0 and every upper
sum of f is equal to 1; thus f is not Riemann integrable. �	
Theorem 2.5.4. Let [a,b] be a closed bounded interval, and let f be a bounded
real-valued function on [a,b]. Then

(a) f is Riemann integrable if and only if it is continuous at almost every point of
[a,b], and

(b) if f is Riemann integrable, then f is Lebesgue integrable and the Riemann and
Lebesgue integrals of f coincide.

Proof. Suppose that f is Riemann integrable. Then for each positive integer n
we can choose a partition Pn of [a,b] such that u( f ,Pn)− l( f ,Pn) < 1/n. By
replacing the Pn’s with finer partitions if necessary, we can assume that for each
n the partition Pn+1 is a refinement of the partition Pn. Define sequences {gn}
and {hn} of functions on [a,b] by letting gn and hn agree with f at the point a and
letting them be constant on each interval of the form (ai−1,ai] determined by Pn,
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there having the values inf{ f (x) : ai−1 ≤ x ≤ ai} and sup{ f (x) : ai−1 ≤ x ≤ ai},
respectively. Then {gn} is an increasing sequence of simple Borel functions that
satisfy gn ≤ f and

∫
[a,b] gn dλ = l( f ,Pn) for each n, and {hn} is a decreasing

sequence of simple Borel functions that satisfy hn ≥ f and
∫
[a,b] hn dλ = u( f ,Pn)

for each n. Since f is bounded, the sequences {gn} and {hn} are bounded. Define
functions g and h by g= limn gn and h= limn hn. Then g and h are Borel measurable,
and the dominated convergence theorem (Theorem 2.4.5) implies that g and h
are Lebesgue integrable, with

∫
[a,b]gdλ and

∫
[a,b] hdλ equal to limn l( f ,Pn) and

limn u( f ,Pn), respectively, and so to the Riemann integral of f . Thus
∫
[a,b](h−

g)dλ = 0. Since in addition h− g ≥ 0, Corollary 2.3.12 implies that

g(x) = h(x) for almost every x in [a,b]. (1)

This relation has two consequences. For the first, note that if g(x) = h(x) and if
x is a point in [a,b] that is not a division point in any of the partitions Pn, then
f is continuous at x. Thus (1) implies that f is continuous almost everywhere,
and so half of part (a) is proved. Note also that g ≤ f ≤ h, and so (1) implies
that f is equal to g almost everywhere. It follows that f is Lebesgue measurable
and Lebesgue integrable (Propositions 2.2.2 and 2.3.9) and that the Riemann and
Lebesgue integrals of f are the same; thus part (b) is proved.

We turn to the remaining half of part (a). For this suppose that f is continuous
almost everywhere. For each n let Pn be the partition of [a,b] that divides [a,b]
into 2n subintervals of equal length. Use these partitions Pn to construct functions
gn and hn as in the first part of this proof. The relations f (x) = limn gn(x) and
f (x) = limn hn(x) clearly hold at each x at which f is continuous and so at
almost every x in [a,b]. Thus limn(hn − gn) = 0 holds almost everywhere, and so,
since

∫
[a,b] gn dλ = l( f ,Pn) and

∫
[a,b] hn dλ = u( f ,Pn), the dominated convergence

theorem implies that

lim
n
(u( f ,Pn)− l( f ,Pn)) = 0.

Thus for each ε there is a partition P of [a,b] such that u( f ,P)− l( f ,P)< ε , and
the Riemann integrability of f follows. �	
Example 2.5.5. Since the characteristic function of the set of rational numbers in
[0,1] is not continuous anywhere in [0,1], part (a) of Theorem 2.5.4 gives another
proof that this characteristic function is not Riemann integrable. �	
Example 2.5.6. We saw in the Introduction that the pointwise limit of a bounded
sequence of Riemann integrable functions may fail to be Riemann integrable. Thus
a simple rewriting of the dominated convergence theorem so as to apply to the
Riemann integral will fail. However, in view of Theorem 2.5.4 and the dominated
convergence theorem for the Lebesgue integral, we can repair this difficulty by
adding the hypothesis that the limit function be Riemann integrable. The repaired
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assertion is still not as powerful as the dominated convergence theorem for the
Lebesgue integral, since it can only be applied when we can prove the Riemann
integrability of the limit function. �	

