
Appendix E
The Bochner Integral

Let (X ,A ) be a measurable space, let E be a real or complex Banach space (that
is, a Banach space over R or C), and let B(E) be the σ -algebra of Borel subsets
of E (that is, let B(E) be the σ -algebra on E generated by the open subsets of E).
We will sometimes denote the norm on E by | · |, rather than by the more customary
‖ · ‖. This will allow us to use ‖ · ‖ for the norm of elements of certain spaces of
E-valued functions; see, for example, formula (7) below. A function f : X → E is
Borel measurable if it is measurable with respect to A and B(E), and is strongly
measurable if it is Borel measurable and has a separable range (here by the range
of f we mean the subset f (X) of E). The function f is simple if it has only finitely
many values. Of course, a simple function is strongly measurable if and only if it is
Borel measurable.

It is easy to see that if f is Borel measurable, then x �→ | f (x)| is A -measurable
(use Lemma 7.2.1 and Proposition 2.6.1).

Note that if E is separable, then every E-valued Borel measurable function is
strongly measurable. On the other hand, if E is not separable and if (X ,A ) =
(E,B(E)), then the identity map from X to E is Borel measurable, but is not
strongly measurable.

E.1. (Proposition) Let (X ,A ) be a measurable space, and let E be a real or
complex Banach space. Then

(a) the collection of Borel measurable functions from X to E is closed under the
formation of pointwise limits, and

(b) the collection of strongly measurable functions from X to E is closed under the
formation of pointwise limits.

Proof. Part (a) is a special case of Proposition 8.1.10, and so we can turn to part (b).
Let { fn} be a sequence of strongly measurable functions from X to E , and

suppose that { fn} converges pointwise to f . It follows from the separability of the
sets fn(X), n = 1, 2, . . . , that ∪n fn(X) is separable, that the closure of ∪n fn(X) is
separable, and finally that f (X) is separable (see D.33). Since f is Borel measurable
(part (a)), the proof is complete. �	
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398 E The Bochner Integral

E.2. (Proposition) Let (X ,A ) be a measurable space, let E be a real or complex
Banach space, and let f : X → E be strongly measurable. Then there is a sequence
{ fn} of strongly measurable simple functions such that

f (x) = lim
n

fn(x)

and
| fn(x)| ≤ | f (x)|, for n = 1, 2, . . . ,

hold at each x in X.

Proof. We can certainly assume that f (X) contains at least one nonzero element of
E . Let C be a countable dense subset of f (X), let C∼ be the set of rational multiples
of elements of C, and let {yn} be an enumeration of C∼. We can assume that y1 = 0.
It is easy to check (do so) that

for each y in f (X) and each positive number ε there is a term

ym of {yn} that satisfies |ym| ≤ |y| and |ym − y|< ε . (1)

For each x in X and each positive integer n define a subset An(x) of E by

An(x) = {y j : j ≤ n and |y j| ≤ | f (x)|}.

Since y1 = 0, each An(x) is nonempty.
We now construct the required sequence { fn} by letting fn(x) be the element of

An(x) that lies closest to f (x) (in case

| f (x)− y j|= inf{| f (x)− yi| : yi ∈ An(x)} (2)

holds for several elements y j of An(x), let fn(x) be y j0 , where j0 is the smallest
value of j for which y j belongs to An(x) and satisfies (2)). It is clear that each fn

is a simple function and that | fn(x)| ≤ | f (x)| holds for each n and x. Since the sets
{x ∈ X : fn(x) = y j} can be described by means of inequalities involving | f (x)|,
|yi|, i = 1, . . . , n, and | f (x)− yi|, i = 1, . . . , n, each fn is strongly measurable.
Finally, observation (1) implies that { fn} converges pointwise to f (if ym satisfies
the inequalities |ym| ≤ | f (x)| and |ym − f (x)| < ε , then | fn(x)− f (x)| < ε holds
whenever n ≥ m). �	

Let us note two consequences of Propositions E.1 and E.2. The first is immediate:
a function from X to E is strongly measurable if and only if it is the pointwise limit
of a sequence of Borel (or strongly) measurable simple functions. The second is
given by the following corollary (see, however, Exercise 2).

