
Appendix D
Topological Spaces and Metric Spaces

A number of the results in this appendix are stated without proof. For additional
details, the reader should consult a text on point-set topology (for example, Kelley
[69], Munkres [91], or Simmons [109]).

D.1. Let X be a set. A topology on X is a family O of subsets of X such that

(a) X ∈ O ,
(b) ∅ ∈ O ,
(c) if S is an arbitrary collection of sets that belong to O , then ∪S ∈ O , and
(d) if S is a finite collection of sets that belong to O , then ∩S ∈ O .

A topological space is a pair (X ,O), where X is a set and O is a topology on X (we
will generally abbreviate the notation and simply call X a topological space). The
open subsets of X are those that belong to O . An open neighborhood of a point x in
X is an open set that contains x.

The collection of all open subsets of Rd (as defined in Appendix C) is a topology
on R

d ; it is sometimes called the usual topology on R
d .

D.2. Let (X ,O) be a topological space. A subset F of X is closed if Fc is open.
The union of a finite collection of closed sets is closed, as is the intersection of an
arbitrary collection of closed sets (use De Morgan’s laws and parts (c) and (d) of the
definition of a topology). It follows that if A ⊆ X , then there is a smallest closed set
that includes A, namely the intersection of all the closed subsets of X that include A;
this set is called the closure of A and is denoted by A or by A−. A point x in X is a
limit point of A if each open neighborhood of x contains at least one point of A other
than x (the point x itself may or may not belong to A). A set is closed if and only if
it contains each of its limit points. The closure of the set A consists of the points in
A, together with the limit points of A.

D.3. Let (X ,O) be a topological space, and let A be a subset of X . The interior of
A, written Ao, is the union of the open subsets of X that are included in A; thus Ao is
the largest open subset of A. It is easy to check that Ao = ((Ac)−)c.
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D.4. Let (X ,O) be a topological space, let Y be a subset of X , and let OY be the
collection of all subsets of Y that have the form Y ∩U for some U in O . Then OY is
a topology on Y ; it is said to be inherited from X , or to be induced by O . The space
(Y,OY ) (or simply Y ) is called a subspace of (X ,O) (or of X).

Note that if Y is an open subset of X , then the members of OY are exactly the
subsets of Y that are open as subsets of X . Likewise, if Y is a closed subset of X ,
then the closed subsets of the topological space (Y,OY ) are exactly the subsets of Y
that are closed as subsets of (X ,OX).

D.5. Let X and Y be topological spaces. A function f : X → Y is continuous if
f−1(U) is an open subset of X whenever U is an open subset of Y . It is easy to
check that f is continuous if and only if f−1(C) is closed whenever C is a closed
subset of Y. A function f : X → Y is a homeomorphism if it is a bijection such
that f and f−1 are both continuous. Equivalently, f is a homeomorphism if it is a
bijection such that f−1(U) is open exactly when U is open. The spaces X and Y are
homeomorphic if there is a homeomorphism of X onto Y .

D.6. We will on occasion need the following techniques for verifying the continuity
of a function. Let X and Y be topological spaces, and let f be a function from X to
Y . If S is a collection of open subsets of X such that X = ∪S , and if for each U
in S the restriction fU of f to U is continuous (as a function from U to Y ), then
f is continuous (to prove this, note that if V is an open subset of Y , then f−1(V ) is
the union of the sets f−1

U (V ), and so is open). Likewise, if S is a finite collection
of closed sets such that X = ∪S , and if for each C in S the restriction of f to C is
continuous, then f is continuous.

D.7. If O1 and O2 are topologies on the set X , and if O1 ⊆O2, then O1 is said to be
weaker than O2.

Now suppose that A is an arbitrary collection of subsets of the set X . There exist
topologies on X that include A (for instance, the collection of all subsets of X). The
intersection of all such topologies on X is a topology; it is the weakest topology on
X that includes A and is said to be generated by A .