It is sometimes useful to view Riemann integrals as the limits of what are called
Riemann sums. For this we need a couple of definitions. A tagged partition of an
interval [a,b] is a partition {ai}k

i=0 of [a,b], together with a sequence {xi}k
i=1 of

numbers (called tags) such that ai−1 ≤ xi ≤ ai holds for i= 1, . . . , k. (In other words,
each tag xi must belong to the corresponding interval [ai−1,ai].) As with partitions,
we will often denote a tagged partition by a symbol such as P .

The mesh or norm ‖P‖ of a partition (or a tagged partition) P is defined
by ‖P‖ = maxi(ai − ai−1), where {ai} is the sequence of division points for P .
In other words, the mesh of a partition is the length of the longest of its subintervals.

The Riemann sum R( f ,P) corresponding to the function f and the tagged
partition P is defined by

R( f ,P) =
k

∑
i=1

f (xi)(ai − ai−1).

Since for each i the value f (xi) lies between the infimum mi and the supremum Mi

of the values of f on the interval [ai−1,ai], we have

l( f ,P) ≤ R( f ,P)≤ u( f ,P)

for each tagged partition P .

Proposition 2.5.7. A function f : [a,b] → R is Riemann integrable if and only if
there is a real number L such that

lim
P

R( f ,P) = L, (2)

where the limit is taken as the mesh of the tagged partition P approaches 0. If this
limit exists, then it is equal to the Riemann integral

∫ b
a f .

We can make this more precise if we note that saying limP R( f ,P) = L
is the same as saying that for every positive ε there is a positive δ such that
|R( f ,P)− L| < ε holds whenever P is a tagged partition whose mesh is less
than δ .

Proof. Suppose there exists a number L such that limP R( f ,P) = L. Let ε be a
positive number, choose a corresponding δ , and then choose a partition P0 whose
mesh is less than δ . Consider the collection of all tagged partitions P that have the
same division points as P0. Each of these tagged partitions has mesh less than δ
and so satisfies |R( f ,P)−L|< ε. By choosing the tags appropriately, we can find
tagged partitions P1 and P2 in this collection that make R( f ,P1) and R( f ,P2)
arbitrarily close to l( f ,P0) and u( f ,P0), which gives us |l( f ,P0)− L| ≤ ε and
|u( f ,P0)−L| ≤ ε . It then follows from Lemma 2.5.1 that f is Riemann integrable.
It is easy to check that L =

∫ b
a f (note that

∫ b
a f lies between l( f ,P0) and u( f ,P0)).
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Now suppose that f is Riemann integrable. Let ε be a positive number, and
choose a partition P0 such that u( f ,P0)− l( f ,P0)< ε (see Lemma 2.5.1). Let N
be the number of subintervals in P0. We will produce a positive number δ such
that each tagged partition P with mesh less than δ satisfies |R( f ,P)−∫ b

a f |< 2ε.
We begin by assuming that δ is smaller than the mesh of P0; we will presently see
how much smaller we should make it. So let P be a tagged partition with mesh less
than δ . If it happens that P is a refinement of P0 (i.e., every subinterval of P is a
subset of some subinterval of P0), then R( f ,P) satisfies

l( f ,P0)≤ R( f ,P)≤ u( f ,P0)

and so belongs to the interval [l( f ,P0),u( f ,P0)]. Since
∫ b

a f also belongs to this
interval, it follows that

∣
∣
∣R( f ,P)−

∫ b

a
f
∣
∣
∣≤ u( f ,P0)− l( f ,P0)≤ ε.

