
Chapter 4
Signed and Complex Measures

In this chapter we study signed and complex measures, which are defined to
be the countably additive functions from a σ -algebra to [−∞,+∞] or to C that
have value 0 on the empty set. We begin in Sect. 4.1 with some basic definitions
and facts. Section 4.2 is devoted to the main result of this chapter, the Radon–
Nikodym theorem. Let μ be a σ -finite positive measure on a measurable space
(X ,A ). The Radon–Nikodym theorem characterizes those finite positive, signed,
or complex measures ν whose values can be computed by integrating some μ-
integrable function—in other words, it characterizes those ν for which there is a
μ-integrable f such that ν(A) =

∫
A f dμ holds for all A in A . The last part of the

chapter is devoted to the relation of the material in the early parts of the chapter to
the classical concepts of bounded variation and absolute continuity (Sect. 4.4) and
to the use of the Radon–Nikodym theorem to compute the dual spaces of a number
of the Lp spaces (Sect. 4.5).

4.1 Signed and Complex Measures

Let (X ,A ) be a measurable space, and let μ be a function on A with values in
[−∞,+∞]. The function μ is finitely additive if the identity

μ
( n⋃

i=1

Ai

)

=
n

∑
i=1

μ(Ai)

holds for each finite sequence {Ai}n
i=1 of disjoint sets in A and is countably additive

if the identity

μ
( ∞⋃

i=1

Ai

)

=
∞

∑
i=1

μ(Ai)

D.L. Cohn, Measure Theory: Second Edition, Birkhäuser Advanced
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114 4 Signed and Complex Measures

holds for each infinite sequence {Ai} of disjoint sets in A . If μ is countably additive
and satisfies μ(∅) = 0, then it is a signed measure. Thus signed measures are the
functions that result if in the definition of measures the requirement of nonnegativity
is removed. This section is devoted to signed measures and complex measures (to be
defined below) and to their relationship to measures.1

A signed measure is finite if neither +∞ nor −∞ occurs among its values.
Suppose that μ is a signed measure on the measurable space (X ,A ). Then for

each A in A the sum μ(A)+μ(Ac) must be defined (that is, must not be of the form
(+∞)+ (−∞) or (−∞)+ (+∞)) and must equal μ(X). Hence if there is a set A in
A for which μ(A) = +∞, then μ(X) = +∞, and if there is a set A in A for which
μ(A) = −∞, then μ(X) = −∞. Consequently a signed measure can attain at most
one of the values +∞ and −∞. A similar argument shows that if B is a set in A for
which μ(B) is finite, then μ(A) is finite for each A -measurable subset A of B.

Examples 4.1.1.

(a) Let (X ,A ,μ) be a measure space, let f belong to L 1(X ,A ,μ ,R), and define
a function ν on A by ν(A) =

∫
A f dμ . Then the linearity of the integral and the

dominated convergence theorem imply that ν is a signed measure on (X ,A ).
Note that such a signed measure is the difference of the positive measures ν1

and ν2 defined by ν1(A) =
∫

A f+ dμ and ν2(A) =
∫

A f− dμ .
(b) More generally, if ν1 and ν2 are positive measures on the measurable space

(X ,A ) and if at least one of them is finite, then ν1 −ν2 is a signed measure on
(X ,A ). We will soon see that every signed measure arises in this way. �	

Lemma 4.1.2. Let (X ,A ) be a measurable space, and let μ be a signed measure
on (X ,A ). If {Ak} is an increasing sequence of sets in A , then

μ
( ∞⋃

k=1

Ak

)
= lim

k
μ(Ak),

and if {Ak} is a decreasing sequence of sets in A such that μ(An) is finite for some
n, then

μ
( ∞⋂

k=1

Ak

)
= lim

k
μ(Ak).

Lemma 4.1.3. Suppose that (X ,A ) is a measurable space and that μ is an
extended real-valued function on A that is finitely additive and satisfies μ(∅) = 0.

1We will try not to abbreviate the phrases “signed measure” and “complex measure” with the
word “measure”; thus the word “measure” by itself will continue to mean a nonnegative countably
additive function whose value at ∅ is 0. However, for clarity and emphasis, we will sometimes
refer to a measure as a positive measure.
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If μ(∪∞
k=1Ak) = limk μ(Ak) holds for each increasing sequence {Ak} of sets in A or

if limk μ(Ak) = 0 holds for each decreasing sequence {Ak} of sets in A for which
∩∞

k=1Ak =∅, then μ is a signed measure.

The proofs of these lemmas are very similar to those of Propositions 1.2.5
and 1.2.6 and so are omitted.

Let μ be a signed measure on the measurable space (X ,A ). A subset A of X is a
positive set for μ if A∈A and each A -measurable subset E of A satisfies μ(E)≥ 0.
Likewise A is a negative set for μ if A ∈ A and each A -measurable subset E of A
satisfies μ(E)≤ 0.

The role of positive and negative sets is explained by Theorem 4.1.5 and
Corollary 4.1.6 below. For the proofs of these results, we will need the following
construction.

Lemma 4.1.4. Let μ be a signed measure on the measurable space (X ,A ), and let
A be a subset of X that belongs to A and satisfies −∞ < μ(A)< 0. Then there is a
negative set B that is included in A and satisfies

μ(B)≤ μ(A). (1)

Proof. We will remove a suitable sequence of subsets from A and then let B consist
of the points of A that remain. To begin, let

δ1 = sup{μ(E) : E ∈ A and E ⊆ A}, (2)

and choose an A -measurable subset A1 of A that satisfies2

μ(A1)≥ min

(
1
2

δ1,1

)

.

Then δ1 and μ(A1) are nonnegative (note that (2) implies that δ1 ≥ μ(∅) = 0). We
proceed by induction, constructing sequences {δn} and {An} by letting

δn = sup
{

μ(E) : E ∈ A and E ⊆
(

A−
n−1⋃

i=1

Ai

)}
,

and then choosing an A -measurable subset An of A−⋃n−1
i=1 Ai that satisfies

μ(An)≥ min
(1

2
δn,1

)
.

Now define A∞ and B by A∞ = ∪∞
n=1An and B = A−A∞.

2We require that μ(A1) be at least min(δ1/2,1), rather than at least δ1/2, because we have not yet
proved that δ1 is finite (see Exercise 4).
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Let us check that B has the required properties. Since the sets An are disjoint and
satisfy μ(An)≥ 0, it follows that μ(A∞)≥ 0 and hence that

μ(A) = μ(A∞)+ μ(B)≥ μ(B).

Thus B satisfies (1).
We turn to the negativity of B. The finiteness of μ(A) implies the finiteness of

μ(A∞) and so, since μ(A∞) = ∑n μ(An), implies that limn μ(An) = 0. Consequently
limn δn = 0. Since an arbitrary A -measurable subset E of B satisfies μ(E)≤ δn for
each n and so satisfies μ(E)≤ 0, B must be a negative set for μ . �	

The following theorem and its corollary give the standard decomposition of
signed measures.

Theorem 4.1.5 (Hahn Decomposition Theorem). Let (X ,A ) be a measurable
space, and let μ be a signed measure on (X ,A ). Then there are disjoint subsets
P and N of X such that P is a positive set for μ , N is a negative set for μ , and
X = P∪N.

Proof. Since the signed measure μ cannot include both +∞ and −∞ among its
values, we can for definiteness assume that −∞ is not included. Let

L = inf{μ(A) : A is a negative set for μ} (3)

(the set on the right side of (3) is nonempty, since ∅ is a negative set for μ). Choose a
sequence {An} of negative sets for μ for which L = limn μ(An), and let N =∪∞

n=1An.
It is easy to check that N is a negative set for μ (each A -measurable subset of
N is the union of a sequence of disjoint A -measurable sets, each of which is
included in some An). Hence L ≤ μ(N)≤ μ(An) holds for each n, and so L = μ(N).
Furthermore, since μ does not attain the value −∞, μ(N) must be finite.

Let P = Nc. Our only remaining task is to check that P is a positive set for μ .
If P included an A -measurable set A such that μ(A) < 0, then it would include a
negative set B such that μ(B)< 0 (Lemma 4.1.4), and N∪B would be a negative set
such that

μ(N ∪B) = μ(N)+ μ(B)< μ(N) = L

(recall that μ(N) is finite). However this contradicts (3), and so P must be a positive
set for μ . �	

A Hahn decomposition of a signed measure μ is a pair (P,N) of disjoint subsets
of X such that P is a positive set for μ , N is a negative set for μ , and X = P∪N.
Note that a signed measure can have several Hahn decompositions. For example,
if X is the interval [−1,1], if A is the σ -algebra of Borel subsets of [−1,1], and
if μ is defined by μ(A) =

∫
A xλ (dx), then ([0,1], [−1,0)) and ((0,1], [−1,0]) are

both Hahn decompositions of μ . On the other hand, if μ is an arbitrary signed
measure on a measurable space (X ,A ) and if (P1,N1) and (P2,N2) are Hahn
decompositions of μ , then P1 ∩N2 is both a positive set and a negative set for μ ,
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and so each A -measurable subset of P1 ∩N2 has measure zero under μ . Likewise,
each A -measurable subset of P2 ∩N1 has measure zero under μ . Thus the Hahn
decomposition of μ is essentially unique.