We also need to consider topologies generated by sets of functions. Suppose that
X is a set and that { fi} is a collection of functions, where for each i the function
fi maps X to some topological space Yi. A topology on X makes all these functions
continuous if and only if f−1

i (U) is open (in X) for each index i and each open
subset U of Yi. The topology generated by the family { fi} is the weakest topology
on X that makes each fi continuous, or equivalently, the topology generated by the
sets f−1

i (U).

D.8. A subset A of a topological space X is dense in X if A = X . The space X is
separable if it has a countable dense subset.

D.9. Let (X ,O) be a topological space. A collection U of open subsets of X is a
base for (X ,O) if for each V in O and each x in V there is a set U that belongs to
U and satisfies x ∈ U ⊆ V . Equivalently, U is a base for X if the open subsets of
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X are exactly the unions of (possibly empty) collections of sets in U . A topological
space is said to be second countable, or to have a countable base, if it has a base
that contains only countably many sets.

D.10. It is easy to see that if X is second countable, then X is separable (if U is a
countable base for X , then we can form a countable dense subset of X by choosing
one point from each nonempty set in U ). The converse is not true. (Construct a
topological space (X ,O) by letting X = R and letting O consist of those subsets A
of X such that either A =∅ or 0 ∈ A. Then {0} is dense in X , and so X is separable;
however, X is not second countable. Exercise 7.1.8 contains a more interesting
example.)

D.11. If X is a second countable topological space, and if V is a collection of open
subsets of X , then there is a countable subset V0 of V such that ∪V0 = ∪V . (Let U
be a countable base for X , and let U0 be the collection of those elements U of U
for which there is a set in V that includes U . For each U in U0 choose an element
of V that includes U . The collection of sets chosen is the required subset of V .)

D.12. A topological space X is Hausdorff if for each pair x,y of distinct points in
X there are open sets U,V such that x ∈U , y ∈V , and U ∩V =∅.

D.13. Let A be a subset of the topological space X . An open cover of A is a
collection S of open subsets of X such that A ⊆ ∪S . A subcover of the open
cover S is a subfamily of S that is itself an open cover of A. The set A is compact
if each open cover of A has a finite subcover. A topological space X is compact if
X , when viewed as a subset of the space X , is compact.

D.14. A collection C of subsets of a set X satisfies the finite intersection property
if each finite subcollection of C has a nonempty intersection. It follows from
De Morgan’s laws that a topological space X is compact if and only if each collection
of closed subsets of X that satisfies the finite intersection property has a nonempty
intersection.

D.15. If X and Y are topological spaces, if f : X → Y is continuous, and if K is a
compact subset of X , then f (K) is a compact subset of Y .

D.16. Every closed subset of a compact set is compact. Conversely, every compact
subset of a Hausdorff space is closed (this is a consequence of Proposition 7.1.2; in
fact, the first half of the proof of that proposition is all that is needed in the current
situation).

D.17. It follows from D.15 and D.16 that if X is a compact space, if Y is a Hausdorff
space, and if f : X → Y is a continuous bijection, then f is a homeomorphism.

D.18. If X is a nonempty compact space, and if f : X → R is continuous, then f is
bounded and attains its supremum and infimum: there are points x0 and x1 in X such
that f (x0)≤ f (x) ≤ f (x1) holds at each x in X .
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D.19. Let {(Xα ,Oα )} be an indexed family of topological spaces, and let ∏α Xα
be the product of the corresponding indexed family of sets {Xα} (see A.5). The
product topology on ∏α Xα is the weakest topology on ∏α Xα that makes each of the
coordinate projections πβ : ∏α Xα →Xβ continuous (the projection πβ is defined by
πβ (x) = xβ ); see D.7. If U is the collection of sets that have the form ∏α Uα for
some family {Uα} for which

(a) Uα ∈ Oα holds for each α and
(b) Uα = Xα holds for all but finitely many values of α ,

then U is a base for the product topology on ∏α Xα .

D.20. (Tychonoff’s Theorem) Let {(Xα ,Oα )} be an indexed collection of topo-
logical spaces. If each (Xα ,Oα ) is compact, then ∏α Xα , with the product topology,
is compact.

