Appendix E The Bochner Integral

Let (X,\mathscr{A}) be a measurable space, let E be a real or complex Banach space (that is, a Banach space over \mathbb{R} or \mathbb{C}), and let $\mathscr{B}(E)$ be the σ -algebra of Borel subsets of E (that is, let $\mathscr{B}(E)$ be the σ -algebra on E generated by the open subsets of E). We will sometimes denote the norm on E by $|\cdot|$, rather than by the more customary $||\cdot||$. This will allow us to use $||\cdot||$ for the norm of elements of certain spaces of E-valued functions; see, for example, formula (7) below. A function $f: X \to E$ is Borel measurable if it is measurable with respect to \mathscr{A} and $\mathscr{B}(E)$, and is strongly measurable if it is Borel measurable and has a separable range (here by the range of f we mean the subset f(X) of E). The function f is simple if it has only finitely many values. Of course, a simple function is strongly measurable if and only if it is Borel measurable.

It is easy to see that if f is Borel measurable, then $x \mapsto |f(x)|$ is \mathscr{A} -measurable (use Lemma 7.2.1 and Proposition 2.6.1).

Note that if E is separable, then every E-valued Borel measurable function is strongly measurable. On the other hand, if E is not separable and if $(X, \mathscr{A}) = (E, \mathscr{B}(E))$, then the identity map from X to E is Borel measurable, but is not strongly measurable.

- **E.1.** (Proposition) Let (X, \mathcal{A}) be a measurable space, and let E be a real or complex Banach space. Then
- (a) the collection of Borel measurable functions from X to E is closed under the formation of pointwise limits, and
- (b) the collection of strongly measurable functions from X to E is closed under the formation of pointwise limits.

Proof. Part (a) is a special case of Proposition 8.1.10, and so we can turn to part (b). Let $\{f_n\}$ be a sequence of strongly measurable functions from X to E, and suppose that $\{f_n\}$ converges pointwise to f. It follows from the separability of the sets $f_n(X)$, $n = 1, 2, \ldots$, that $\bigcup_n f_n(X)$ is separable, that the closure of $\bigcup_n f_n(X)$ is separable, and finally that f(X) is separable (see D.33). Since f is Borel measurable (part (a)), the proof is complete.

E.2. (Proposition) Let (X, \mathcal{A}) be a measurable space, let E be a real or complex Banach space, and let $f: X \to E$ be strongly measurable. Then there is a sequence $\{f_n\}$ of strongly measurable simple functions such that

$$f(x) = \lim_{n} f_n(x)$$

and

$$|f_n(x)| \le |f(x)|$$
, for $n = 1, 2, ...,$

hold at each x in X.

Proof. We can certainly assume that f(X) contains at least one nonzero element of E. Let C be a countable dense subset of f(X), let C^{\sim} be the set of rational multiples of elements of C, and let $\{y_n\}$ be an enumeration of C^{\sim} . We can assume that $y_1 = 0$. It is easy to check (do so) that

for each
$$y$$
 in $f(X)$ and each positive number ε there is a term y_m of $\{y_n\}$ that satisfies $|y_m| \le |y|$ and $|y_m - y| < \varepsilon$. (1)

For each x in X and each positive integer n define a subset $A_n(x)$ of E by

$$A_n(x) = \{y_j : j \le n \text{ and } |y_j| \le |f(x)|\}.$$

Since $y_1 = 0$, each $A_n(x)$ is nonempty.

We now construct the required sequence $\{f_n\}$ by letting $f_n(x)$ be the element of $A_n(x)$ that lies closest to f(x) (in case

$$|f(x) - y_j| = \inf\{|f(x) - y_i| : y_i \in A_n(x)\}$$
 (2)

holds for several elements y_j of $A_n(x)$, let $f_n(x)$ be y_{j_0} , where j_0 is the smallest value of j for which y_j belongs to $A_n(x)$ and satisfies (2)). It is clear that each f_n is a simple function and that $|f_n(x)| \leq |f(x)|$ holds for each n and x. Since the sets $\{x \in X : f_n(x) = y_j\}$ can be described by means of inequalities involving |f(x)|, $|y_i|$, $i = 1, \ldots, n$, and $|f(x) - y_i|$, $i = 1, \ldots, n$, each f_n is strongly measurable. Finally, observation (1) implies that $\{f_n\}$ converges pointwise to f (if y_m satisfies the inequalities $|y_m| \leq |f(x)|$ and $|y_m - f(x)| < \varepsilon$, then $|f_n(x) - f(x)| < \varepsilon$ holds whenever $n \geq m$).

