


Chapter 3
Convergence

In this chapter we look in some detail at the convergence of sequences of functions.
In Sect.3.1 we define convergence in measure and convergence in mean, and
we compare those modes of convergence with pointwise and almost everywhere
convergence. In Sect. 3.2 we recall the definitions of norms and seminorms on vector
spaces, and in Sects. 3.3 and 3.4 we apply these concepts to the study of the L
spaces and to the convergence of functions in certain (semi-)norms, the p-norms.
Finally, in Sect. 3.5 we begin to look at dual spaces (the spaces of continuous linear
functionals on normed vector spaces). We will continue the study of dual spaces
in Sects. 4.5, 7.3, and 7.5, by which time we will have developed enough tools to
analyze and characterize a number of standard dual spaces.

3.1 Modes of Convergence

In this section we define and study a few modes of convergence for sequences of
measurable functions. For simplicity we will discuss only real-valued functions.
It is easy to check that everything can be extended so as to apply to complex-valued
functions and to [—oco, +oo]-valued functions that are finite almost everywhere.!

Let (X,47, 1) be a measure space, and let f and fi, f2, ... be real-valued <7 -
measurable functions on X. The sequence {f, } converges to f in measure if

limp({x € X2 [fulx) = f(x)| > €}) =0

'"We can verify our results in the case of [—oo,~oo]-valued functions that are finite almost
everywhere by choosing a p-null set N such that the functions f and fj, f>, ... are all finite outside
N and then replacing f and fi, f2, ... with the functions g and g1, g2, ... defined by g = f ync and
&n = fuxne. This enables us to avoid the complications caused by expressions like f,(x) — f(x)
when f;(x) or f(x) is infinite.
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80 3 Convergence

holds for each positive €. As we noted in Sect. 2.2, the sequence {f,,} converges to
f almost everywhere if f(x) = lim, f,(x) holds at y-almost every point x in X.

Examples 3.1.1. We should note that in general convergence in measure neither
implies nor is implied by convergence almost everywhere.

(a) To see that convergence almost everywhere does not imply convergence in
measure, consider the space (R, Z(R),A) and the sequence whose nth term
is the characteristic function of the interval [n,+ec). This sequence clearly
converges to the zero function almost everywhere (in fact, everywhere) but not
in measure.

(b) Next consider the interval [0, 1), together with the c-algebra of Borel subsets
of [0,1) and Lebesgue measure. Let {f,} be the sequence whose first term is
the characteristic function of [0, 1), whose next two terms are the characteristic
functions of [0,1/2) and [1/2,1), whose next four terms are the characteristic
functions of [0,1/4), [1/4,1/2),[1/2,3/4), and [3/4,1), and so on. Then {f;, }
converges to the zero function in measure, but for each x in [0, 1) the sequence
{fu(x)} contains infinitely many ones and infinitely many zeros and so is not
convergent. O

Nevertheless there are some useful relations, given by the following two propo-
sitions, between convergence in measure and convergence almost everywhere (see
also Exercise 6).

Proposition 3.1.2. Let (X, o, 1) be a measure space, and let [ and fi, f, ... be
real-valued </ -measurable functions on X. If W is finite and if { f,,} converges to f
almost everywhere, then { f,} converges to f in measure.

Proof. We must show that
limp({x € X < |fu(x) — f(x)] > €}) =0
holds for each positive €. So let € be a positive number, and define sets Ay, Ay, ...
and Bl, Bz, Cee by
Ap={xeX:|fulx) - f(x)| > €}

and B, = Uy, Ai. The sequence {B,} is decreasing, and its intersection is in-
cluded in

{x € X : {fu(x)} does not converge to f(x)}.

Thus u(N,B,) = 0, and so (Proposition 1.2.5) lim, u(B,) = 0. Since A, C B, it
follows that

limpt({x € X ¢ |fu(x) — £()] > £}) = limp(4,) = 0.

Thus {f,} converges to f in measure. O
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Proposition 3.1.3. Let (X, <7, 1L) be a measure space, and let f and fi, f>, ... be
real-valued o -measurable functions on X. If { fn} converges to f in measure, then
there is a subsequence of {f,,} that converges to f almost everywhere.