E.3. (Corollary) Let (X ,A ) be a measurable space, and let E be a real or complex
Banach space. Then the set of all strongly measurable functions from X to E is a
vector space.
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Proof. Suppose that f and g are strongly measurable and that a and b are real
(or complex) numbers. Choose sequences { fn} and {gn} of strongly measurable
simple functions that converge pointwise to f and g respectively (Proposition E.2).
Since {a fn + bgn} converges pointwise to a f + bg, and since each a fn + bgn is
strongly measurable (it is simple and each of its values is attained on a measurable
set), Proposition E.1 implies that a f + bg is strongly measurable. �	

We turn to the integration of functions with values in a Banach space. Let
(X ,A ,μ) be a measure space, and let E be a real or complex Banach space.
A function f : X → E is integrable (or strongly integrable, or Bochner integrable)
if it is strongly measurable and the function x → | f (x)| is integrable.1

The integral of such functions is defined as follows. First suppose that f : X → E
is simple and integrable. Let a1, . . . , an be the nonzero values of f , and suppose that
these values are attained on the sets A1, . . . , An. Then Proposition 2.3.10, applied to
the real-valued function x �→ | f (x)|, implies that each Ai has finite measure under μ .
Thus the expression ∑n

i=1 aiμ(Ai) makes sense; we define the integral of f , written∫
f dμ , to be this sum. It is easy to see that

∣
∣
∣
∣

∫

f dμ
∣
∣
∣
∣≤
∫

| f |dμ . (3)

It is also easy to see that if f and g are simple integrable functions and a and b are
real (or complex) numbers, then a f + bg is a simple integrable function, and

∫
(a f + bg)dμ = a

∫
f dμ + b

∫
gdμ . (4)

Now suppose that f is an arbitrary integrable function. Choose a sequence { fn}
of simple integrable functions such that f (x) = limn fn(x) holds at each x in X
and such that the function x �→ supn | fn(x)| is integrable (see Proposition E.2). The
dominated convergence theorem for real-valued functions (Theorem 2.4.5) implies
that limn

∫ | fn − f |dμ = 0, and hence that limm,n
∫ | fm − fn|dμ = 0. Thus (see (3)

and (4)) {∫ fn dμ} is a Cauchy sequence in E , and so is convergent. The integral
(or Bochner integral) of f , written

∫
f dμ , is defined to be the limit of the sequence

{∫ fn dμ}. (It is easy to check that the value of
∫

f dμ does not depend on the choice
of the sequence { fn}: if {gn} is another sequence having the properties required of
{ fn}, then limn

∫ | fn −gn|dμ = 0, from which it follows that limn
∫
( fn −gn)dμ = 0

and hence that limn
∫

fn dμ = limn
∫

gn dμ .)
Let us note a few basic properties of the Bochner integral.

E.4. (Proposition) Let (X ,A ,μ) be a measure space, and let E be a real or
complex Banach space. Suppose that f ,g : X → E are integrable and that a and
b are real (or complex) numbers. Then a f + bg is integrable, and

1See Exercise 4 for an indication of another standard definition of Bochner integrability.
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∫

(a f + bg)dμ = a
∫

f dμ + b
∫

gdμ . (5)

Proof. The integrability of a f + bg follows from Corollary E.3 and the inequality
|(a f + bg)(x)| ≤ |a| | f (x)|+ |b| |g(x)|. Let { fn} and {gn} be sequences of simple
integrable functions that converge pointwise to f and g respectively and are such that
x �→ supn | fn(x)| and x �→ supn |gn(x)| are integrable. Then the functions a fn + bgn

are simple and integrable, and they satisfy

∫

(a fn + bgn)dμ = a
∫

fn dμ + b
∫

gn dμ (6)

(see (4)). Furthermore x �→ supn |(a fn + bgn)(x)| is integrable, and so according to
the definition of the integral, we can take limits in (6), obtaining (5). �	
E.5. (Proposition) Let (X ,A ,μ) be a measure space, and let E be a real or
complex Banach space. If f : X → E is integrable, then |∫ f dμ | ≤ ∫ | f |dμ .