Let us note two consequences of Propositions E.1 and E.2. The first is immediate: a function from X to E is strongly measurable if and only if it is the pointwise limit of a sequence of Borel (or strongly) measurable simple functions. The second is given by the following corollary (see, however, Exercise 2).

E.3. (Corollary) Let (X, \mathcal{A}) be a measurable space, and let E be a real or complex Banach space. Then the set of all strongly measurable functions from X to E is a vector space.

Proof. Suppose that f and g are strongly measurable and that a and b are real (or complex) numbers. Choose sequences $\{f_n\}$ and $\{g_n\}$ of strongly measurable simple functions that converge pointwise to f and g respectively (Proposition E.2). Since $\{af_n + bg_n\}$ converges pointwise to af + bg, and since each $af_n + bg_n$ is strongly measurable (it is simple and each of its values is attained on a measurable set), Proposition E.1 implies that af + bg is strongly measurable.

We turn to the integration of functions with values in a Banach space. Let (X, \mathcal{A}, μ) be a measure space, and let E be a real or complex Banach space. A function $f: X \to E$ is *integrable* (or *strongly integrable*, or *Bochner integrable*) if it is strongly measurable and the function $x \to |f(x)|$ is integrable.

The integral of such functions is defined as follows. First suppose that $f: X \to E$ is simple and integrable. Let a_1, \ldots, a_n be the nonzero values of f, and suppose that these values are attained on the sets A_1, \ldots, A_n . Then Proposition 2.3.10, applied to the real-valued function $x \mapsto |f(x)|$, implies that each A_i has finite measure under μ . Thus the expression $\sum_{i=1}^n a_i \mu(A_i)$ makes sense; we define the *integral* of f, written $\int f \, d\mu$, to be this sum. It is easy to see that

$$\left| \int f \, d\mu \right| \le \int |f| \, d\mu. \tag{3}$$

It is also easy to see that if f and g are simple integrable functions and a and b are real (or complex) numbers, then af + bg is a simple integrable function, and

$$\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu. \tag{4}$$

Now suppose that f is an arbitrary integrable function. Choose a sequence $\{f_n\}$ of simple integrable functions such that $f(x) = \lim_n f_n(x)$ holds at each x in X and such that the function $x \mapsto \sup_n |f_n(x)|$ is integrable (see Proposition E.2). The dominated convergence theorem for real-valued functions (Theorem 2.4.5) implies that $\lim_n \int |f_n - f| d\mu = 0$, and hence that $\lim_{m,n} \int |f_m - f_n| d\mu = 0$. Thus (see (3) and (4)) $\{\int f_n d\mu\}$ is a Cauchy sequence in E, and so is convergent. The *integral* (or *Bochner integral*) of f, written $\int f d\mu$, is defined to be the limit of the sequence $\{\int f_n d\mu\}$. (It is easy to check that the value of $\int f d\mu$ does not depend on the choice of the sequence $\{f_n\}$: if $\{g_n\}$ is another sequence having the properties required of $\{f_n\}$, then $\lim_n \int |f_n - g_n| d\mu = 0$, from which it follows that $\lim_n \int (f_n - g_n) d\mu = 0$ and hence that $\lim_n \int f_n d\mu = \lim_n \int g_n d\mu$.)

Let us note a few basic properties of the Bochner integral.

E.4. (Proposition) Let (X, \mathcal{A}, μ) be a measure space, and let E be a real or complex Banach space. Suppose that $f,g: X \to E$ are integrable and that a and b are real (or complex) numbers. Then af + bg is integrable, and

¹See Exercise 4 for an indication of another standard definition of Bochner integrability.

$$\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu.$$
 (5)

Proof. The integrability of af + bg follows from Corollary E.3 and the inequality $|(af + bg)(x)| \le |a||f(x)| + |b||g(x)|$. Let $\{f_n\}$ and $\{g_n\}$ be sequences of simple integrable functions that converge pointwise to f and g respectively and are such that $x \mapsto \sup_n |f_n(x)|$ and $x \mapsto \sup_n |g_n(x)|$ are integrable. Then the functions $af_n + bg_n$ are simple and integrable, and they satisfy

$$\int (af_n + bg_n) d\mu = a \int f_n d\mu + b \int g_n d\mu$$
 (6)

(see (4)). Furthermore $x \mapsto \sup_n |(af_n + bg_n)(x)|$ is integrable, and so according to the definition of the integral, we can take limits in (6), obtaining (5).

E.5. (Proposition) Let (X, \mathcal{A}, μ) be a measure space, and let E be a real or complex Banach space. If $f: X \to E$ is integrable, then $|\int f d\mu| \le \int |f| d\mu$.