Proof. The hypothesis that {f,,} converges to f in measure means that
limp({x € X £ |fu(x) — ()] > €}) =0

holds for each positive €. We use this relation to construct a sequence {n;} of
positive integers, choosing n; so that

1

H{x e X ] fo () = () > 1}) < 5,

and then choosing the remaining terms of {n;} inductively so that the relations
ny > ni_1 and

1 1
i({rexiimm-ror> ) < x
hold for k=2, 3, .... Define sets A, k=1,2, ..., by

A= {r e X ) 10> )

Ifx¢ N7 U Ay, then there is a positive integer j such that x ¢ Uy jAk and hence
such that | f,, (x) — f(x)| < 1/k holds for k = j, j+1,.... Thus {f, } converges to
Jf ateachx outside N7, U ; Ay. Since

1 1

.u<kLJjAk> SZ}H(A,() <Y =g

k=j
holds for each j, it follows that /,L(ﬁjf’zl Ui Ay) =0, and the proof is complete. O

Proposition 3.1.4 (Egoroff’s Theorem). Ler (X, , 1) be a measure space, and
let f and fi, f5, ... be real-valued of -measurable functions on X. If | is finite and
if {fu} converges to f almost everywhere, then for each positive number € there is a
subset B of X that belongs to <, satisfies |L(B) < &, and is such that { f,,} converges
to f uniformly on B.

Proof. Let € be a positive number, and for each n let g, = sup -, |fi — f]- It is easy
to check that each g, is finite almost everywhere. The sequence {g,} converges to
0 almost everywhere, and so in measure (see Proposition 3.1.2 and the footnote at
the beginning of this section). Hence for each positive integer k we can choose a
positive integer n; such that

u({xGX:gnk(x) > %}) < %
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Define sets By, By, ... by By = {x € X : g (x) < 1/k}, and let B = M;By. The set B
satisfies

C C € _
—N(LkJBk) Szk“U(Bk) <§§—8

If § is a positive number and if & is a positive integer such that 1/k < §, then, since
B C By,

|ﬁ@%¢@ﬂ§&4ﬂ§%<5

holds for all x in B and all positive integers n such that n > ny; thus {f,} converges
to f uniformly on B. a

Egoroff’s theorem provides motivation for the following definition. Let
(X, 47, 1) be a measure space, and let f and fj, f>, ... be real-valued o/ -measurable
functions on X. Then {f,} converges to f almost uniformly if for each positive
number ¢ there is a subset B of X that belongs to <7, satisfies i(B¢) < €, and is
such that {f,,} converges to f uniformly on B. It is clear that if {f,} converges to f
almost uniformly, then { f,, } converges to f almost everywhere. It follows from this
remark and Egoroff’s theorem that on a finite measure space almost everywhere
convergence is equivalent to almost uniform convergence.

Suppose that (X, o7, 1) is a measure space and that f and fj, f, ... belong to
LY(X, o, u,R). Then {f,} converges to f in mean if

tim [ 1f, — fldu =0.

Proposition 3.1.5. Let (X,o7,11) be a measure space, and let f and fi, fa, ...
belong to L' (X, o ,u,R). If {f,} converges to f in mean, then {f,} converges
to f in measure.

Proof. This is an immediate consequence of the inequality

R e X @) = F@] > D) < ¢ [ 1 —ldu

(see Proposition 2.3.10). O

Convergence in mean does not, however, imply convergence almost everywhere
(see the example given above of a sequence that converges in measure but not
almost everywhere). On the other hand, if {f,} converges to f in mean, then {f;}
does have a subsequence that converges to f almost everywhere; this follows from
Propositions 3.1.3 and 3.1.5 (or, alternatively, from Exercise 4).

Neither convergence almost everywhere nor convergence in measure implies
convergence in mean. To see this, consider the space (R, Z(R),A), and define
a sequence {f,} by letting f, have value n on the interval [0,1/n] and value
0 elsewhere. Then {f,} converges to 0 almost everywhere and in measure, but
not in mean (note that [|f, — 0|dA = 1). There are, however, supplementary
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(a) Show that Fp is a bounded linear functional on V and that | Fp|| = 1.