Proof. Let f be an integrable function, and let { fn} be a sequence of simple
integrable functions such that supn | fn(x)| ≤ | f (x)| and f (x) = limn fn(x) hold at
each x in X (Proposition E.2). Then

∣
∣
∣
∣

∫

fn dμ
∣
∣
∣
∣≤
∫

| fn|dμ ≤
∫

| f |dμ

(see (3)); since
∫

f dμ = limn
∫

fn dμ , the proposition follows. �	
The dominated convergence theorem can be formulated as follows for E-valued

functions.

E.6. (Theorem) Let (X ,A ,μ) be a measure space, let E be a real or complex
Banach space, and let g be a [0,+∞]-valued integrable function on X. Suppose that
f and f1, f2, . . . are strongly measurable E-valued functions on X such that the
relations

f (x) = lim
n

fn(x)

and
| fn(x)| ≤ g(x), for n = 1, 2, . . . ,

hold at almost every x in X. Then f and f1, f2, . . . are integrable, and
∫

f dμ =
limn

∫
fn dμ .

Proof. The integrability of f and f1, f2, . . . is immediate. Since | fn − f | ≤ 2g holds
almost everywhere, the dominated convergence theorem for real-valued functions
(Theorem 2.4.5) implies that limn

∫ | fn − f |dμ = 0. In view of Propositions E.4
and E.5, this implies that

∫
f dμ = limn

∫
fn dμ . �	

Let L 1(X ,A ,μ ,E) be the set of all E-valued integrable functions on X . Then
L 1(X ,A ,μ ,E) is a vector space (see Proposition E.4). It is easy to check that the
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collection L1(X ,A ,μ ,E) of equivalence classes (under almost everywhere equality)
of elements of L 1(X ,A ,μ ,E) can be made into a vector space in the natural way,
and that the formula

‖ f‖1 =

∫

| f |dμ (7)

induces a norm on L1(X ,A ,μ ,E) (and, of course, a seminorm on L 1(X ,A ,μ ,E)).
The proof of Theorem 3.4.1 can be modified so as to show that L1(X ,A ,μ ,E) is
complete under ‖ · ‖1.

One often finds it useful to be able to deal with vector-valued functions in terms
of real- (or complex-) valued functions. For this we need to recall the Hahn–Banach
theorem.

E.7. (Hahn–Banach Theorem) Let E be a real or complex normed linear space,
let F be a linear subspace of E, and let ϕ0 be a continuous linear functional on
F. Then there is a continuous linear functional ϕ on E such that ‖ϕ‖ = ‖ϕ0‖ and
such that ϕ0 is the restriction of ϕ to F. In other words, ϕ0 can be extended to a
continuous linear functional on all of E without increasing its norm.

A proof of the Hahn–Banach theorem can be found in almost any basic text on
functional analysis (see, for example, Conway [31], Kolmogorov and Fomin [73],
Royden [102], or Simmons [109]).

We also need the following consequence of the Hahn–Banach theorem.

E.8. (Corollary) Let E be a real or complex normed linear space that does not
consist of 0 alone. Then for each y in E there is a continuous linear functional ϕ on
E such that ‖ϕ‖= 1 and ϕ(y) = ‖y‖.

Proof. Let y be a nonzero element of E , let F be the subspace of E consisting
of all scalar multiples of y, and let ϕ0 be the linear functional on F defined by
ϕ0(ty) = t‖y‖. Then ϕ0 satisfies ‖ϕ0‖= 1 and ϕ0(y) = ‖y‖, and we can produce the
required functional ϕ by applying Theorem E.7 to ϕ0. (In case y = 0, let ϕ be an
arbitrary linear functional on E that satisfies ‖ϕ‖= 1.) �	

Let us now apply Theorem E.7 and Corollary E.8 to the study of vector-valued
functions.