Proof. Let f be an integrable function, and let $\{f_n\}$ be a sequence of simple integrable functions such that $\sup_n |f_n(x)| \le |f(x)|$ and $f(x) = \lim_n f_n(x)$ hold at each x in X (Proposition E.2). Then

$$\left| \int f_n d\mu \right| \le \int |f_n| d\mu \le \int |f| d\mu$$

(see (3)); since $\int f d\mu = \lim_n \int f_n d\mu$, the proposition follows.

The dominated convergence theorem can be formulated as follows for E-valued functions.

E.6. (Theorem) Let (X, \mathcal{A}, μ) be a measure space, let E be a real or complex Banach space, and let g be a $[0, +\infty]$ -valued integrable function on X. Suppose that f and f_1, f_2, \ldots are strongly measurable E-valued functions on X such that the relations

$$f(x) = \lim_{n} f_n(x)$$

and

$$|f_n(x)| \le g(x)$$
, for $n = 1, 2, ...$,

hold at almost every x in X. Then f and f_1 , f_2 , ... are integrable, and $\int f d\mu = \lim_n \int f_n d\mu$.

Proof. The integrability of f and f_1, f_2, \ldots is immediate. Since $|f_n - f| \le 2g$ holds almost everywhere, the dominated convergence theorem for real-valued functions (Theorem 2.4.5) implies that $\lim_n \int |f_n - f| d\mu = 0$. In view of Propositions E.4 and E.5, this implies that $\int f d\mu = \lim_n \int f_n d\mu$.

Let $\mathscr{L}^1(X,\mathscr{A},\mu,E)$ be the set of all E-valued integrable functions on X. Then $\mathscr{L}^1(X,\mathscr{A},\mu,E)$ is a vector space (see Proposition E.4). It is easy to check that the

collection $L^1(X, \mathcal{A}, \mu, E)$ of equivalence classes (under almost everywhere equality) of elements of $\mathcal{L}^1(X, \mathcal{A}, \mu, E)$ can be made into a vector space in the natural way, and that the formula

 $||f||_1 = \int |f| d\mu \tag{7}$

induces a norm on $L^1(X, \mathscr{A}, \mu, E)$ (and, of course, a seminorm on $\mathscr{L}^1(X, \mathscr{A}, \mu, E)$). The proof of Theorem 3.4.1 can be modified so as to show that $L^1(X, \mathscr{A}, \mu, E)$ is complete under $\|\cdot\|_1$.

One often finds it useful to be able to deal with vector-valued functions in terms of real- (or complex-) valued functions. For this we need to recall the Hahn–Banach theorem.

E.7. (Hahn–Banach Theorem) Let E be a real or complex normed linear space, let F be a linear subspace of E, and let φ_0 be a continuous linear functional on F. Then there is a continuous linear functional φ on E such that $\|\varphi\| = \|\varphi_0\|$ and such that φ_0 is the restriction of φ to F. In other words, φ_0 can be extended to a continuous linear functional on all of E without increasing its norm.

A proof of the Hahn–Banach theorem can be found in almost any basic text on functional analysis (see, for example, Conway [31], Kolmogorov and Fomin [73], Royden [102], or Simmons [109]).

We also need the following consequence of the Hahn–Banach theorem.

E.8. (Corollary) Let E be a real or complex normed linear space that does not consist of 0 alone. Then for each y in E there is a continuous linear functional φ on E such that $\|\varphi\| = 1$ and $\varphi(y) = \|y\|$.

Proof. Let y be a nonzero element of E, let F be the subspace of E consisting of all scalar multiples of y, and let φ_0 be the linear functional on F defined by $\varphi_0(ty) = t||y||$. Then φ_0 satisfies $||\varphi_0|| = 1$ and $\varphi_0(y) = ||y||$, and we can produce the required functional φ by applying Theorem E.7 to φ_0 . (In case y = 0, let φ be an arbitrary linear functional on E that satisfies $||\varphi|| = 1$.)

Let us now apply Theorem E.7 and Corollary E.8 to the study of vector-valued functions.

- **E.9.** (Theorem) Let (X, \mathcal{A}) be a measurable space, and let E be a real or complex Banach space. A function $f: X \to E$ is strongly measurable if and only if
- (a) the image f(X) of X under f is separable, and
- (b) for each φ in E^* the function $\varphi \circ f$ is \mathscr{A} -measurable.

We will use the following lemma in our proof of Theorem E.9.