We turn to the general case, where P might not be a refinement of P0. Some of the
intervals [ai−1,ai] in P might contain a division point of P0 as an interior point.
Since there are only N subintervals in P0, at most N − 1 subintervals of P can
have a division point of P0 as an interior point. Build a new tagged partition P ′
of [a,b] by taking the subintervals and tags from P but splitting each subinterval
whose interior contains a division point into two subintervals (dividing it at the
corresponding division point) and choosing arbitrary tags in the new intervals. The
differences between R( f ,P ′) and R( f ,P) arise only from the split intervals, and
it is easy to check that |R( f ,P)−R( f ,P ′)| ≤ 2M(N −1)δ , where M is an upper
bound for the values of | f |. If we require that δ be so small that 2M(N − 1)δ < ε
and note that |R( f ,P ′)−∫ b

a f | ≤ ε (since P ′ is a refinement of P0), then we have

∣
∣
∣
∣R( f ,P)−

∫ b

a
f

∣
∣
∣
∣≤
∣
∣
∣
∣R( f ,P)−R( f ,P ′)

∣
∣
∣
∣+

∣
∣
∣
∣R( f ,P ′)−

∫ b

a
f

∣
∣
∣
∣

≤ 2M(N − 1)δ + ε < 2ε,

and the proof is complete. �	
Note that although in the Riemann theory integrals over all of R are defined as

improper integrals, in the Lebesgue theory they can be3 defined directly. If f is a
Lebesgue integrable function on R, then the relation

3There are also cases of functions defined on R that are not Lebesgue integrable over R but for
which the corresponding improper integral exists. For instance, define f : R → R by f (x) = 0 if
x < 1 and f (x) = (−1)n/n if n ≤ x < n+1, where n = 1, 2, . . . .
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∫

R

f dλ = lim
a→−∞
b→+∞

∫

[a,b]
f dλ

holds, but as a consequence of the dominated convergence theorem (see Exercise 5),
and not as a definition.

Exercises

1. Suppose that a< b< c and that f is a real-valued function on [a,c]. Show directly
(i.e., without using Theorem 2.5.4) that f is Riemann integrable on [a,c] if and
only if it is Riemann integrable on [a,b] and [b,c]. Also show that

∫ c

a
f =

∫ b

a
f +
∫ c

b
f

if f is Riemann integrable on these intervals.
2. Let R[a,b] be the set of all Riemann integrable functions on the interval [a,b].

Show directly (i.e., without using Theorem 2.5.4) that
(a) R[a,b] is a vector space over R, and

(b) f �→ ∫ b
a f is a linear functional on R[a,b].

3. Show that a Riemann integrable function is not necessarily Borel measurable.
(Hint: Consider χB, where B is the set constructed in the proof of Proposi-
tion 2.1.11.)

4. Show that there is an increasing sequence { fn} of continuous functions on [0,1]
such that

(i) 0 ≤ fn(x)≤ 1 holds for each n and x, and
(ii) limn fn is not Riemann integrable.

(Hint: Let C be one of the closed sets constructed in Exercise 1.4.4, let U =
[0,1]−C, and choose { fn} so that limn fn = χU .)

5. Show that if f ∈ L 1(R,B(R),λ ,R), then
∫

R

f dλ = lim
a→−∞
b→+∞

∫

[a,b]
f dλ .

(Hint: Use the dominated convergence theorem and a modification of the hint
given for Exercise 2.4.9.)

6.(a) Show that if f : [a,b]→ R is Riemann integrable and if m ≤ f (t) ≤ M holds
for all t in the subinterval [c,d] of [a,b], then

m(d − c)≤
∫ d

c
f (t)dt ≤ M(d − c).
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(b) Prove the fundamental theorem of calculus, in the form given in the Introduc-
tion to this book. (Hint: Use part (a) to estimate F(x)−F(x0)

x−x0
.)

7.(a) Suppose that f and g are bounded functions on the interval [a,b] and that ε
is positive. Show that if | f (x)− g(x)| ≤ ε holds for all x in [a,b], then |∫ b

a
f −

∫ b
a
g| ≤ ε(b− a) and |∫ b

a f − ∫ b
ag| ≤ ε(b− a).

(b) Suppose that { fn} is a sequence of Riemann integrable functions on the
interval [a,b] and that { fn} converges uniformly to a function f . Show that f is
Riemann integrable and that

∫ b
a f (x)dx = limn

∫ b
a fn(x)dx. (Hint: Use part (a).)

8. Show that as n approaches infinity, the mean of the n values n/(n+ 1), n/(n+
2), . . . , n/(n+ n) approaches ln(2). (Hint: Write the mean of those values as a
Riemann sum for the integral

∫ 1
0

1
1+x dx.)