E.9. (Theorem) Let (X ,A ) be a measurable space, and let E be a real or complex
Banach space. A function f : X → E is strongly measurable if and only if

(a) the image f (X) of X under f is separable, and
(b) for each ϕ in E∗ the function ϕ ◦ f is A -measurable.

We will use the following lemma in our proof of Theorem E.9.

E.10. (Lemma) Let E be a separable normed linear space over R or C. Then there
is a sequence {ϕn} of elements of E∗ such that

‖y‖= sup{|ϕn(y)| : n = 1, 2, . . .} (8)

holds for each y in E.
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Proof. We can assume that E does not consist of 0 alone. Choose a sequence {yn}
whose terms form a dense subset of E . According to Corollary E.8, we can choose,
for each n, an element ϕn of E∗ that satisfies ‖ϕn‖ = 1 and ϕn(yn) = ‖yn‖. Let us
check that the sequence {ϕn} meets the requirements of the lemma. Since each ϕn

satisfies ‖ϕn‖= 1, it follows that

sup{|ϕn(y)| : n = 1, 2, . . . } ≤ ‖y‖

holds for each y in E . For an arbitrary y in E we can find terms in the sequence {yn}
that lie arbitrarily close to y, and so the calculations

ϕn(y) = ϕn(y− yn)+ϕn(yn) = ϕn(y− yn)+ ‖yn‖

and |ϕn(y− yn)| ≤ ‖ϕn‖‖y− yn‖= ‖y− yn‖ imply that

‖y‖= sup{|ϕn(y)| : n = 1, 2, . . . }.

Relation (8) follows. �	
Proof of Theorem E.9. Let us assume that we are dealing with Banach spaces over
R; the case of Banach spaces over C is similar.

If f is strongly measurable, then (a) is immediate and (b) follows from
Lemma 7.2.1 and Proposition 2.6.1.

Now suppose that f satisfies (a) and (b). In view of (a), it suffices to show that f
is Borel measurable. Let E0 be the smallest closed linear subspace of E that includes
f (X). Then E0 is separable (if C is a countable dense subset of f (X), then E0 is the
closure of the set of finite sums of rational multiples of elements of C). We can
show that f is Borel measurable (that is, measurable with respect to A and B(E))
by showing that it is measurable with respect to A and B(E0) (Lemma 7.2.2).

Let {ϕn} be a sequence in (E0)
∗ such that

‖y‖= sup{|ϕn(y)| : n = 1, 2, . . .} (9)

holds for each y in E0 (Lemma E.10). Since each continuous linear functional on E0

is the restriction to E0 of an element of E∗ (Theorem E.7), condition (b) implies that
for each n the function ϕn ◦ f is A -measurable. If B is a closed ball in E0, say with
center y0 and radius r, then f−1(B) is equal to

⋂

n

{x : |ϕn( f (x))−ϕn(y0)| ≤ r},

and so belongs to A . Since each open ball in E0 is the union of a countable
collection of closed balls, and since each open subset of E0 is the union of a
countable collection of open balls (recall that E0 is separable), the collection of
closed balls generates B(E0). It now follows from Proposition 2.6.2 that f is
measurable with respect to A and B(E0) and the proof is complete. �	
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E.11. (Proposition) Let (X ,A ,μ) be a measure space, let E be a real or complex
Banach space, and let f : X → E be integrable. Then

∫

ϕ ◦ f dμ = ϕ
(∫

f dμ
)

(10)

holds for each ϕ in E∗.

The reader should see Exercise 3 for a strengthened form of Proposition E.11.

Proof. It is easy to check (do so) that the integrability of ϕ ◦ f follows from that
of f . If f is a simple integrable function, attaining the nonzero values a1, . . . , ak

on the sets A1, . . . , Ak, then each side of (10) is equal to ∑k
i=1 ϕ(ai)μ(Ai); hence

(10) holds for simple integrable functions. Next suppose that f is an arbitrary
integrable function and that { fn} is a sequence of simple integrable functions such
that f (x) = limn fn(x) and supn | fn(x)| ≤ | f (x)| hold at each x in X (Proposition E.2).
Then Theorems E.6 and 2.4.5 enable us to take limits in the relation

∫
ϕ ◦ fn dμ =

ϕ(
∫

fn dμ), and (10) follows for arbitrary integrable functions. �	
The reader should note Exercises 5 and 7, which show some difficulties that arise

in the extension of integration theory to vector-valued functions. The issues hinted at
in these exercises have been the subject of much research over the years; see Diestel
and Uhl [37] for a summary and for further references.