D.21. Let X be a set. A collection F of functions on X separates the points of
X if for each pair x, y of distinct points in X there is a function f in F such that
f (x) �= f (y). A vector space F of real-valued functions on X is an algebra if f g
belongs to F whenever f and g belong to F (here f g is the product of f and g,
defined by ( f g)(x) = f (x)g(x)). Now suppose that F is a vector space of bounded
real-valued functions on X . A subset of F is uniformly dense in F if it is dense in F
when F is given the topology induced by the uniform norm (see Example 3.2.1(f)
in Sect. 3.2).

D.22. (Stone–Weierstrass Theorem) Let X be a compact Hausdorff space. If A
is an algebra of continuous real-valued functions on X that contains the constant
functions and separates the points of X, then A is uniformly dense in the space C(X)
of continuous real-valued functions on X.

D.23. (Stone–Weierstrass Theorem) Let X be a locally compact1 Hausdorff
space, and let A be a subalgebra of C0(X) such that

(a) A separates the points of X, and
(b) for each x in X there is a function in A that does not vanish at x.

Then A is uniformly dense in C0(X).

Theorem D.23 can be proved by applying Theorem D.22 to the one-point
compactification of X .

D.24. Suppose that X is a set and that ≤ is a linear order on X . For each x in X
define intervals (−∞,x) and (x,+∞) by

(−∞,x) = {z ∈ X : z < x}
and

(x,+∞) = {z ∈ X : x < z}.

1Locally compact spaces are defined in Sect. 7.1, and C0(X) is defined in Sect. 7.3.
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The order topology on X is the weakest topology on X that contains all of these
intervals. The set that consists of these intervals, the intervals of the form {z ∈ X :
x < z < y}, and the set X , is a base for the order topology on X .

D.25. Let X be a set. A metric on X is a function d : X ×X → R that satisfies

(a) d(x,y)≥ 0,
(b) d(x,y) = 0 if and only if x = y,
(c) d(x,y) = d(y,x), and
(d) d(x,z) ≤ d(x,y)+ d(y,z)

for all x, y, and z in X . A metric space is a pair (X ,d), where X is a set and d is a
metric on X (of course, X itself is often called a metric space).

Let (X ,d) be a metric space. If x ∈ X and if r is a positive number, then the set
B(x,r) defined by

B(x,r) = {y ∈ X : d(x,y)< r}
is called the open ball with center x and radius r; the closed ball with center x and
radius r is the set

{y ∈ X : d(x,y)≤ r}.
A subset U of X is open if for each x in U there is a positive number r such that
B(x,r)⊆U . The collection of all open subsets of X is a topology on X ; it is called the
topology induced or generated by d.2 The open balls form a base for this topology.

D.26. A topological space (X ,O) (or a topology O) is metrizable if there is a metric
d on X that generates the topology O; the metric d is then said to metrize X (or
(X ,O)).

D.27. Let X be a metric space. The diameter of the subset A of X , written diam(A),
is defined by

diam(A) = sup{d(x,y) : x,y ∈ A}.
The set A is bounded if diam(A) is not equal to +∞. The distance between the point
x and the nonempty subset A of X is defined by

d(x,A) = inf{d(x,y) : y ∈ A}.
Note that if x1 and x2 are points in X , then

d(x1,A)≤ d(x1,x2)+ d(x2,A).

Since we can interchange the points x1 and x2 in the formula above, we find that

|d(x1,A)− d(x2,A)| ≤ d(x1,x2),

2When dealing with a metric space (X ,d), we will often implicitly assume that X has been given
the topology induced by d.
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from which it follows that x �→ d(x,A) is continuous (and, in fact, uniformly
continuous).

D.28. Each closed subset of a metric space is a Gδ , and each open subset is an Fσ .
To check the first of these claims, note that if C is a nonempty closed subset of the
metric space X , then

C =
⋂

n

{

x ∈ X : d(x,C)<
1
n

}

,

and so C is the intersection of a sequence of open sets. Now use De Morgan’s laws
(see Sect. A.1) to check that each open set is an Fσ .