Corollary 4.1.6 (Jordan Decomposition Theorem). Every signed measure is the
difference of two positive measures, at least one of which is finite.

Proof. Let μ be a signed measure on (X ,A ). Choose a Hahn decomposition (P,N)
for μ (see Theorem 4.1.5), and then define functions μ+ and μ− on A by

μ+(A) = μ(A∩P)

and

μ−(A) =−μ(A∩N).

It is clear that μ+ and μ− are positive measures such that μ = μ+− μ−. Since +∞
and −∞ cannot both occur among the values of μ , at least one of the values μ(P)
and μ(N), and hence at least one of the measures μ+ and μ−, must be finite. �	

Let (P,N) be a Hahn decomposition of the signed measure μ , let μ+ and μ− be
the measures constructed from (P,N) in the proof of Corollary 4.1.6, and suppose
that A belongs to A . Then each A -measurable subset B of A satisfies

μ(B) = μ+(B)− μ−(B)≤ μ+(B)≤ μ+(A).

Since in addition μ+(A) = μ(A∩P), it follows that

μ+(A) = sup{μ(B) : B ∈ A and B ⊆ A}.
Likewise the measure μ− satisfies

μ−(A) = sup{−μ(B) : B ∈ A and B ⊆ A}.
Thus μ+ and μ− do not depend on the particular Hahn decomposition used in their
construction. The measures μ+ and μ− are called the positive part and the negative
part of μ , and the representation μ = μ+− μ− is called the Jordan decomposition
of μ .

The variation of the signed measure μ is the positive measure |μ | defined by
|μ |= μ++ μ−. It is easy to check that

|μ(A)| ≤ |μ |(A)
holds for each A in A and in fact that |μ | is the smallest of those positive measures
ν that satisfy |μ(A)| ≤ ν(A) for each A in A (see Exercise 5). The total variation
‖μ‖ of the signed measure μ is defined by ‖μ‖= |μ |(X).
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Let (X ,A ) be a measurable space. A complex measure on (X ,A ) is a function
μ from A to C that satisfies μ(∅) = 0 and is countably additive, in the sense that

μ

(
∞⋃

n=1

An

)

=
∞

∑
n=1

μ(An)

holds for each infinite sequence {An} of disjoint sets in A . Note that by definition
a complex measure has only complex values and so has no infinite values.

Each complex measure μ on (X ,A ) can of course be written in the form μ =
μ ′+ iμ ′′, where μ ′ and μ ′′ are finite signed measures on (X ,A ). Hence the Jordan
decomposition theorem implies that each complex measure μ can be written in the
form

μ = μ1 − μ2 + iμ3 − iμ4, (4)

where μ1, μ2, μ3, and μ4 are finite positive measures on (X ,A ). Such a representa-
tion is called the Jordan decomposition of μ if μ ′ = μ1 − μ2 and μ ′′ = μ3 − μ4 are
the Jordan decompositions of the real and imaginary parts of μ .

We turn to the variation |μ | of the complex measure μ . For each A in A let
|μ |(A) be the supremum of the numbers ∑n

j=1 |μ(A j)|, where {A j}n
j=1 ranges over

all finite partitions of A into A -measurable sets.

Proposition 4.1.7. Let (X ,A ) be a measurable space, and let μ be a complex
measure on (X ,A ). Then the variation |μ | of μ is a finite measure on (X ,A ).

Proof. The relation |μ |(∅) = 0 is immediate.
We can check the finite additivity of |μ | by showing that if B1 and B2 are disjoint

sets that belong to A , then |μ |(B1 ∪B2) = |μ |(B1)+ |μ |(B2). For this, note that if
{A j}n

j=1 is a finite partition of B1 ∪B2 into A -measurable sets, then

∑
j
|μ(A j)| ≤ ∑

j
|μ(A j ∩B1)|+∑

j
|μ(A j ∩B2)|

≤ |μ |(B1)+ |μ |(B2).

Since |μ |(B1 ∪B2) is the supremum of the numbers that can appear on the left side
of the inequality, it follows that

|μ |(B1 ∪B2)≤ |μ |(B1)+ |μ |(B2).

A similar argument, based on partitioning B1 and B2, shows that

|μ |(B1)+ |μ |(B2)≤ |μ |(B1 ∪B2).

Thus |μ |(B1 ∪B2) = |μ |(B1)+ |μ |(B2), and the finite additivity of |μ | is proved.
If μ = μ1 − μ2 + iμ3 − iμ4 is the Jordan decomposition of μ , then

|μ |(A)≤ μ1(A)+ μ2(A)+ μ3(A)+ μ4(A) (5)
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holds for each A in A . Since the measures μ1, μ2, μ3, and μ4 are finite, the
finiteness of |μ | follows. Furthermore, if {An} is a decreasing sequence of A -
measurable sets such that ∩nAn = ∅, then limn μk(An) = 0 holds for k = 1,
. . . , 4, and so (5) implies that limn |μ |(An) = 0. Thus |μ | is countably additive
(Proposition 1.2.6). �	

It is easy to check that if μ is a complex measure on (X ,A ), then |μ | is the
smallest of the positive measures ν that satisfy |μ(A)| ≤ ν(A) for all A in A
(see Exercise 5). Note that if μ is a finite signed measure, then μ is also a complex
measure; it is easy to check that in this case the variation of μ as a signed measure
is the same as its variation as a complex measure (Exercise 6).

The total variation ‖μ‖ of the complex measure μ is defined by ‖μ‖= |μ |(X).
Suppose that (X ,A ) is a measurable space. Let M(X ,A ,R) be the collection of

all finite signed measures on (X ,A ), and let M(X ,A ,C) be the collection of all
complex measures on (X ,A ). It is easy to check that M(X ,A ,R) and M(X ,A ,C)
are vector spaces over R and C, respectively, and that the total variation gives a
norm on each of them.

Proposition 4.1.8. Let (X ,A ) be a measurable space. Then the spaces
M(X ,A ,R) and M(X ,A ,C) are complete under the total variation norm.

Proof. Let {μn} be a Cauchy sequence in M(X ,A ,R) or in M(X ,A ,C). The in-
equality |μm(A)− μn(A)| ≤ ‖μm − μn‖ implies that for each A in A the sequence
{μn(A)} is a Cauchy sequence of real or complex numbers and hence is convergent.
Define a real- or complex-valued function μ on A by letting μ(A) = limn μn(A)
hold at each A in A . We need to check that μ is a signed or complex measure and
that limn ‖μn − μ‖= 0.

It is clear that μ(∅) = 0 and that μ is at least finitely additive.
As preparation for checking the countable additivity of μ , we will show that the

convergence of μn(A) to μ(A) is uniform in A. If ε is a positive number and if N is
a positive integer such that ‖μm − μn‖< ε holds whenever m ≥ N and n ≥ N, then

|μm(A)− μn(A)|< ε (6)

holds whenever A ∈ A , m ≥ N, and n ≥ N, and so

|μ(A)− μn(A)| ≤ ε

holds whenever A∈A and n≥N (let m approach infinity in (6)). Since ε is arbitrary,
the uniformity of the convergence of μn(A) to μ(A) follows.

We now use Lemmas 4.1.2 and 4.1.3 (and their extensions to complex measures)
to prove the countable additivity of μ . Let {Ak} be a decreasing sequence of sets
in A such that ∩kAk = ∅, and let ε be a positive number. Use the uniformity of
the convergence of μn(A) to μ(A) to choose N so that |μ(A)− μn(A)| < ε/2 holds
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whenever A ∈ A and n ≥ N, and then use Lemma 4.1.2 to choose K such that
|μN(Ak)|< ε/2 holds whenever k ≥ K. It follows that if k ≥ K then

|μ(Ak)| ≤ |μ(Ak)− μN(Ak)|+ |μN(Ak)|< ε
2
+

ε
2
= ε.

Thus limk μ(Ak) = 0, and the countable additivity of μ follows.
We turn to the relation limn ‖μ − μn‖ = 0. Let ε be a positive number, and use

the fact that {μn} is a Cauchy sequence to choose N so that ‖μm − μn‖ < ε holds
whenever m ≥ N and n ≥ N. Note that if m ≥ N and n ≥ N, then each partition of X
into A -measurable sets A j, j = 1, . . . ,k, satisfies

k

∑
j=1

|μm(A j)− μn(A j)| ≤ ‖μm − μn‖< ε,

and hence satisfies

k

∑
j=1

|μ(A j)− μn(A j)|= lim
m

k

∑
j=1

|μm(A j)− μn(A j)| ≤ ε.

Since ‖μ − μn‖ is the supremum of the numbers that can appear on the left side of
this inequality, it follows that ‖μ − μn‖ ≤ ε holds whenever n ≥ N. Consequently
limn ‖μ − μn‖= 0. Thus M(X ,A ,R) and M(X ,A ,C) are complete. �	

Let us deal briefly with integration with respect to a finite signed or complex
measure.

Suppose that (X ,A ) is a measurable space. We will denote by B(X ,A ,R)
the vector space of bounded real-valued A -measurable functions on X and by
B(X ,A ,C) the vector space of bounded complex-valued A -measurable functions
on X . If μ is a finite signed measure on (X ,A ), if μ = μ+ − μ− is the Jordan
decomposition of μ , and if f belongs to B(X ,A ,R), then the integral of f with
respect to μ is defined by

∫

f dμ =

∫

f dμ+−
∫

f dμ−.