Exercises

1. Show that a simpler proof of Proposition E.2 could be given if the fn’s were not
required to satisfy the inequality | fn(x)| ≤ | f (x)|.

2. Suppose that (X ,A ) is a measurable space and that E is a Banach space. Show
by example that the set of Borel measurable functions from X to E can fail to be
a vector space. (Hint: Let E be a Banach space with cardinality greater than that
of the continuum, and let (X ,A ) be (E×E,B(E)×B(E)). See Exercise 5.1.8.)

3. Let (X ,A ,μ) be a measure space, let E be a Banach space, and let f : X → E
be Bochner integrable. Show that

∫
f dμ is the only element x0 of E that satisfies

ϕ(x0) =
∫

ϕ ◦ f dμ for each ϕ in E∗. (Hint: Use Corollary E.8.)
4. (This exercise hints at another, rather common, way to define strong meas-

urability and Bochner measurability.) Suppose that (X ,A ,μ) is a measure
space and that E is a Banach space. Let f : X → E be a function for which
there is a sequence { fn} of strongly measurable simple functions such that
f (x) = limn fn(x) holds at μ-almost every x in X .

(a) Show by example that f need not have a separable range.
(b) Show that there is a strongly measurable function g : X → E that agrees with

f μ-almost everywhere.
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(c) Show that x �→ | f (x)| is measurable with respect to the completion Aμ of A
under μ .

(d) How should
∫

f dμ be defined if
∫ | f |dμ is finite? (Of course μ is the

completion of μ .)

5. Let (X ,A ) be a measurable space, and let E be a Banach space. An E-valued
measure on (X ,A ) is a function ν : A → E such that ν(∅) = 0 and such that
ν(∪∞

i=1Ai) = ∑∞
i=1 ν(Ai) holds for each infinite sequence {Ai} of disjoint sets in

A . The variation |ν| : A → [0,+∞] of the E-valued measure ν is defined by
letting |ν|(A) be the supremum of the sums ∑n

i=1 |ν(Ai)|, where {Ai}n
i=1 ranges

over all finite partitions of A into A -measurable sets.

(a) Show that the variation of an E-valued measure on (X ,A ) is a positive
measure on (X ,A ).

(b) Show by example that the variation of an E-valued measure may not be finite.
(Hint: Let X be N, let A be P(N), let E be �2, and define ν : A → E by
letting ν(A) be the sequence

n �→
{

1
n if n ∈ A,

0 if n /∈ A.)

6. Let (X ,A ,μ) be a measure space, let E be a Banach space, and let f : X → E be
Bochner integrable. Define ν : A → E by ν(A) =

∫
χA f dμ .

(a) Show that ν is an E-valued measure on (X ,A ).
(b) Show that the variation |ν| of ν is finite.

7. Let λ be Lebesgue measure on ([0,1],B([0,1])), and let E be the Banach
space L1([0,1],B([0,1]),λ ,R). Define ν : B([0,1])→ E by letting ν(A) be the
element of E determined by the characteristic function χA of A.

(a) Show that ν is an E-valued measure on ([0,1],B([0,1])).
(b) Show that |ν| is finite.
(c) Show that ν is absolutely continuous with respect to λ (in other words, show

that ν(A) = 0 holds whenever A satisfies λ (A) = 0).
(d) Show that there is no Bochner integrable function f : [0,1]→ E that satisfies

ν(A) =
∫

χA f dλ for each A in B([0,1]). Thus the Radon–Nikodym theorem
fails for the Bochner integral. (Hint: Use Proposition E.11.)