D.29. Let x and x1, x2, . . . belong to the metric space X . The sequence {xn}
converges to x if limn d(xn,x) = 0; if {xn} converges to x, we say that x is the limit
of {xn}, and we write x = limn xn.

D.30. Let X be a metric space. It is easy to check that a point x in X belongs to the
closure of the subset A of X if and only if there is a sequence in A that converges
to x.

D.31. Let (X ,d) and (Y,d′) be metric spaces, and give X and Y the topologies
induced by d and d′ respectively. Then a function f : X → Y is continuous (in the
sense of D.5) if and only if for each x0 in X and each positive number ε there is
a positive number δ such that d′( f (x), f (x0)) < ε holds whenever x belongs to X
and satisfies d(x,x0) < δ . The observation at the end of C.7 generalizes to metric
spaces, and a small modification of the argument given there yields the following
characterization of continuity in terms of sequences: the function f is continuous if
and only if f (x) = limn f (xn) holds whenever x and x1, x2, . . . are points in X such
that x = limn xn.

D.32. We noted in D.10 that every second countable topological space is separable.
The converse holds for metrizable spaces: if d metrizes the topology of X , and if D
is a countable dense subset of X , then the collection consisting of those open balls
B(x,r) for which x ∈ D and r is rational is a countable base for X .

D.33. If X is a second countable topological space, and if Y is a subspace of X , then
Y is second countable (if U is a countable base for X , then {U ∩Y : U ∈ U } is a
countable base for Y ). It follows from this, together with D.10 and D.32, that every
subspace of a separable metrizable space is separable.

D.34. Let (X ,d) be a metric space. A sequence {xn} of elements of X is a Cauchy
sequence if for each positive number ε there is a positive integer N such that
d(xm,xn)< ε holds whenever m ≥ N and n ≥ N. The metric space X is complete if
every Cauchy sequence in X converges to an element of X .

D.35. (Cantor’s Nested Set Theorem) Let X be a complete metric space. If {An}
is a decreasing sequence of nonempty closed sets of X such that limn diam(An) = 0,
then ∩∞

n=1An contains exactly one point.
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Proof. For each positive integer n choose an element xn of An. Then {xn} is a
Cauchy sequence whose limit belongs to ∩∞

n=1An. Thus ∩∞
n=1An is not empty. Since

limn diam(An) = 0, the set ∩∞
n=1An cannot contain more than one point. �	

D.36. A subset A of a topological space X is nowhere dense if the interior of A is
empty.

D.37. (Baire Category Theorem) Let X be a nonempty complete metric space (or
a nonempty topological space that can be metrized with a complete metric). Then
X cannot be written as the union of a sequence of nowhere dense sets. Moreover, if
{An} is a sequence of nowhere dense subsets of X, then (∪nAn)

c is dense in X.

D.38. The metric space (X ,d) is totally bounded if for each positive ε there is a
finite subset S of X such that

X =
⋃
{B(x,ε) : x ∈ S}.

D.39. (Theorem) Let X be a metric space. Then the conditions

(a) the space X is compact,
(b) the space X is complete and totally bounded, and
(c) each sequence of elements of X has a subsequence that converges to an

element of X

are equivalent.

D.40. (Corollary) Each compact metric space is separable.

Proof. Let X be a compact metric space. Theorem D.39 implies that X is totally
bounded, and so for each positive integer n we can choose a finite set Sn such that
X = ∪{B(x,1/n) : x ∈ Sn}. The set ∪nSn is then a countable dense subset of X . �	
D.41. Note, however, that a compact Hausdorff space can fail to be second
countable and can even fail to be separable (see Exercises 7.1.7, 7.1.8, and 7.1.10).

D.42. Let {Xn} be a sequence of nonempty metrizable spaces, and for each n let
dn be a metric that metrizes Xn. Let x and y denote the points {xn} and {yn} of the
product space ∏n Xn. Then the formula

d(x,y) = ∑
n

1
2n min(1,dn(xn,yn))

defines a metric on ∏n Xn that metrizes the product topology. This fact, together
with Theorem D.39, can be used to give a fairly easy proof of Tychonoff’s theorem
for countable families of compact metrizable spaces.


