Appendix C
Calculus and Topology in R?

C.1. Recall that R? is the set of all d-tuples of real numbers; it is a vector space
over R. (The d in R4 is for dimension; we write R?, rather than R”, in order to
have n available for use as a subscript.) Let x = (x1,...,x;) and y = (y1,...,yq) be
elements of R?. The norm of x is defined by

J 1/2
ol = (zx%)
-1

and the distance between x and y is defined to be ||x —y||.

C.2. If x € R? and if r is a positive number, then the open ball B(x,r) with center x
and radius r is defined by

B(x,r)={yeR": |y—xl <r}.

A subset U of R? is open if for each x in U there is a positive number r such that
B(x,r) CU. A subset of R? is closed if its complement is open. A point x in RY is a
limit point of the subset A of RY if for each positive r the open ball B(x,r) contains
infinitely many points of A (this is equivalent to requiring that for each positive r the
ball B(x,r) contain at least one point of A distinct from x). It is easy to check that a
subset of R is closed if and only if it contains all of its limit points.

If A is a subset of R?, then the closure of A is the set A (or A™) that consists of
the points in A, together with the limit points of A; A is closed and is, in fact, the
smallest closed subset of R? that includes A.

C.3. A subset A of R is bounded if there is a real number M such that ||x|| <M
holds for each x in A.

C.4. (Proposition) Let U be an open subset of R. Then there is a countable
collection % of disjoint open intervals such that U = UZ .
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Proof. Let % consist of those open subintervals / of U that are maximal, in the
sense that the only open interval J that satisfies I C J C U is [ itself. Of course
UZ% C U. One can verify the reverse inclusion by noting that if x € U, then the
union of those open intervals that contain x and are included in U is an open interval
that contains x and belongs to %/. It is easy to check (do so) that the intervals in %
are disjoint from one another. If for each I in % we choose a rational number x;
that belongs to 1, then (since the sets in %/ are disjoint from one another) the map
I — x; is an injection; thus %/ has the same cardinality as some subset of QQ, and so
is countable (see item A.6 in Appendix A). O

C.5. A sequence {x,} of elements of RY converges to the element x of R? if
lim,, ||x, — x|| = 0; x is then called the limit of the sequence {x,} (note that here
xand xj, X, ... are elements of R?; in particular, x1, x5, ... are not the components
of x). A sequence in RY is convergent if it converges to some element of R¢.

C.6. Let A be a subset of RY, and let xo belong to A. A function f: A = R is
continuous at xq if for each positive number € there is a positive number o such
that | f(x) — f(xo)| < € holds whenever x belongs to A and satisfies ||x — x|| < J;
f is continuous if it is continuous at each point in A. The function f: A — R is
uniformly continuous if for each positive number € there is a positive number & such
that | f(x) — f(’)| < € holds whenever x and x’ belong to A and satisfy ||x —x'|| < &.
A function f: A — R is continuous on (or uniformly continuous on) the subset Ag
of A if the restriction of f to Ay is continuous (or uniformly continuous).

C.7. Let A be a subset of R?, let f be a real- or complex-valued function on
A, and let a be a limit point of A. Then f(x) has limit L as x approaches a,
written lim,_,, f(x) = L, if for every positive € there is a positive 0 such that
| £ (x) — f(a)| < € holds whenever x is a member of A that satisfies 0 < ||x—al| < 8.

One can check that lim,_, f(x) = L if and only if lim, f(x,) = L for every
sequence {x,} of elements of A, all different from a, such that lim,x, = a. (Let
us consider the more difficult half of that assertion, namely that if lim, f(x,) =L
for every sequence {x,} of elements of A, all different from a, such that lim, x,, = a,
then lim,_,, f(x) = L. We prove this by proving its contrapositive. So assume that
lim,_,, f(x) = Lis not true. Then there exists a positive € such that for every positive
0 there is a value x in A such that 0 < ||x —a|| < 6 and |f(x) — L| > €. If for each
n we let § = 1/n and choose an element x,, of A such that 0 < ||x, —al| < 1/n and
| f(xn) — L| > €, we will have a sequence {x,} of elements of A, all different from a,
that satisfy lim, x, = a but not lim,, f(x,) = L.)

C.8. Let A be a subset of R?. An open cover of A is a collection .# of open subsets
of R? such that A C U.¥. A subcover of the open cover .7 is a subfamily of . that
is itself an open cover of A.

Proofs of the following results can be found in almost any text on advanced
calculus or basic analysis (see, for example, Bartle [4], Hoffman [60], Rudin [104],
or Thomson et al. [117]).
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C.9. (Theorem) Let A be a closed bounded subset of RY. Then every open cover
of A has a finite subcover.

Theorem C.9 is often called the Heine—Borel theorem.

C.10. (Theorem) Let A be a closed bounded subset of RY. Then every sequence of
elements of A has a subsequence that converges to an element of A.

C.11. It is easy to check that the converses of Theorems C.9 and C.10 hold: if A
satisfies the conclusion of Theorem C.9 or of Theorem C.10, then A is closed and
bounded. The subsets of R? that satisfy the conclusion of Theorem C.9 (hence the
closed bounded subsets of RY) are often called compact. See also Appendix D.

C.12. (Theorem) Let C be a nonempty closed bounded subset of RY, and let
f: C— R be continuous. Then

(a) f is uniformly continuous on C, and
(b) f is bounded on C. Moreover, there are elements xy and x; of C such that
f(xo0) < f(x) < f(x1) holds at each x in C.

C.13. (The Intermediate Value Theorem) Let A be a subset of R, and let f: A —
R be continuous. If the interval [xo,x1] is included in A, then for each real number y
between f(xo) and f(x1) there is an element x of [xo,x1] such that y = f(x).

C.14. (The Mean Value Theorem) Let a and b be real numbers such that a < b.
If f: [a,b] — R is continuous on the closed interval [a,b] and differentiable at
each point in the open interval (a,b), then there is a number ¢ in (a,b) such that

f(b) = f(a) = f'(c)(b—a).