It is clear that f �→ ∫
f dμ defines a linear functional on B(X ,A ,R).

If A∈A , then
∫

χA dμ = μ(A) holds for each μ in M(X ,A ,R). Thus the formula

μ �→
∫

f dμ

defines a linear functional on M(X ,A ,R) if f is an A -measurable characteristic
function and hence if f is an arbitrary function in B(X ,A ,R) (use the linearity of
the integral and the dominated convergence theorem).
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Similarly, if μ is a complex measure on (X ,A ), then we can use the Jordan
decomposition of μ to define the integral with respect to μ of a function in
B(X ,A ,C). The expressions f �→ ∫

f dμ and μ �→ ∫
f dμ define linear functionals

on B(X ,A ,C) and on M(X ,A ,C), respectively.
Now use the formula

‖ f‖∞ = sup{| f (x)| : x ∈ X}
to define norms on B(X ,A ,R) and B(X ,A ,C) (see Example 3.2.1(f)). If μ is a
finite signed or complex measure on (X ,A ) and if f is a simple A -measurable
function on X , say with values a1, . . . , ak, attained on the sets A1, . . . , Ak, then

∣
∣
∣
∫

f dμ
∣
∣
∣=

∣
∣
∣
∣

k

∑
j=1

a jμ(A j)

∣
∣
∣
∣≤

k

∑
j=1

|a j||μ(A j)| ≤
k

∑
j=1

‖ f‖∞|μ(A j)|,

and so
∣
∣
∣
∫

f dμ
∣
∣
∣≤ ‖ f‖∞‖μ‖. (7)

Since each function in B(X ,A ,R) or in B(X ,A ,C) is the uniform limit of a
sequence of simple A -measurable functions, it follows that (7) holds whenever f
belongs to B(X ,A ,R) or B(X ,A ,C).

Exercises

1. Let μ be a signed or complex measure on (X ,A ), and let A belong to A .

(a) Show that |μ |(A) = 0 holds if and only if each A -measurable subset B of A
satisfies μ(B) = 0.

(b) Show that in general the relation μ(A) = 0 does not imply the relation
|μ |(A) = 0.

2. Let μ be a signed measure on (X ,A ), and let ν1 and ν2 be positive measures
on (X ,A ) such that μ = ν1 −ν2. Show that ν1(A)≥ μ+(A) and ν2(A)≥ μ−(A)
hold for each A in A .

3. Let μ1 and μ2 be finite signed measures on the measurable space (X ,A ). Define
signed measures μ1 ∨ μ2 and μ1 ∧ μ2 on (X ,A ) by μ1 ∨ μ2 = μ1 +(μ2 − μ1)

+

and μ1 ∧μ2 = μ1 − (μ1 − μ2)
+.

(a) Show that μ1∨μ2 is the smallest of those finite signed measures ν that satisfy
ν(A)≥ μ1(A) and ν(A)≥ μ2(A) for all A in A .

(b) Find and prove an analogous characterization of μ1 ∧μ2.

4. Show that the quantities δ1, δ2, . . . defined in the proof of Lemma 4.1.4 are
finite. (Hint: Use Theorem 4.1.5; this is legitimate, since Lemma 4.1.4 and
Theorem 4.1.5 were proved without using the finiteness of the δn’s.)
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5. Let μ be a signed or complex measure on (X ,A ), and let ν be a positive measure
on (X ,A ) such that |μ(A)| ≤ ν(A) holds for each A in A . Show that |μ |(A) ≤
ν(A) holds for each A in A .

6. Note that if μ is a finite signed measure, then μ is both a signed measure and a
complex measure. Show that in this case the two definitions of |μ | yield the same
result.

7. Let μ1 and μ2 be finite signed measures, and let ν be the complex measure
defined by ν = μ1 + iμ2. Show that |μ1| ≤ |ν|, |μ2| ≤ |ν| and |ν| ≤ |μ1|+ |μ2|.
Is it necessarily true that ‖v‖ ≤√‖μ1‖2 + ‖μ2‖2?

8. Let μ and μ1, μ2, . . . be finite signed or complex measures on (X ,A ). Show that
limn ‖μn − μ‖ = 0 holds if and only if μn(A) converges to μ(A) uniformly in A
as n approaches infinity.

9. Use Proposition 3.2.5, Exercise 1.2.6, and the Jordan decomposition to give
another proof of Proposition 4.1.8.

10. Check that the spaces B(X ,A ,R) and B(X ,A ,C) are complete under the norm
‖ · ‖∞.

11. Let μ be a finite signed or complex measure on (X ,A ), and let { fn} be
a uniformly bounded sequence of real- or complex-valued A -measurable
functions on X (thus there is a positive number B such that | fn(x)| ≤ B holds
for each x and n). Show that if f (x) = limn fn(x) holds at each x in X , then∫

f dμ = limn
∫

fn dμ .

4.2 Absolute Continuity

Let (X ,A ) be a measurable space, and let μ and ν be positive measures on (X ,A ).
Then ν is absolutely continuous with respect to μ if each set A that belongs to A and
satisfies μ(A) = 0 also satisfies ν(A) = 0. One sometimes writes ν � μ to indicate
that ν is absolutely continuous with respect to μ . A measure on (Rd ,B(Rd)) is
simply called absolutely continuous if it is absolutely continuous with respect to
d-dimensional Lebesgue measure.

Suppose that (X ,A ,μ) is a measure space and that f is a nonnegative function
in L 1(X ,A ,μ ,R). We have seen (in Sect. 2.4) that the formula ν(A) =

∫
A f dμ

defines a finite positive measure ν on A . If μ(A) = 0, then f χA vanishes μ-almost
everywhere, and so ν(A) = 0. Thus ν is absolutely continuous with respect to μ . We
will see that if μ is σ -finite, then every finite measure on (X ,A ) that is absolutely
continuous with respect to μ arises in this way.

The following lemma characterizes those finite positive measures that are abso-
lutely continuous with respect to an arbitrary positive measure; this characterization
is useful in the classical theory of functions of a real variable (see Sect. 4.4).

Lemma 4.2.1. Let (X ,A ) be a measurable space, let μ be a positive measure on
(X ,A ), and let ν be a finite positive measure on (X ,A ). Then ν � μ if and only
if for each positive ε there is a positive δ such that each A -measurable set A that
satisfies μ(A)< δ also satisfies ν(A)< ε .
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Proof. First suppose that for each positive ε there is a corresponding δ . Let A be
an A -measurable set that satisfies μ(A) = 0. Then μ(A)< δ holds for each δ , and
so ν(A) < ε holds for each ε; hence A satisfies ν(A) = 0. Thus ν is absolutely
continuous with respect to μ .

Next suppose that there is a positive number ε (which we will hold fixed) for
which there is no suitable δ . Then for each positive integer k we can (and do)
choose an A -measurable set Ak that satisfies μ(Ak) < 1/2k and ν(Ak) ≥ ε . Then
the inequalities μ(∪∞

k=nAk) ≤ ∑∞
k=n μ(Ak) < 1/2n−1 and ν(∪∞

k=nAk) ≥ ν(An) ≥ ε
hold for each n, and so the set A defined by A =∩∞

n=1∪∞
k=n Ak satisfies μ(A) = 0 and

ν(A) ≥ ε (see Proposition 1.2.5). Thus A satisfies μ(A) = 0 but not ν(A) = 0, and
so ν is not absolutely continuous with respect to μ . �	

We turn to the main result of this section.

Theorem 4.2.2 (Radon–Nikodym Theorem). Let (X ,A ) be a measurable space,
and let μ and ν be σ -finite positive measures on (X ,A ). If ν is absolutely
continuous with respect to μ , then there is an A -measurable function g : X →
[0,+∞) such that ν(A) =

∫
A gdμ holds for each A in A . The function g is unique

up to μ-almost everywhere equality.

Proof. First consider the case where μ and ν are both finite. Let F be the set
consisting of those A -measurable functions f : X → [0,+∞] that satisfy

∫
A f dμ ≤

ν(A) for each A in A . We will show first that F contains a function g such that

∫
gdμ = sup

{∫
f dμ : f ∈ F

}

(1)

and then that this function g satisfies ν(A) =
∫

A gdμ for each A in A . Finally, we
will show that g can be modified so as to have only finite values.

We begin by checking that if f1 and f2 belong to F , then f1 ∨ f2 belongs to F ;
to see this note that if A is an arbitrary set in A , if A1 = {x ∈ A : f1(x)> f2(x)}, and
if A2 = {x ∈ A : f2(x)≥ f1(x)}, then

∫

A
( f1 ∨ f2)dμ =

∫

A1

f1 dμ +

∫

A2

f2 dμ ≤ ν(A1)+ν(A2) = ν(A).

Furthermore, F is not empty (the constant 0 belongs to it). Now choose a sequence
{ fn} of functions in F for which

lim
n

∫

fn dμ = sup
{∫

f dμ : f ∈ F
}
.

By replacing fn with f1 ∨ ·· · ∨ fn, we can assume that the sequence { fn} is
increasing. Let g = limn fn. The monotone convergence theorem implies that the
relation

∫

A
gdμ = lim

n

∫

A
fn dμ ≤ ν(A)
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holds for each A and hence that g belongs to F . It also implies that
∫

gdμ =
sup{∫ f dμ : f ∈ F}. Thus g has the first of the properties claimed for it.