2.6 Measurable Functions Again, Complex-Valued
Functions, and Image Measures

In this section we give a general definition of measurable functions, and then we
discuss some related concepts and some examples.

Let (X ,A ) and (Y,B) be measurable spaces. A function f : X → Y is meas-
urable with respect to A and B if for each B in B the set f−1(B) belongs to
A . Instead of saying that f is measurable with respect to A and B, we will
sometimes say that f is a measurable function from (X ,A ) to (Y,B) or simply
that f : (X ,A ) → (Y,B) is measurable. Likewise, if A belongs to A , a function
f : A → Y is measurable if f−1(B) ∈ A holds whenever B belongs to B.

Proposition 2.6.1. Let (X ,A ), (Y,B), and (Z,C ) be measurable spaces, and let
f : (Y,B)→ (Z,C ) and g : (X ,A )→ (Y,B) be measurable. Then f ◦g : (X ,A )→
(Z,C ) is measurable.

Proof. Suppose that C ∈ C . Then f−1(C) ∈ B, and so g−1( f−1(C)) ∈ A . Since
( f ◦ g)−1(C) = g−1( f−1(C)), the measurability of f ◦ g follows. �	

See Exercises 1 and 2 for some applications of the preceding proposition.
The following result is often useful for verifying the measurability of a function.

Proposition 2.6.2. Let (X ,A ) and (Y,B) be measurable spaces, and let B0 be
a collection of subsets of Y such that σ(B0) = B. Then a function f : X → Y is
measurable with respect to A and B if and only if f−1(B) ∈ A holds for each B
in B0.

Proof. Of course, every function f that is measurable with respect to A and B
satisfies f−1(B) ∈ A for each B in B0. We turn to the converse, and assume that
f−1(B) ∈ A holds for each B in B0. Let F be the collection of all subsets B of
Y such that f−1(B) ∈ A . The identities f−1(Y ) = X , f−1(Bc) = ( f−1(B))c, and
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f−1(∪nBn) = ∪n f−1(Bn) imply that F is a σ -algebra on Y . Since F includes B0,
it must include the σ -algebra generated by B0, namely B. Thus f is measurable
with respect to A and B. �	
Example 2.6.3. Suppose that (X ,A ) is a measurable space and that f is a real-
valued function on X . Proposition 2.1.9 implies that f is A -measurable (in the
sense of Sect. 2.1) if and only if it is measurable with respect to A and B(R).
This conclusion can also be derived from Proposition 2.6.2 (let the collection B0 in
Proposition 2.6.2 consist of all intervals of the form (−∞, t]; see Proposition 1.1.4).

�	
Next we consider extended real-valued functions. Let B(R) be the collection of

all subsets of R of the form B∪C, where B ∈ B(R) and C ⊆ {−∞,+∞}. It is easy
to check that B(R) is a σ -algebra on R.

Proposition 2.6.4. Let (X ,A ) be a measurable space, and let f be an extended
real-valued function on X. Then f is A -measurable (in the sense of Sect. 2.1) if and
only if it is measurable with respect to A and B(R).

Proof. If f is measurable with respect to A and B(R), then for each t in R the set
{x ∈ X : f (x) ≤ t}, as the inverse image under f of the set {−∞}∪ (−∞, t], belongs
to A ; hence f must be A -measurable.

Now assume that f is A -measurable. Then f−1({+∞}) and f−1({−∞}) are
equal to ∩∞

n=1{x ∈ X : f (x)> n} and ∩∞
n=1{x ∈ X : f (x)<−n}, respectively, and so

the inverse image under f of each subset of {−∞,+∞} belongs to A . In addition
{x ∈ X : −∞ < f (x) < +∞} belongs to A , and Proposition 2.1.9 (applied to the
restriction of f to {x ∈ X : −∞ < f (x) < +∞}) implies that f−1(B) belongs to
A whenever B is a Borel subset of R. Thus f−1(B∪C) ∈ A if B ∈ B(R) and
C ⊆ {−∞,+∞}, and so f is measurable with respect to A and B(R). �	

See Exercise 4 for another proof of Proposition 2.6.4.