E.10. (Lemma) Let E be a separable normed linear space over \mathbb{R} or \mathbb{C} . Then there is a sequence $\{\varphi_n\}$ of elements of E^* such that

$$||y|| = \sup\{|\varphi_n(y)| : n = 1, 2, ...\}$$
 (8)

holds for each y in E.

Proof. We can assume that E does not consist of 0 alone. Choose a sequence $\{y_n\}$ whose terms form a dense subset of E. According to Corollary E.8, we can choose, for each n, an element φ_n of E^* that satisfies $\|\varphi_n\| = 1$ and $\varphi_n(y_n) = \|y_n\|$. Let us check that the sequence $\{\varphi_n\}$ meets the requirements of the lemma. Since each φ_n satisfies $\|\varphi_n\| = 1$, it follows that

$$\sup\{|\varphi_n(y)|: n=1,2,\dots\} \le ||y||$$

holds for each y in E. For an arbitrary y in E we can find terms in the sequence $\{y_n\}$ that lie arbitrarily close to y, and so the calculations

$$\varphi_n(y) = \varphi_n(y - y_n) + \varphi_n(y_n) = \varphi_n(y - y_n) + ||y_n||$$

and $|\varphi_n(y - y_n)| \le ||\varphi_n|| ||y - y_n|| = ||y - y_n||$ imply that

$$||y|| = \sup\{|\varphi_n(y)| : n = 1, 2, \dots\}.$$

Relation (8) follows.

Proof of Theorem E.9. Let us assume that we are dealing with Banach spaces over \mathbb{R} ; the case of Banach spaces over \mathbb{C} is similar.

If f is strongly measurable, then (a) is immediate and (b) follows from Lemma 7.2.1 and Proposition 2.6.1.

Now suppose that f satisfies (a) and (b). In view of (a), it suffices to show that f is Borel measurable. Let E_0 be the smallest closed linear subspace of E that includes f(X). Then E_0 is separable (if C is a countable dense subset of f(X), then E_0 is the closure of the set of finite sums of rational multiples of elements of C). We can show that f is Borel measurable (that is, measurable with respect to \mathscr{A} and $\mathscr{B}(E)$) by showing that it is measurable with respect to \mathscr{A} and $\mathscr{B}(E_0)$ (Lemma 7.2.2).

Let $\{\varphi_n\}$ be a sequence in $(E_0)^*$ such that

$$||y|| = \sup\{|\varphi_n(y)| : n = 1, 2, ...\}$$
 (9)

holds for each y in E_0 (Lemma E.10). Since each continuous linear functional on E_0 is the restriction to E_0 of an element of E^* (Theorem E.7), condition (b) implies that for each n the function $\varphi_n \circ f$ is \mathscr{A} -measurable. If B is a closed ball in E_0 , say with center y_0 and radius r, then $f^{-1}(B)$ is equal to

$$\bigcap_{n} \{x : |\varphi_n(f(x)) - \varphi_n(y_0)| \le r\},$$

and so belongs to \mathscr{A} . Since each open ball in E_0 is the union of a countable collection of closed balls, and since each open subset of E_0 is the union of a countable collection of open balls (recall that E_0 is separable), the collection of closed balls generates $\mathscr{B}(E_0)$. It now follows from Proposition 2.6.2 that f is measurable with respect to \mathscr{A} and $\mathscr{B}(E_0)$ and the proof is complete.

E.11. (Proposition) Let (X, \mathcal{A}, μ) be a measure space, let E be a real or complex Banach space, and let $f: X \to E$ be integrable. Then

$$\int \varphi \circ f \, d\mu = \varphi \left(\int f \, d\mu \right) \tag{10}$$

holds for each φ in E^* .

The reader should see Exercise 3 for a strengthened form of Proposition E.11.

Proof. It is easy to check (do so) that the integrability of $\varphi \circ f$ follows from that of f. If f is a simple integrable function, attaining the nonzero values a_1, \ldots, a_k on the sets A_1, \ldots, A_k , then each side of (10) is equal to $\sum_{i=1}^k \varphi(a_i)\mu(A_i)$; hence (10) holds for simple integrable functions. Next suppose that f is an arbitrary integrable function and that $\{f_n\}$ is a sequence of simple integrable functions such that $f(x) = \lim_n f_n(x)$ and $\sup_n |f_n(x)| \le |f(x)|$ hold at each x in X (Proposition E.2). Then Theorems E.6 and 2.4.5 enable us to take limits in the relation $\int \varphi \circ f_n d\mu = \varphi(\int f_n d\mu)$, and (10) follows for arbitrary integrable functions.