We turn to the proof that ν(A) =
∫

A gdμ holds for each A in A . Since g belongs
to F , the formula ν0(A) = ν(A)−∫A gdμ defines a positive measure on A . We need
only show that ν0 = 0. Assume the contrary. Then, since μ is finite, there is a positive
number ε such that

ν0(X)> εμ(X). (2)

Let (P,N) be a Hahn decomposition (see Sect. 4.1) for the signed measure ν0 − εμ .
Note that for each A in A we have ν0(A∩P)≥ εμ(A∩P), and hence we have

ν(A) =
∫

A
gdμ + v0(A)≥

∫

A
gdμ + v0(A∩P) (3)

≥
∫

A
gdμ + εμ(A∩P) =

∫

A
(g+ εχP)dμ .

Note also that μ(P)> 0, since if μ(P) = 0, then3 ν0(P) = 0, and so

ν0(X)− εμ(X) = (ν0 − εμ)(N)≤ 0,

contradicting (2). It follows from this, the relation
∫

gdμ ≤ ν(X) < +∞, and (3)
that g+ εχP belongs to F and satisfies

∫
(g+ εχP)dμ >

∫
gdμ . This, however,

contradicts (1) and so implies that ν0 = 0. Hence ν(A) =
∫

A gdμ holds for each A
in A . Since g can have an infinite value only on a μ-null set (Corollary 2.3.14), it
can be redefined so as to have only finite values. With this we have constructed the
required function in the case where μ and ν are finite.

Now suppose that μ and ν are σ -finite. Then X is the union of a sequence {Bn} of
disjoint A -measurable sets, each of which has finite measure under μ and under ν .
For each n the first part of this proof provides an A -measurable function gn : Bn →
[0,+∞) such that ν(A) =

∫
A gn dμ holds for each A -measurable subset A of Bn.

The function g : X → [0,+∞) that agrees on each Bn with gn is then the required
function.

We turn to the uniqueness of g. Let g,h : X → [0,+∞) be A -measurable
functions that satisfy

ν(A) =
∫

A
gdμ =

∫

A
hdμ

for each A in A . First consider the case where ν is finite. Then g− h is integrable
and

∫

A
(g− h)dμ = 0

3This is where we use the absolute continuity of ν .
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holds for each A in A ; since in this equation A can be the set where g > h or the
set where g < h, it follows that

∫
(g− h)+dμ = 0 and

∫
(g− h)−dμ = 0 and hence

that (g− h)+ and (g− h)− vanish μ-almost everywhere (Corollary 2.3.12). Thus
g and h agree μ-almost everywhere. If ν is σ -finite and if {Bn} is a sequence of
A -measurable sets that have finite measure under ν and satisfy X = ∪nBn, then the
preceding argument shows that g and h agree μ-almost everywhere on each Bn and
hence μ-almost everywhere on X . �	
Example 4.2.3. The assumption that μ is σ -finite cannot simply be omitted from
Theorem 4.2.2. To see that, let X be the interval [0,1], let A be the σ -algebra of
Borel subsets of [0,1], let μ be counting measure on (X ,A ), and let ν be Lebesgue
measure on (X ,A ). Then ν � μ , but there is no measurable function f such that
ν(A) =

∫
A f dμ holds for all A. (Concerning the possibility of not requiring that ν

be σ -finite, see Exercise 6.) �	
Now suppose that (X ,A ) is a measurable space, that μ is a positive measure on

(X ,A ), and that ν is a signed or complex measure on (X ,A ). Then ν is absolutely
continuous with respect to μ , written ν � μ , if its variation |ν| is absolutely
continuous with respect to μ . It is easy to check that a signed measure ν is absolutely
continuous with respect to μ if and only if ν+ and ν− are absolutely continuous with
respect to μ and that a complex measure ν is absolutely continuous with respect to μ
if and only if the measures ν1, ν2, ν3, and ν4 appearing in its Jordan decomposition
ν = ν1 −ν2+ iν3− iν4 are absolutely continuous with respect to μ . It is also easy to
check that a signed or complex measure ν is absolutely continuous with respect to μ
if and only if each A in A that satisfies μ(A) = 0 also satisfies ν(A) = 0 (be careful:
ν(A) = 0 is not equivalent to |ν|(A) = 0; see Exercise 4.1.1).

The Radon–Nikodym theorem can be formulated for signed and complex
measures as follows.

Theorem 4.2.4 (Radon–Nikodym Theorem). Let (X ,A ) be a measurable space,
let μ be a σ -finite positive measure on (X ,A ), and let ν be a finite signed or
complex measure on (X ,A ). If ν is absolutely continuous with respect to μ , then
there is a function g that belongs to L 1(X ,A ,μ ,R) or to L 1(X ,A ,μ ,C) and
satisfies ν(A) =

∫
A gdμ for each A in A . The function g is unique up to μ-almost

everywhere equality.

Proof. If ν is a complex measure that is absolutely continuous with respect to μ ,
then it can be written in the form ν = ν1 −ν2 + iν3 − iν4, where ν1, ν2, ν3, and ν4

are finite positive measures that are absolutely continuous with respect to μ . Then
Theorem 4.2.2 yields functions g j, j = 1, . . . , 4, that satisfy ν j(A) =

∫
A g j dμ for

each A in A . The required function g is now given by g = g1 − g2 + ig3 − ig4.
The case of a finite signed measure is similar.

The uniqueness of g can be proved with the method used in the proof of
Theorem 4.2.2; in case ν is a complex measure, the real and imaginary parts of
g should be considered separately. �	
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Let (X ,A ) be a measurable space, let μ be a σ -finite positive measure on (X ,A ),
and let ν be a finite signed, complex, or σ -finite positive measure on (X ,A ).
Suppose that ν is absolutely continuous with respect to μ . An A -measurable
function g on X that satisfies ν(A) =

∫
A gdμ for each A in A is called a Radon–

Nikodym derivative of ν with respect to μ or, in view of its uniqueness up to μ-null
sets, the Radon–Nikodym derivative of ν with respect to μ . A Radon–Nikodym
derivative of ν with respect to μ is sometimes denoted by dν

dμ .
We close this section with a few facts about the relationship of a finite signed or

complex measure to its variation.

Proposition 4.2.5. Suppose that (X ,A ,μ) is a measure space, that f belongs to
L 1(X ,A ,μ ,R) or to L 1(X ,A ,μ ,C), and that ν is the finite signed or complex
measure defined by ν(A) =

∫
A f dμ . Then

|ν|(A) =
∫

A
| f |dμ

holds for each A in A .

Proof. Let A belong to A and let {A j}k
j=1 be a finite sequence of disjoint A -

measurable sets whose union is A. Then

∑
j
|ν(A j)|= ∑

j

∣
∣
∣
∣

∫

A j

f dμ
∣
∣
∣
∣≤ ∑

j

∫

A j

| f |dμ =

∫

A
| f |dμ .

Since |ν|(A) is the supremum of the sums that can appear on the left side of this
inequality, it follows that |ν|(A)≤ ∫A | f |dμ .

Next construct a sequence {gn} of A -measurable simple functions for which the
relations |gn(x)| = 1 and limn gn(x) f (x) = | f (x)| hold at each x in X (the details
of the construction are left to the reader). Suppose that an, j, j = 1, . . . , kn, are the
values of gn and that these values are attained on the sets An, j, j = 1, . . . , kn. Then
for an arbitrary set A in A we have

∣
∣
∣
∣

∫

A
gn f dμ

∣
∣
∣
∣=

∣
∣
∣
∣∑

j

an, j

∫

A∩An, j

f dμ
∣
∣
∣
∣

=

∣
∣
∣
∣∑

j

an, jν(A∩An, j)

∣
∣
∣
∣≤ ∑

j

|ν(A∩An, j)| ≤ |ν|(A).

Since the dominated convergence theorem implies that limn
∫

A gn f dμ =
∫

A | f |dμ , it
follows that

∫
A | f |dμ ≤ |ν|(A). Thus |ν|(A) = ∫A | f |dμ , and the proof is complete.

�	
Corollary 4.2.6. Let ν be a finite signed or complex measure on the measurable
space (X ,A ). Then the Radon–Nikodym derivative of ν with respect to |ν| has
absolute value 1 at |ν|-almost every point in X.
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Proof. Proposition 4.2.5, applied in the case where f = dν
d|ν| and μ = |ν|, implies

that

|ν|(A) =
∫

A

∣
∣
∣
∣

dν
d|ν|

∣
∣
∣
∣d|ν|

holds for each A in A . Thus | dν
d|ν| | is a Radon–Nikodym derivative of |ν| with respect

to |ν|. Since the constant 1 is another such Radon–Nikodym derivative, it follows
that | dν

d|ν| |= 1 almost everywhere. �	
Recall that in Sect. 4.1 we used the formulas

∫

f dν =

∫

f dν+−
∫

f dν−

and
∫

f dν =

∫

f dν1 −
∫

f dν2 + i
∫

f dν3 − i
∫

f dν4

to define the integral of a bounded A -measurable function f with respect to a finite
signed or complex measure ν . Let dν

d|ν| be a Radon–Nikodym derivative of ν with
respect to |ν|. Then the relation

∫

f dν =

∫

f
dν

d|ν| d|ν| (4)

holds for each bounded A -measurable function f on X ; this is clear in case f is the
characteristic function of an A -measurable set and then follows in the general case
from the linearity of the integral and the dominated convergence theorem.

