Appendix C Calculus and Topology in \mathbb{R}^d

C.1. Recall that \mathbb{R}^d is the set of all d-tuples of real numbers; it is a vector space over \mathbb{R} . (The d in \mathbb{R}^d is for dimension; we write \mathbb{R}^d , rather than \mathbb{R}^n , in order to have n available for use as a subscript.) Let $x = (x_1, \ldots, x_d)$ and $y = (y_1, \ldots, y_d)$ be elements of \mathbb{R}^d . The *norm* of x is defined by

$$||x|| = \left(\sum_{i=1}^{d} x_i^2\right)^{1/2}$$

and the *distance* between x and y is defined to be ||x - y||.

C.2. If $x \in \mathbb{R}^d$ and if r is a positive number, then the *open ball* B(x,r) with center x and radius r is defined by

$$B(x,r) = \{ y \in \mathbb{R}^d : ||y - x|| < r \}.$$

A subset U of \mathbb{R}^d is *open* if for each x in U there is a positive number r such that $B(x,r) \subseteq U$. A subset of \mathbb{R}^d is *closed* if its complement is open. A point x in \mathbb{R}^d is a *limit point* of the subset A of \mathbb{R}^d if for each positive r the open ball B(x,r) contains infinitely many points of A (this is equivalent to requiring that for each positive r the ball B(x,r) contain at least one point of A distinct from x). It is easy to check that a subset of \mathbb{R}^d is closed if and only if it contains all of its limit points.

If *A* is a subset of \mathbb{R}^d , then the *closure* of *A* is the set \overline{A} (or A^-) that consists of the points in *A*, together with the limit points of *A*; \overline{A} is closed and is, in fact, the smallest closed subset of \mathbb{R}^d that includes *A*.

- **C.3.** A subset *A* of \mathbb{R}^d is *bounded* if there is a real number *M* such that $||x|| \leq M$ holds for each *x* in *A*.
- **C.4.** (**Proposition**) Let U be an open subset of \mathbb{R} . Then there is a countable collection \mathcal{U} of disjoint open intervals such that $U = \cup \mathcal{U}$.

Proof. Let \mathscr{U} consist of those open subintervals I of U that are maximal, in the sense that the only open interval J that satisfies $I \subseteq J \subseteq U$ is I itself. Of course $\bigcup \mathscr{U} \subseteq U$. One can verify the reverse inclusion by noting that if $x \in U$, then the union of those open intervals that contain x and are included in U is an open interval that contains x and belongs to \mathscr{U} . It is easy to check (do so) that the intervals in \mathscr{U} are disjoint from one another. If for each I in \mathscr{U} we choose a rational number x_I that belongs to I, then (since the sets in \mathscr{U} are disjoint from one another) the map $I \mapsto x_I$ is an injection; thus \mathscr{U} has the same cardinality as some subset of \mathbb{Q} , and so is countable (see item A.6 in Appendix A).

- **C.5.** A sequence $\{x_n\}$ of elements of \mathbb{R}^d converges to the element x of \mathbb{R}^d if $\lim_n ||x_n x|| = 0$; x is then called the *limit* of the sequence $\{x_n\}$ (note that here x and x_1, x_2, \ldots are elements of \mathbb{R}^d ; in particular, x_1, x_2, \ldots are not the components of x). A sequence in \mathbb{R}^d is *convergent* if it converges to some element of \mathbb{R}^d .
- **C.6.** Let A be a subset of \mathbb{R}^d , and let x_0 belong to A. A function $f: A \to \mathbb{R}$ is continuous at x_0 if for each positive number ε there is a positive number δ such that $|f(x) f(x_0)| < \varepsilon$ holds whenever x belongs to A and satisfies $||x x_0|| < \delta$; f is continuous if it is continuous at each point in A. The function $f: A \to \mathbb{R}$ is uniformly continuous if for each positive number ε there is a positive number δ such that $|f(x) f(x')| < \varepsilon$ holds whenever x and x' belong to A and satisfy $||x x'|| < \delta$. A function $f: A \to \mathbb{R}$ is continuous on (or uniformly continuous on) the subset A_0 of A if the restriction of A to A0 is continuous (or uniformly continuous).
- **C.7.** Let A be a subset of \mathbb{R}^d , let f be a real- or complex-valued function on A, and let a be a limit point of A. Then f(x) has *limit* L as x approaches a, written $\lim_{x\to a} f(x) = L$, if for every positive ε there is a positive δ such that $|f(x) f(a)| < \varepsilon$ holds whenever x is a member of A that satisfies $0 < ||x a|| < \delta$.

One can check that $\lim_{x\to a} f(x) = L$ if and only if $\lim_n f(x_n) = L$ for every sequence $\{x_n\}$ of elements of A, all different from a, such that $\lim_n x_n = a$. (Let us consider the more difficult half of that assertion, namely that if $\lim_n f(x_n) = L$ for every sequence $\{x_n\}$ of elements of A, all different from a, such that $\lim_n x_n = a$, then $\lim_{x\to a} f(x) = L$. We prove this by proving its contrapositive. So assume that $\lim_{x\to a} f(x) = L$ is not true. Then there exists a positive ε such that for every positive δ there is a value x in A such that $0 < \|x - a\| < \delta$ and $\|f(x) - L\| \ge \varepsilon$. If for each a we let a =

C.8. Let *A* be a subset of \mathbb{R}^d . An *open cover* of *A* is a collection \mathscr{S} of open subsets of \mathbb{R}^d such that $A \subseteq \cup \mathscr{S}$. A *subcover* of the open cover \mathscr{S} is a subfamily of \mathscr{S} that is itself an open cover of *A*.

Proofs of the following results can be found in almost any text on advanced calculus or basic analysis (see, for example, Bartle [4], Hoffman [60], Rudin [104], or Thomson et al. [117]).

C.9. (Theorem) Let A be a closed bounded subset of \mathbb{R}^d . Then every open cover of A has a finite subcover.

Theorem C.9 is often called the *Heine–Borel* theorem.

- **C.10.** (Theorem) Let A be a closed bounded subset of \mathbb{R}^d . Then every sequence of elements of A has a subsequence that converges to an element of A.
- **C.11.** It is easy to check that the converses of Theorems C.9 and C.10 hold: if *A* satisfies the conclusion of Theorem C.9 or of Theorem C.10, then *A* is closed and bounded. The subsets of \mathbb{R}^d that satisfy the conclusion of Theorem C.9 (hence the closed bounded subsets of \mathbb{R}^d) are often called *compact*. See also Appendix D.
- **C.12.** (**Theorem**) Let C be a nonempty closed bounded subset of \mathbb{R}^d , and let $f: C \to \mathbb{R}$ be continuous. Then
- (a) f is uniformly continuous on C, and
- (b) f is bounded on C. Moreover, there are elements x_0 and x_1 of C such that $f(x_0) \le f(x) \le f(x_1)$ holds at each x in C.
- **C.13.** (The Intermediate Value Theorem) Let A be a subset of \mathbb{R} , and let $f: A \to \mathbb{R}$ be continuous. If the interval $[x_0, x_1]$ is included in A, then for each real number y between $f(x_0)$ and $f(x_1)$ there is an element x of $[x_0, x_1]$ such that y = f(x).
- **C.14.** (The Mean Value Theorem) Let a and b be real numbers such that a < b. If $f: [a,b] \to \mathbb{R}$ is continuous on the closed interval [a,b] and differentiable at each point in the open interval (a,b), then there is a number c in (a,b) such that f(b) f(a) = f'(c)(b-a).