Example 2.6.5. Let (X ,A ) be a measurable space, and let f be an R
d-valued

function on X . Let f1, . . . , fd be the components of f , i.e., the real-valued
functions on X that satisfy f (x) = ( f1(x), f2(x), . . . , fd(x)) at each x in X . Then
Proposition 2.6.2 and part (b) of Proposition 1.1.5 imply that f is measurable with
respect to A and B(Rd) if and only if f1, . . . , fd are A -measurable. It follows from
this remark and Propositions 2.1.5 and 2.1.7 that the class of measurable functions
from (X ,A ) to (Rd ,B(Rd)) is closed under the formation of sums, scalar multiples,
and limits. �	
Example 2.6.6. Now consider the space R

2, and identify it with the set C of
complex numbers. The remarks just above imply that a complex-valued function
on (X ,A ) is measurable with respect to A and B(C), that is, with respect to A
and B(R2), if and only if its real and imaginary parts are A -measurable, and that
the collection of measurable functions from (X ,A ) to (C,B(C)) is closed under
the formation of sums and limits and under multiplication by real constants. Similar
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arguments show that the product of two measurable complex-valued functions on X
is measurable; in particular, the product of a complex number and a complex-valued
measurable function is measurable. �	

Let (X ,A ,μ) be a measure space. A complex-valued function f on X is
integrable if its real and imaginary parts ℜ( f ) and ℑ( f ) are integrable; if f is
integrable, then its integral is defined by

∫

f dμ =

∫

ℜ( f )dμ + i
∫

ℑ( f )dμ .

It is easy to check that if f and g are integrable complex-valued functions on X and
if α is a complex number, then

(a) f + g and α f are integrable,
(b)

∫
( f + g)dμ =

∫
f dμ +

∫
gdμ , and

(c)
∫
(α f )dμ = α

∫
f dμ .

The dominated convergence theorem (Theorem 2.4.5) is valid if the functions f and
f1, f2, . . . appearing in it are complex-valued (consider the real and imaginary parts
of these functions separately).

Proposition 2.6.7. Let (X ,A ,μ) be a measure space, and let f be a complex-
valued function on X that is measurable with respect to A and B(C). Then f is
integrable if and only if | f | is integrable. If these functions are integrable, then
|∫ f dμ | ≤ ∫ | f |dμ .

Proof. The measurability of | f | is easy to check (see Exercise 2). Let ℜ( f ) and
ℑ( f ) be the real and imaginary parts of f . If f is integrable, then the integrability of
| f | follows from the inequality | f | ≤ |ℜ( f )|+ |ℑ( f )|, while if | f | is integrable, then
the integrability of f follows from the inequalities |ℜ( f )| ≤ | f | and |ℑ( f )| ≤ | f |
(see Proposition 2.3.8). Now suppose that f is integrable. Write the complex number∫

f dμ in its polar form, letting w be a complex number of absolute value 1 such that
∫

f dμ = w
∣
∣
∣
∫

f dμ
∣
∣
∣.

If we divide by w and use that fact that |w−1|= 1, we find
∣
∣
∣
∫

f dμ
∣
∣
∣= w−1

∫

f dμ =

∫

(w−1 f )dμ =

∫

ℜ(w−1 f )dμ ≤
∫

| f |dμ ,

and the proof is complete. �	
Let (X ,A ,μ) be a measure space, let (Y,B) be a measurable space, and let

f : (X ,A ) → (Y,B) be measurable. Define a [0,+∞]-valued function μ f−1 on B
by letting μ f−1(B) = μ( f−1(B)) for each B in B. Clearly μ f−1(∅) = 0. Note
that if {Bn} is a sequence of disjoint sets that belong to B, then { f−1(Bn)} is a
sequence of disjoint sets that belong to A and satisfy f−1(∪nBn) = ∪n f−1(Bn);
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it follows that μ f−1(∪nBn) = ∑n μ f−1(Bn) and hence that μ f−1 is a measure on
(Y,B). The measure4 μ f−1 is sometimes called the image of μ under f .