Exercises

1. Define a measure ν on (R,B(R)) by ν(A) =
∫

A |x|λ (dx). Show that ν � λ ,
but that for no positive ε does there exist a positive δ such that ν(A) < ε holds
whenever A is a Borel set for which λ (A) < δ . Thus the assumption that ν is
finite is essential in Lemma 4.2.1.

2. Let {rn} be an enumeration of the rational numbers, and for each positive integer
n let fn : R → R be a nonnegative Borel function that satisfies

∫
fn dλ = 1 and

vanishes outside the closed interval of length 1/2n centered at rn. Define μ on
B(R) by μ(A) =

∫
A ∑n fn dλ .

(a) Show that ∑n fn(x) < +∞ holds at λ -almost every x in R. (Hint: See
Exercise 1.2.9.)

(b) Show that μ is σ -finite, that μ � λ , and that each nonempty open subset of
R has infinite measure under μ .



128 4 Signed and Complex Measures

3. Suppose that μ and ν are σ -finite positive measures on (X ,A ), that ν � μ , and
that g is a Radon–Nikodym derivative of ν with respect to μ . Show that

(a) an A -measurable function f : X → R is ν-integrable if and only if f g is
μ-integrable, and

(b) if those functions are integrable, then
∫

f dν =
∫

f gdμ .

4. Suppose that ν1, ν2, and ν3 are σ -finite positive measures on (X ,A ), that ν1 �
ν2, and that ν2 � ν3.
(a) Show that ν1 � ν3.
(b) Make precise and prove the assertion that

dν1

dν3
=

dν1

dν2

dν2

dν3
.

5. Let (X ,A ) be a measurable space, let μ be a σ -finite positive measure on
(X ,A ), and let ν1 and ν2 be finite signed measures on (X ,A ) that are absolutely
continuous with respect to μ .

(a) Show that (ν1 ∨ν2)� μ and (ν1 ∧ν2)� μ (see Exercise 4.1.3).
(b) Express the Radon–Nikodym derivatives (with respect to μ) of ν1 ∨ν2 and

ν1 ∧ν2 in terms of those of ν1 and ν2.

6. Show that the assumption that ν is σ -finite can be removed from Theorem 4.2.2
if g is allowed to have values in [0,+∞]. (Hint: Reduce the general case to the
case where μ is finite. For each positive integer n choose a Hahn decomposition
(Pn,Nn) for ν − nμ ; then consider the measures A �→ ν(A∩ (∩nPn)) and A �→
ν(A∩ (∩nPn)

c).)
7. Let μ be a σ -finite positive measure on (X ,A ).

(a) Show that

{ν ∈ M(X ,A ,R) : ν � μ}
is a closed linear subspace of the normed linear space M(X ,A ,R).

(b) Find an isometric isomorphism of L1(X ,A ,μ ,R) onto the subspace of
M(X ,A ,R) considered in part (a).

8. Let (X ,A ) be a measurable space, let μ be a finite signed or complex measure on
(X ,A ), and let f be a bounded real- or complex-valued A -measurable function
on X . Show that |∫ f dμ | ≤ ∫ | f |d|μ |.

9. Let μ and ν be σ -finite positive measures on (X ,A ). Show that the condi-
tions

(i) ν � μ and μ � ν ,
(ii) μ and ν have exactly the same sets of measure zero, and

(iii) there is an A -measurable function g that satisfies 0 < g(x)< +∞ at each x
in X and is such that ν(A) =

∫
A gdμ holds for each A in A

are equivalent.
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10. Show that if μ is a σ -finite measure on (X ,A ), then there is a finite measure ν
on (X ,A ) such that ν � μ and μ � ν . (Hint: See Exercise 9.)

11. Supply the missing details in the following proof of the Radon–Nikodym
theorem for finite positive measures. Let (X ,A ) be a measurable space, and
let μ and ν be finite positive measures on (X ,A ).

(a) Show that the formula F(〈 f 〉) = ∫ f dν defines a bounded linear functional
on L2(X ,A ,μ +ν,R).

(b) Use Exercises 3.3.3 and 3.5.7 to obtain a function g in L 2(X ,A ,μ +ν,R)
such that F(〈 f 〉) = ∫ f gd(μ +ν) holds for each f in L 2(X ,A ,μ +ν,R).

(c) Show that if ν � μ , then the function g satisfies 0 ≤ g(x) < 1 at (μ + ν)-
almost every x in X and hence can be redefined so that 0 ≤ g(x) < 1 holds
at every x in X .

(d) Show that if ν � μ and if g has been redefined as in part (c), then ν(A) =∫
A g/(1− g)dμ holds for each A in A .

12. Let (X ,A ,μ) be a finite measure space, and let F be a subset of L 1(X ,A ,μ).
Then F is called L1-bounded if the set {‖ f‖1 : f ∈ F} is bounded above, is
called uniformly absolutely continuous if for each positive ε there is a positive
δ such that

∫
A | f |dμ < ε holds whenever f ∈ F , A ∈ A , and μ(A) < δ ,

and is called uniformly integrable if it is L1-bounded and uniformly absolutely
continuous. Show that F is uniformly integrable if and only if it satisfies

lim
a→+∞

sup

{∫

{| f |>a}
| f |dμ : f ∈ F

}

= 0.

(Hint: Recall Proposition 2.3.10.)
13. Show that if (X ,A ,μ) is a finite measure space, then every finite subset of

L 1(X ,A ,μ) is uniformly integrable.
14. Let (X ,A ,μ) be a finite measure space, and let g be a nonnegative function

that belongs to L 1(X ,A ,μ). Show that if F is a collection of measurable
functions such that | f (x)| ≤ g(x) holds for each f in F and each x in X , then
F is uniformly integrable.

15. Construct a finite measure space (X ,A ,μ) and a sequence { fn} of A -
measurable functions on X such that { fn : n = 1, 2, . . .} is uniformly integrable,
but supn | fn| is not integrable. (Compare this with Exercise 14.)

16. Let (X ,A ,μ) be a finite measure space, let { fn} be a sequence of functions in
L 1(X ,A ,μ), and let f be an A -measurable real- or complex-valued function
on X .

(a) Show that if { fn} is uniformly integrable and if { fn} converges to f
in measure, then f is integrable and

∫
f dμ = limn

∫
fn dμ . (Hint: Use

Proposition 3.1.3, Theorem 2.4.4, and the inequality
∫

| fn − f |dμ ≤
∫

A
| fn − f |dμ +

∫

Ac
| fn|dμ +

∫

Ac
| f |dμ .)
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(b) Now suppose that f belongs to L 1(X ,A ,μ). Show that { fn} converges to
f in mean if and only if { fn} is uniformly integrable and converges to f in
measure.

(c) Use part (a) to give another proof of the dominated convergence theorem in
the case where μ is finite. (See Exercise 14.)

4.3 Singularity

Let (X ,A ) be a measurable space. A positive measure μ on (X ,A ) is concentrated
on the A -measurable set E if μ(Ec) = 0. A signed or complex measure μ on
(X ,A ) is concentrated on the A -measurable set E if the variation |μ | of μ is
concentrated on E , or equivalently, if each A -measurable subset A of Ec satisfies
μ(A) = 0 (see Exercise 4.1.1). Now suppose that μ and ν are positive, signed, or
complex measures on (X ,A ). Then μ and ν are mutually singular if there is an
A -measurable set E such that μ is concentrated on E and ν is concentrated on Ec.
One sometimes writes μ ⊥ ν to indicate that μ and ν are mutually singular. Instead
of saying that μ and ν are mutually singular, one sometimes says that μ and ν are
singular, that ν is singular with respect to μ , or that μ is singular with respect to ν .
A positive, signed, or complex measure on (Rd ,B(Rd)) is simply called singular if
it is singular with respect to d-dimensional Lebesgue measure.

Examples 4.3.1.

(a) Let μ be a signed measure on the measurable set (X ,A ). Then the positive and
negative parts μ+ and μ− of μ are mutually singular; they are concentrated on
the pair of disjoint sets appearing in a Hahn decomposition of μ .

(b) Next let us consider some measures on (R,B(R)) that are singular with respect
to Lebesgue measure. If μ is a finite discrete measure on (R,B(R)), then
there is a countable subset C of R on which μ is concentrated; since Lebesgue
measure is concentrated on the complement of C, μ is singular with respect
to Lebesgue measure. However not every finite measure on (R,B(R)) that
is singular with respect to Lebesgue measure is discrete; for example, the
measure induced by the Cantor function (defined in Sect. 2.1) is singular with
respect to Lebesgue measure but assigns measure zero to each point in R

(see Exercise 2.1.7). �	
Theorem 4.3.2 (Lebesgue Decomposition Theorem). Let (X ,A ) be a measur-
able space, let μ be a positive measure on (X ,A ), and let ν be a finite signed,
complex, or σ -finite positive measure on (X ,A ). Then there are unique finite signed,
complex, or positive measures νa and νs on (X ,A ) such that

(a) νa is absolutely continuous with respect to μ ,
(b) νs is singular with respect to μ , and
(c) ν = νa +νs.