The reader should note Exercises 5 and 7, which show some difficulties that arise in the extension of integration theory to vector-valued functions. The issues hinted at in these exercises have been the subject of much research over the years; see Diestel and Uhl [37] for a summary and for further references.

Exercises

- 1. Show that a simpler proof of Proposition E.2 could be given if the f_n 's were not required to satisfy the inequality $|f_n(x)| \le |f(x)|$.
- 2. Suppose that (X, \mathscr{A}) is a measurable space and that E is a Banach space. Show by example that the set of Borel measurable functions from X to E can fail to be a vector space. (Hint: Let E be a Banach space with cardinality greater than that of the continuum, and let (X, \mathscr{A}) be $(E \times E, \mathscr{B}(E) \times \mathscr{B}(E))$. See Exercise 5.1.8.)
- 3. Let (X, \mathcal{A}, μ) be a measure space, let E be a Banach space, and let $f: X \to E$ be Bochner integrable. Show that $\int f d\mu$ is the *only* element x_0 of E that satisfies $\varphi(x_0) = \int \varphi \circ f d\mu$ for each φ in E^* . (Hint: Use Corollary E.8.)
- 4. (This exercise hints at another, rather common, way to define strong measurability and Bochner measurability.) Suppose that (X, \mathcal{A}, μ) is a measure space and that E is a Banach space. Let $f: X \to E$ be a function for which there is a sequence $\{f_n\}$ of strongly measurable simple functions such that $f(x) = \lim_n f_n(x)$ holds at μ -almost every x in X.
 - (a) Show by example that f need not have a separable range.
 - (b) Show that there is a strongly measurable function $g: X \to E$ that agrees with $f \mu$ -almost everywhere.

- (c) Show that $x \mapsto |f(x)|$ is measurable with respect to the completion \mathcal{A}_{μ} of \mathcal{A} under μ .
- (d) How should $\int f d\mu$ be defined if $\int |f| d\overline{\mu}$ is finite? (Of course $\overline{\mu}$ is the completion of μ .)
- 5. Let (X, \mathscr{A}) be a measurable space, and let E be a Banach space. An E-valued measure on (X, \mathscr{A}) is a function $v \colon \mathscr{A} \to E$ such that $v(\varnothing) = 0$ and such that $v(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} v(A_i)$ holds for each infinite sequence $\{A_i\}$ of disjoint sets in \mathscr{A} . The variation $|v| \colon \mathscr{A} \to [0, +\infty]$ of the E-valued measure v is defined by letting |v|(A) be the supremum of the sums $\sum_{i=1}^{n} |v(A_i)|$, where $\{A_i\}_{i=1}^{n}$ ranges over all finite partitions of E into E-measurable sets.
 - (a) Show that the variation of an *E*-valued measure on (X, \mathscr{A}) is a positive measure on (X, \mathscr{A}) .
 - (b) Show by example that the variation of an E-valued measure may not be finite. (Hint: Let X be \mathbb{N} , let \mathscr{A} be $\mathscr{P}(\mathbb{N})$, let E be ℓ^2 , and define $v \colon \mathscr{A} \to E$ by letting v(A) be the sequence

$$n \mapsto \begin{cases} \frac{1}{n} & \text{if } n \in A, \\ 0 & \text{if } n \notin A. \end{cases}$$

- 6. Let (X, \mathcal{A}, μ) be a measure space, let E be a Banach space, and let $f: X \to E$ be Bochner integrable. Define $v: \mathcal{A} \to E$ by $v(A) = \int \chi_A f d\mu$.
 - (a) Show that v is an E-valued measure on (X, \mathcal{A}) .
 - (b) Show that the variation |v| of v is finite.
- 7. Let λ be Lebesgue measure on $([0,1], \mathcal{B}([0,1]))$, and let E be the Banach space $L^1([0,1], \mathcal{B}([0,1]), \lambda, \mathbb{R})$. Define $\nu \colon \mathcal{B}([0,1]) \to E$ by letting $\nu(A)$ be the element of E determined by the characteristic function χ_A of A.
 - (a) Show that ν is an E-valued measure on $([0,1], \mathcal{B}([0,1]))$.
 - (b) Show that |v| is finite.
 - (c) Show that v is absolutely continuous with respect to λ (in other words, show that v(A) = 0 holds whenever A satisfies $\lambda(A) = 0$).
 - (d) Show that there is no Bochner integrable function $f: [0,1] \to E$ that satisfies $v(A) = \int \chi_A f \, d\lambda$ for each A in $\mathcal{B}([0,1])$. Thus the Radon–Nikodym theorem fails for the Bochner integral. (Hint: Use Proposition E.11.)