Proposition 2.6.8. Let (X ,A ,μ) be a measure space, let (Y,B) be a measurable
space, and let f : (X ,A )→ (Y,B) be measurable. Let g be an extended real-valued
B-measurable function on Y . Then g is μ f−1-integrable if and only if g ◦ f is μ-
integrable. If these functions are integrable, then

∫

Y
gd(μ f−1) =

∫

X
(g ◦ f )dμ .

Proof. The measurability of g◦ f follows from Propositions 2.6.1 and 2.6.4. We turn
to the integrability of g and g ◦ f . First suppose that g is the characteristic function
of a set B in B. Then g◦ f is the characteristic function of f−1(B), and

∫
Y gd(μ f−1)

and
∫

X(g ◦ f )dμ are both equal to μ( f−1(B)). Thus the identity

∫

Y
gd(μ f−1) =

∫

X
(g ◦ f )dμ

holds for characteristic functions. The additivity and homogeneity of the integral
(Proposition 2.3.4) imply that this identity holds for nonnegative simple B-
measurable functions, and an approximation argument (use Proposition 2.1.8 and
Theorem 2.4.1) shows that it holds for all [0,+∞]-valued B-measurable functions.
Since an arbitrary B-measurable function can be separated into its positive and
negative parts, the proposition follows. �	

We derive two elementary consequences of Proposition 2.6.8. First suppose that
f : R→R is defined by f (x) =−x. Then λ f−1 = λ , and so a Borel function g on R

is Lebesgue integrable if and only if the function x �→ g(−x) is Lebesgue integrable.
If these functions are integrable, then

∫

g(x)λ (dx) =
∫

g(−x)λ (dx).

A similar argument shows that if y ∈ R, then a Borel function g is Lebesgue
integrable if and only if the function x �→ g(x+ y) is Lebesgue integrable. If these
functions are integrable, then

∫
g(x)λ (dx) =

∫
g(x+ y)λ (dx).

4Another notation for μ f −1 is μ ◦ f −1.
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Exercises

1. Let (X ,A ) be a measurable space. Use Proposition 2.6.1 and Example 2.1.2(a)
to give another proof that if f ,g : X → R are measurable, then f + g and f g
are measurable. (Hint: Consider the function H : X → R

2 defined by H(x) =
( f (x),g(x)).)

2. Show that if f is a measurable complex-valued function on (X ,A ), then | f | is
also measurable.

3. Let (X ,A ) be a measurable space, and let f ,g : X → C be measurable. Show
that if g does not vanish, then f/g is measurable.

4. (a) Show that B(R) is the σ -algebra on R generated by the intervals of the form
[−∞, t].

(b) Use part (a) of this exercise, together with Proposition 2.6.2, to give another
proof of Proposition 2.6.4.

5. Let X and Y be sets, and let f be a function from X to Y . Show that
(a) if A is a σ -algebra on X , then {B ⊆Y : f−1(B) ∈ A } is a σ -algebra on Y ,
(b) if B is a σ -algebra on Y , then { f−1(B) : B ∈ B} is a σ -algebra on X , and
(c) if C is a collection of subsets of Y , then

σ({ f−1(C) : C ∈ C }) = { f−1(B) : B ∈ σ(C )}.
6. Let μ be a nonzero finite Borel measure on R, and let F : R → R be the

function defined by F(x) = μ((−∞,x]). Define a function g on the interval
(0, limx→+∞ F(x)) by

g(x) = inf{t ∈ R : F(t)≥ x}.
(a) Show that g is nondecreasing, finite valued, and Borel measurable.
(b) Show that μ = λ g−1. (Hint: Start by showing that μ(B) = λ (g−1(B)) when

B has the form (−∞,b].)
7. Show that a convex subset of R2 need not be a Borel set. (Hint: Consider an open

ball, together with part of its boundary.)

Notes

See the notes for Chap. 1 for some alternative expositions of basic integration theory.
At some point the reader should work through the constructions of the integral given
in some of those references. The construction given by Halmos [54] is useful for the
study of vector-valued functions (see also Appendix E).

There is an approach to integration theory, due to Daniell [32] and Stone [114],
in which the integral is developed before measures are introduced. For an outline of
this approach, see Sect. 7.7, and see the notes at the end of Chap. 7.