The decomposition ν = νa +νs is called the Lebesgue decomposition of ν , while
νa and νs are called the absolutely continuous and singular parts of ν .
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Proof. We begin with the case in which ν is a finite positive measure. Define Nμ by

Nμ = {B ∈ A : μ(B) = 0},
and choose a sequence {B j} of sets in Nμ such that

lim
j

ν(B j) = sup{ν(B) : B ∈ Nμ}.

Let N = ∪ jB j, and define measures νa and νs on (X ,A ) by νa(A) = ν(A∩Nc) and
νs(A) = ν(A∩N). Of course ν = νa +νs. The countable subadditivity of μ implies
that μ(N) = 0 and hence that νs is singular with respect to μ . Since

ν(N) = sup{ν(B) : B ∈ Nμ},
each A -measurable subset B of Nc that satisfies μ(B) = 0 also satisfies ν(B) = 0
(otherwise N ∪B would belong to Nμ and satisfy ν(N ∪B) > ν(N)). The absolute
continuity of νa follows.

In case ν is a finite signed or complex measure, we can apply the preceding
construction to the finite positive measure |ν|, obtaining a μ-null set N such that
the Lebesgue decomposition of |ν| is given by |ν|a(A) = |ν|(A∩Nc) and |ν|s(A) =
|ν|(A∩N). It is easy to check that the signed or complex measures νa and νs defined
by νa(A) = ν(A∩Nc) and νs(A) = ν(A∩N) form a Lebesgue decomposition of ν .

Now suppose that ν is a σ -finite positive measure, and let {Dk} be a partition
of X into A -measurable sets that have finite measure under ν . For each k let Ak

be the σ -algebra on Dk that consists of the A -measurable subsets of Dk, and apply
the construction above to the restrictions of the measures μ and ν to the spaces
(Dk,Ak). Let N1, N2, . . . be the μ-null subsets of D1, D2, . . . thus constructed,
and let N = ∪kNk. Then the measures νa and νs defined by νa(A) = ν(A∩Nc) and
νs(A) = ν(A∩N) form a Lebesgue decomposition of ν .

We turn to the uniqueness of the Lebesgue decomposition. Let ν = νa + νs and
ν = ν ′

a+ν ′
s be Lebesgue decompositions of ν . First suppose that ν is a finite signed,

complex, or finite positive measure. Then

νa −ν ′
a = ν ′

s −νs,

and since (νa −ν ′
a)� μ and (ν ′

s −νs)⊥ μ , it follows that

νa −ν ′
a = ν ′

s −νs = 0

(see Exercise 1). Thus νa = ν ′
a and νs = ν ′

s. The case where ν is a σ -finite positive
measure can be dealt with by choosing a partition {Dk} of X into A -measurable
subsets that have finite measure under ν , and applying the preceding argument to
the restrictions of νa, νs, ν ′

a, and ν ′
s to the A -measurable subsets of the sets Dk. �	

See Exercise 6 for another proof of the uniqueness of the Lebesgue
decomposition.
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One sometimes goes a step further for a finite measure ν on (R,B(R)). Let C =
{x ∈R : ν({x}) �= 0}, and note that C is countable (for each positive integer n, there
are only finitely many points x such that ν({x}) ≥ 1/n). Let ν1 be the measure on
B(R) defined by ν1(A) = ν(A∩C), and let ν2 and ν3 be the singular and absolutely
continuous (with respect to Lebesgue measure) parts of the measure A �→ ν(A∩Cc).
Then ν = ν1 +ν2 +ν3 is a decomposition of ν into the sum of a discrete measure,
a continuous but singular measure, and an absolutely continuous measure. It is easy
to check that the measures appearing in this decomposition are unique.

Exercises

1. Let μ be a positive measure on (X ,A ), and let ν be a positive, signed, or complex
measure on (X ,A ). Show that if ν � μ and ν ⊥ μ , then ν = 0. (Hint: Use the
definitions of absolute continuity and of singularity.)

2. Let μ be a positive measure on (X ,A ). Show that

{ν ∈ M(X ,A ,R) : ν ⊥ μ}
is a closed linear subspace of the normed linear space M(X ,A ,R).

3. Let μ be a positive measure on (X ,A ), let ν be a finite signed or complex
measure on (X ,A ), and let ν = νa + νs be the Lebesgue decomposition of ν .
Show that ‖ν‖= ‖νa‖+ ‖νs‖.

4. Let μ and ν be positive measures on (X ,A ) such that for each positive ε there
is a set A in A that satisfies μ(A) < ε and ν(Ac) < ε . Show that μ ⊥ ν . (Hint:
Choose sets A1, A2, . . . in such a way that the set A defined by A = ∩∞

n=1 ∪∞
k=n Ak

satisfies μ(A) = 0 and ν(Ac) = 0.)
5. Show by example that in the Lebesgue decomposition theorem, we cannot allow

ν to be an arbitrary positive measure. (Hint: Let (X ,A ) = (R,B(R)), let μ be
Lebesgue measure on (X ,A ), and let ν be counting measure on (X ,A ).)

6.(a) Let μ and ν be as in Theorem 4.3.2, let ν = νa + νs be a Lebesgue
decomposition of ν , and suppose that νs is concentrated on the μ-null set
N. Show that each A in A satisfies νs(A) = ν(A∩N) and νa(A) = ν(A∩Nc).

(b) Use part (a) to give another proof of the uniqueness assertion in Theo-
rem 4.3.2.

7. (Continuation of Exercise 4.1.3.) Let μ and ν be finite positive measures on
(X ,A ). Show that the conditions

(i) μ ⊥ ν ,
(ii) μ ∧ν = 0, and

(iii) μ ∨ν = μ +ν

are equivalent.
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4.4 Functions of Finite Variation

In Sect. 1.3 we constructed a bijection between the set of all finite positive measures
on (R,B(R)) and the set of all bounded nondecreasing right-continuous functions
F : R→R that vanish at −∞.4 In this section we will extend this correspondence to
a bijection between the set of all finite signed measures on (R,B(R)) and a certain
set of real-valued functions on R, and we will use this bijection to give a classical
characterization of those finite signed measures on (R,B(R)) that are absolutely
continuous with respect to Lebesgue measure.

Suppose that F is a real-valued function whose domain includes the interval
[a,b]. Let S be the collection of finite sequences {ti}n

i=0 such that

a ≤ t0 < t1 < · · ·< tn ≤ b.

Then VF [a,b], the variation of F over [a,b], is defined by

VF [a,b] = sup
{
∑

i
|F(ti)−F(ti−1)| : {ti} ∈ S

}
.

The function F is of finite variation (or of bounded variation) on [a,b] if VF [a,b] is
finite.

The variation of F over the interval (−∞,b] and the variation of F overR, written
VF(−∞,b] and VF(−∞,+∞), respectively, are defined in a similar way, now using
finite sequences whose members belong to (−∞,b] or to (−∞,+∞). Of course,
F is said to be of finite variation on (−∞,b] if VF(−∞,b] is finite, and to be of
finite variation if VF(−∞,+∞) is finite. If F : R→ R is of finite variation, then the
variation of F is the function VF : R→R defined by VF(x) =VF(−∞,x].

Suppose that μ is a finite signed measure on (R,B(R)). Define a function
Fμ : R→R by letting

Fμ(x) = μ((−∞,x]) (1)

hold at each x in R. If {ti}n
i=0 is an increasing sequence of real numbers, then

n

∑
i=1

|Fμ(ti)−Fμ(ti−1)|=
n

∑
i=1

|μ((ti−1, ti])| ≤ |μ |(R);

it follows that VFμ (−∞,+∞) ≤ |μ |(R) and hence that Fμ is of finite variation. It is
easy to check that Fμ vanishes at −∞ and is right-continuous (use Proposition 1.3.9
and the Jordan decomposition of μ). We will soon see that every right-continuous
function of finite variation that vanishes at −∞ arises from a finite signed measure
in this way.

4Recall that a function F : R→ R is said to vanish at −∞ if limx→−∞ F(x) = 0.
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It is easy to check that the function Fμ defined by (1) is continuous if and only if
μ({x}) = 0 holds for each x in R. In this case

μ((a,b)) = μ([a,b]) = μ([a,b)) = μ((a,b]) = Fμ(b)−Fμ(a)

holds whenever a < b.
Let us turn to some general properties of functions of finite variation.
Suppose that F : R→R is of finite variation. It is easy to check that F is bounded

and that if −∞ < a < b <+∞, then

VF(−∞,b] =VF(−∞,a]+VF [a,b]. (2)

Furthermore, if b ∈ R, then

VF(−∞,b] = lim
a→−∞

VF [a,b]; (3)

to prove this, let ε be a positive number, choose an increasing sequence {ti}n
i=0 of

numbers that belong to (−∞,b] and satisfy

n

∑
i=1

|F(ti)−F(ti−1)|>VF(−∞,b]− ε,

and note that for each a that satisfies a ≤ t0 we have

VF(−∞,b]− ε <VF [a,b]≤VF(−∞,b].

A similar argument shows that if a < c and if F is right-continuous at a, then

VF [a,c] = lim
b→a+

VF [b,c]. (4)

Lemma 4.4.1. Let F be a function of finite variation on R. Then

(a) VF is bounded and nondecreasing,
(b) VF vanishes at −∞, and
(c) if F is right-continuous, then VF is right-continuous.

Proof. Part (a) is clear. Equations (2) and (3) justify the calculation

lim
x→−∞

VF(x) = lim
x→−∞

VF(−∞,x]

= lim
x→−∞

(VF(−∞,b]−VF[x,b])

=VF(−∞,b]−VF(−∞,b] = 0,

and so part (b) is proved. A similar argument, using Eqs. (2) and (4), yields part (c).
�	

Proposition 4.4.2. Let F be a function of finite variation on R. Then there are
bounded nondecreasing functions F1 and F2 such that F = F1 −F2.
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Proof. It is easy to check that the functions defined by F1 = (VF +F)/2 and F2 =
(VF −F)/2 have the required properties. �	

Let F : R→R be of finite variation, and let F1 and F2 be the functions constructed
in the proof of Proposition 4.4.2. Lemma 4.4.1 implies that if F is right-continuous,
then F1 and F2 are right-continuous, and that if F vanishes at −∞, then F1 and F2

vanish at −∞.

Proposition 4.4.3. Equation (1) defines a bijection μ �→ Fμ between the set of all
finite signed measures on (R,B(R)) and the set of all right-continuous functions of
finite variation that vanish at −∞.

Proof. We have already checked that Fμ is a right-continuous function of finite
variation that vanishes at−∞. If μ and ν are finite signed measures such that Fμ =Fν
and if μ = μ+−μ− and ν = ν+−ν− are their Jordan decompositions, then Fμ+ −
Fμ− = Fν+ −Fν−; since this implies that Fμ+ +Fν− = Fν+ +Fμ− , it follows from
Proposition 1.3.10 that μ++ν− = ν+ + μ− and hence that μ = ν . The injectivity
of the map μ �→ Fμ follows. The surjectivity follows from Proposition 1.3.10,
Proposition 4.4.2, and the remarks following the proof of Proposition 4.4.2. �	

A function F : R→R is absolutely continuous if for each positive number ε there
is a positive number δ such that ∑i |F(ti)−F(si)|< ε holds whenever {(si, ti)} is a
finite sequence of disjoint open intervals for which ∑i(ti − si)< δ .

It is clear that every absolutely continuous function is continuous and, in fact,
uniformly continuous. There are, however, functions that are uniformly continuous
and of finite variation, but are not absolutely continuous (see Exercise 3). It is easy
to check that an absolutely continuous function is of finite variation on each closed
bounded interval (see Exercise 5), but is not necessarily of finite variation on R

(consider the function F defined by F(x) = x).
We turn to the relationship between absolute continuity for signed measures and

absolute continuity for functions of a real variable.

Lemma 4.4.4. If F : R → R is absolutely continuous and of finite variation, then
VF is absolutely continuous.

Proof. Let ε be a positive number, and use the absolute continuity of F to choose a
corresponding δ . If {(si, ti)} is a finite sequence of disjoint open intervals such that
∑i(ti − si)< δ , then each finite sequence {(u j,v j)} of disjoint open subintervals of
∪i(si, ti) satisfies ∑(v j − u j) < δ and so satisfies ∑ j |F(v j)−F(u j)| < ε . Since the
sequence {(u j,v j)} can be chosen so as to make ∑ j |F(v j)−F(u j)| arbitrarily close
to ∑i VF [si, ti], we have

∑
i
|VF(ti)−VF(si)|= ∑

i
VF [si, ti]≤ ε.

The absolute continuity of VF follows. �	
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Proposition 4.4.5. Let μ be a finite signed measure on (R,B(R)), and let Fμ : R→
R be defined by (1). Then Fμ is absolutely continuous if and only if μ is absolutely
continuous with respect to Lebesgue measure.

Proof. First suppose that μ is absolutely continuous with respect to Lebesgue
measure. Let ε be a positive number, and use Lemma 4.2.1 to choose a positive
number δ such that |μ |(A) < ε holds whenever A is a Borel set that satisfies
λ (A) < δ . If {(si, ti)} is a finite sequence of disjoint open intervals such that
∑i(ti − si)< δ , then λ (∪i(si, ti])< δ , and so

∑
i

|Fμ(ti)−Fμ(si)|= ∑
i

|μ((si, ti])| ≤ |μ |
(⋃

i

(si, ti]
)
< ε.

Hence Fμ is absolutely continuous.
Now suppose that Fμ is absolutely continuous. Then VFμ is absolutely continuous

(Lemma 4.4.4), and so the functions F1 and F2 defined by F1 = (VFμ +Fμ)/2 and
F2 = (VFμ −Fμ)/2 are absolutely continuous. Let μ1 and μ2 be the finite positive
measures on (R,B(R)) that correspond to F1 and F2. Since Fμ = F1 −F2, it follows
(Proposition 4.4.3) that μ = μ1 − μ2; thus we need only show that μ1 � λ and
μ2 � λ . Let ε be a positive number, and let δ be a positive number such that

∑
i
|F1(ti)−F1(si)|< ε holds whenever {(si, ti)} is a finite

sequence of disjoint open intervals such that ∑
i
(ti − si)< δ . (5)

Suppose that A is a Borel subset of R such that λ (A)< δ , and use the regularity of
Lebesgue measure to choose an open set U that includes A and satisfies λ (U) <
δ . Then U is the union of a sequence {(si, ti)} of disjoint open intervals (see
Proposition C.4), and it follows from (5) that

μ1

( n⋃

i=1

(si, ti)
)
=

n

∑
i=1

(F1(ti)−F1(si))< ε

holds for each n. Hence μ1(U) = μ1(∪∞
i=1(si, ti))≤ ε (see Proposition 1.2.5), and so

μ1(A)≤ ε . The absolute continuity of μ1 now follows from Lemma 4.2.1. The case
of μ2 is similar, and so the proof is complete. �	
Proposition 4.4.6. The functions F : R→R that can be written in the form

F(x) =
∫ x

−∞
f (t)dt (6)

for some f in L 1(R,B(R),λ ,R) are exactly the absolutely continuous functions of
finite variation that vanish at −∞.

Proof. First suppose that f belongs to L 1(R,B(R),λ ,R) and that F arises from
f through (6). The signed measure μ defined by μ(A) =

∫
A f dλ is absolutely
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continuous with respect to λ , and F = Fμ ; hence it follows from Propositions 4.4.3
and 4.4.5 that F is of finite variation, is absolutely continuous, and vanishes at −∞.

Now suppose that F : R→ R is of finite variation, is absolutely continuous, and
vanishes at −∞. Proposition 4.4.3 implies that there is a finite signed measure μ
such that F = Fμ , and Proposition 4.4.5 implies that μ � λ . If f = dμ

dλ , then (6)
holds at each x in R. �	

The study of absolute continuity for functions of a real variable, and in particular
of Eq. (6), will be continued in Sect. 6.3.

Exercises

1. Suppose that F : R→R is defined by

F(x) =

{
0 if x ≤ 0,

xsin 1
x if x > 0.

Find the closed bounded intervals [a,b] for which VF [a,b] is finite.
2. Show that if F : R → R is of finite variation, then the limits limx→−∞ F(x) and

limx→+∞ F(x) exist.
3. Let F be the Cantor function, extended so as to vanish on the interval (−∞,0)

and to have value 1 on the interval (1,+∞). Show directly (i.e., without using
Proposition 4.4.5) that F is uniformly continuous but not absolutely continuous.

4. Show that if F : R→ R is continuous and of finite variation, then VF : R→ R is
continuous.

5. Show that if F : R → R is absolutely continuous, then F is of finite variation
on each closed bounded interval. (Hint: Let δ be a positive number such that
∑i |F(ti)− F(si)| < 1 holds whenever {(si, ti)} is a finite sequence of disjoint
open intervals such that ∑i(ti−si)< δ , and let [a,b] be a closed bounded interval.
Show that if {ui}n

i=0 is a finite sequence such that

a ≤ u0 < u1 < .. . < un ≤ b,

then ∑n
i=1 |F(ui)−F(ui−1)| ≤ (b− a)/δ + 1.)

6. Let μ be a finite signed measure on (R,B(R)). Show that VFμ (−∞,x] =
|μ |((−∞,x]) holds at each x in R.

4.5 The Duals of the Lp Spaces

We return to the study, which we began in Sect. 3.5, of the duals of the Lp spaces.
Let (X ,A ,μ) be a measure space, let p satisfy 1 ≤ p < +∞, and let q be defined
by 1/p+ 1/q = 1. Recall that if f belongs to L p(X ,A ,μ) (or to L q(X ,A ,μ)),
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then 〈 f 〉 is the coset in Lp(X ,A ,μ) (or in Lq(X ,A ,μ)) to which f belongs.
We have seen that each 〈g〉 in Lq(X ,A ,μ) induces a bounded linear functional
T〈g〉 on Lp(X ,A ,μ) by means of the formula T〈g〉(〈 f 〉) = ∫ f gdμ and that the
operator T that takes 〈g〉 to T〈g〉 is an isometry of Lq(X ,A ,μ) into (Lp(X ,A ,μ))∗
(Proposition 3.5.5). We now use the Radon–Nikodym theorem to show that in many
situations the operator T is surjective and hence is an isometric isomorphism.

Theorem 4.5.1. Let (X ,A ,μ) be a measure space, let p satisfy 1 ≤ p < +∞, and
let q be defined by 1/p+ 1/q= 1. If p = 1 and μ is σ -finite, or if 1 < p <+∞ and
μ is arbitrary, then the operator T defined above is an isometric isomorphism of
Lq(X ,A ,μ) onto (Lp(X ,A ,μ))∗.

Proof. Since we know that T is an isometry (Proposition 3.5.5), we need only show
that it is surjective.

Let F be an arbitrary element of (Lp(X ,A ,μ))∗. First suppose that μ(X)<+∞
and that p satisfies 1 ≤ p < +∞. We define a function ν on the σ -algebra A
by means of the formula ν(A) = F(〈χA〉). If {Ak} is a sequence of disjoint sets
in A and if A = ∪kAk, then the dominated convergence theorem implies that
limn ‖χA − ∑n

k=1 χAk‖p = 0; since F is continuous and linear, this implies that
F(〈χA〉) = ∑k F(〈χAk〉) and hence that ν(A) = ∑k ν(Ak). Thus ν is countably
additive and so is a finite signed or complex measure. It is clear that ν is absolutely
continuous with respect to μ . Hence the Radon–Nikodym theorem (Theorem 4.2.4)
provides a function g in L 1(X ,A ,μ) that satisfies ν(A) =

∫
A gdμ for each A in A .

We will show that g belongs to L q(X ,A ,μ) and that F(〈 f 〉) = ∫ f gdμ holds for
each f in L p(X ,A ,μ).

For each positive integer n let En = {x ∈ X : |g(x)| ≤ n}. Then gχEn is bounded
and so belongs to L q(X ,A ,μ) (recall that μ is finite). Define a functional FEn on
Lp(X ,A ,μ) by FEn(〈 f 〉) = F(〈 f χEn〉). Consider the relation

FEn(〈 f 〉) =
∫

f gχEn dμ . (1)

If f is the characteristic function of an A -measurable set A, then both sides of
(1) are equal to ν(A ∩ En)); thus (1) holds if f is the characteristic function of
an A -measurable set and hence if f is an A -measurable simple function. Since
the A -measurable simple functions determine a dense subspace of Lp(X ,A ,μ)
(Proposition 3.4.2), Eq. (1) holds for all 〈 f 〉 in Lp(X ,A ,μ). It follows from
Proposition 3.5.5 that

‖gχEn‖q = ‖FEn‖ ≤ ‖F‖.
If q < +∞, then the monotone convergence theorem implies that g ∈ L q(X ,A ,μ)
and ‖g‖q ≤ ‖F‖. If q =+∞, then (since E = ∪nEn) we have

μ({x ∈ X : |g(x)|> ‖F‖}) = lim
n

μ({x ∈ En : |g(x)|> ‖F‖}) = 0,

and we can redefine g so that it will be bounded, in fact satisfying |g(x)| ≤ ‖F‖ at
every x in X . Thus ‖g‖q ≤ ‖F‖, whether q is finite or infinite. Furthermore, in both
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cases we can take limits in (1) as n approaches infinity and conclude that F(〈 f 〉) =∫
f gdμ . With this the theorem is proved in the case of finite measures.
We need some notation in order to deal with the case where μ is not finite.

Suppose that B belongs to A . Let AB be the σ -algebra on B consisting of those
subsets of B that belong to A , and let μB be the restriction of μ to AB. If f is a real-
or complex-valued function on B, then we will denote by f ′ the function on X that
agrees with f on B and vanishes outside B. The formula FB(〈 f 〉) = F(〈 f ′〉) defines
a linear functional FB on Lp(B,AB,μB); this functional satisfies ‖FB‖ ≤ ‖F‖.

Now suppose that μ is σ -finite and that p satisfies 1 ≤ p < +∞. Let {Bk} be a
sequence of disjoint sets that belong to A , have finite measure under μ , and satisfy
X = ∪kBk. According to the first part of this proof there is for each k a function gk

in L q(Bk,ABk ,μBk) that represents FBk on Lp(Bk,ABk ,μBk) and satisfies ‖gk‖q ≤
‖FBk‖. Define g on X so that it agrees on each Bk with gk. It is not difficult to check
(do so) that g ∈ L q(X ,A ,μ) and that

F(〈 f 〉) =
∫

f gdμ

holds for each 〈 f 〉 in Lp(X ,A ,μ).
Finally we turn to the case where μ is arbitrary. Now we assume that 1< p<+∞

and hence that 1 < q < +∞. Let S be the collection of sets in A that are σ -finite
under μ . Note that if B ∈ S , then (B,AB,μB) is σ -finite, and so by what we have
just proved, there is a function g in L q(B,AB,μB) such that

FB(〈 f 〉) =
∫

f gdμB

holds for each 〈 f 〉 in Lp(B,AB,μB). Furthermore if B1 and B2 are disjoint sets in
S , then

‖FB1∪B2‖q = ‖FB1‖q + ‖FB2‖q; (2)

to prove this, choose a function g in L q(B1 ∪B2,AB1∪B2 ,μB1∪B2) that represents
FB1∪B2 , and note that

‖FB1∪B2‖q =

∫

B1∪B2

|g|q dμB1∪B2

=

∫

B1

|g|q dμB1 +

∫

B2

|g|q dμB2 = ‖FB1‖q + ‖FB2‖q.

Now choose a sequence {Cn} of sets in S such that

lim
n
‖FCn‖= sup{‖FB‖ : B ∈ S }.

Let C = ∪nCn. Then C ∈ S ,

‖FC‖= sup{‖FB‖ : B ∈ S }, (3)
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and we can choose a function gC in L q(C,AC,μC) such that

FC(〈 f 〉) =
∫

f gC dμC (4)

holds for each 〈 f 〉 in Lp(C,AC,μC). Note that if f belongs to L p(X ,A ,μ) and
vanishes on C, then F(〈 f 〉) = 0 (otherwise, if D = {x ∈ X : f (x) �= 0}, then D would
belong to S (Corollary 2.3.11) and would satisfy FD �= 0, and so in view of (2),
FC∪D would satisfy

‖FC∪D‖q = ‖FC‖q + ‖FD‖q > ‖FC‖q,

contradicting (3)). It follows from this and (4) that if g is the function on X that
agrees with gC on C and vanishes off C, then g ∈ L q(X ,A ,μ) and

F(〈 f 〉) =
∫

f gdμ

holds for each 〈 f 〉 in Lp(X ,A ,μ) (decompose f into the sum of a function that
vanishes on C and a function that vanishes on Cc). Hence F = T〈g〉 and the proof of
the surjectivity of T is complete. �	
Example 4.5.2. Let us consider an example that shows that the hypothesis of
σ -finiteness cannot simply be omitted in Theorem 4.5.1 (see, however, Theo-
rems 7.5.4 and 9.4.8). Let X = R, let A be the σ -algebra consisting of those subsets
A ofR such that A or Ac is countable, and let μ be counting measure on (X ,A ). Then
L 1(X ,A ,μ) consists of those functions f on R that vanish outside a countable
set and satisfy ∑x | f (x)| < +∞, and for such functions we have ‖ f‖1 = ∑x | f (x)|.
Define a functional F on L1(X ,A ,μ) by F(〈 f 〉) =∑x>0 f (x). Then F is continuous,
and if g is a function that satisfies F(〈 f 〉) = ∫ f gdμ for each f in L 1(X ,A ,μ),
then g must be the characteristic function of the interval (0,+∞). However this
function is not A -measurable, and so the functional F is induced by no function in
L ∞(X ,A ,μ). �	

Exercises

1. Let V be a normed linear space, and let v and v1, v2, . . . belong to V . The
sequence {vn} is said to converge weakly to v if F(v) = limn F(vn) holds for
each F in V ∗.

(a) Show that if {vn} converges to v in norm (that is, if limn ‖vn − v‖= 0), then
{vn} converges weakly to v.

(b) Does the converse of part (a) hold if V = L2(R,B(R),λ )?
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2. Let (X ,A ,μ) be a measure space. Show that the formula T〈g〉(〈 f 〉) = ∫ f gdμ
defines an isometry T of L1(X ,A ,μ) into (L∞(X ,A ,μ))∗. (Thus we could have
allowed p to be +∞ in Proposition 3.5.5. See, however, the following exercise.)

3. (This exercise depends on Exercise 3.5.8, and hence on the Hahn–Banach
theorem.) Let (X ,A ,μ) be a finite measure space. Show that the conditions

(i) the map T in Exercise 2 is surjective,
(ii) L1(X ,A ,μ) is finite dimensional,

(iii) L∞(X ,A ,μ) is finite dimensional, and
(iv) there is a finite σ -algebra A0 on X such that A0 ⊆ A and such that each set

in A differs from a set in A0 by a μ-null set

are equivalent. (Hint: To show that (i) implies (iv), assume that (iv) fails and use
ideas from Exercise 3.5.8 to show that (i) fails.)

Notes

The basic facts about absolute continuity and singularity of measures are contained
in essentially all books on measure and integration, while the results given in the
last part of Sect. 4.1 and in Sect. 4.4 are sometimes omitted. See Chap. 10, on
probability, for applications of most of these results.

The proof of the Radon–Nikodym theorem outlined in Exercise 4.2.11 is due to
von Neumann (see [120, pp. 124–131]).