(b) Let F be a bounded linear functional on ¢ that satisfies ||F|| = 1 and agrees
with Fy on V (see Theorem E.7). Show that if {x,} is a nonnegative element
of ¢~ (that is, if {x,} belongs to £~ and satisfies x, > 0 for each n), then
F ({xx}) > 0. (Hint: Consider the sequence {x}, } defined by x/, = x,, — ¢, where
c is a suitably chosen constant.)

(c) For each subset A of N let { )(Ay,,}‘;’: | be the sequence defined by

P
70 ifng A

Show that the function p: & (N) — R defined by p(A) = F({xa.}) is a
finitely additive measure, but is not countably additive.

Notes

Kolmogorov and Fomin [73] and Simmons [109] are useful elementary sources of
information on metric spaces and normed linear spaces. The basic properties of the
LP-spaces can be found in virtually every book on integration theory.
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Exercises

1. Let V}, V,, and V3 be normed linear spaces, and let S: V; =V, and T: V, —
V3 be bounded linear operators. Show that 7 o S: V| — V3 is bounded and that
(T o S|l < [IT|]S]-

2. Suppose that V| and V, are normed linear spaces and that T: V| — V, is an
invertible linear operator such that 7 and 7! are both bounded.

(a) Show that 1 < ||T||||T~"||. (Hint: See Exercise 1.)
(b) Show by example that equality need not hold in part (a).

3. Let V| and V; be normed linear spaces, and let 7: V; — V, be a linear operator.
Show that the subset 7'(V}) of V; is bounded if and only if T is the zero operator.
Thus to say that a linear operator is bounded is not to say that its values form a
bounded set.

4. Let V| and V, be normed linear spaces, and let 7: V; — V, be a linear operator.
(a) Show that T is bounded if and only if the set

{IT M) veViand |v] <1}

is bounded above.
(b) Show that if 7" is bounded, then

IT]| = sup{[|T(v)[| : v € V1 and [|v]| < 1}.

5. Suppose that V| and V, are normed linear spaces and that 7: V| — V; is a linear
operator. Show that if 7' is bounded, then T is uniformly continuous.

6. Let V be a normed linear space. Show that the dual V* of V is complete under the
norm || - || defined above. (Hint: Let {F,, } be a Cauchy sequence in V*. Show that
for each v in V the sequence {F;(v)} is a Cauchy sequence in R (or in C) and so
is convergent. Then show that the formula F(v) = lim, F;,(v) defines a bounded
linear functional on V and that lim,, ||[F,, — F|| = 0.)

7. Let V be an inner product space, and for each y in V define Fy,: V — R by F;(x) =
(x,y).

(a) Show that F, belongs to V* and satisfies ||F;|| = ||y||. (Hint: Use the Cauchy—
Schwarz inequality; see Exercise 3.2.7. To check that ||F;|| is equal to (rather
than less than) ||y||, consider F;(y).)

(b) Show that if y # y', then F, # Fy.

(c) Show that if the inner product space V is a Hilbert space and if F' belongs
to V*, then there is an element y of V such that F = F,. (Hint: Let y = 0 if
F = 0. Otherwise choose a nonzero element v of V such that (u,v) = 0 holds
whenever F(u) = 0 (see Exercise 3.2.12), and check that a suitable multiple
of v works.)

8. (This exercise depends on the Hahn—Banach theorem, which is stated without
proof in Appendix E.) Let V be the subspace of ¢~ consisting of those sequences
{x,} for which lim,x, exists, and let F: V — R be defined by Fy({x,}) =
lim,, x,,.
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hypotheses under which convergence almost everywhere or in measure does imply
convergence in mean; such hypotheses are given in the following proposition and in
Exercise 4.2.16.

Proposition 3.1.6. Let (X,o7,11) be a measure space, and let f and fi, fa, ...
belong to L1 (X, .o, i, R). If { f} converges to f almost everywhere or in measure,
and if there is a nonnegative extended real-valued integrable function g such that

|fol<g (forn=1,2,...)and |f| < g @)
hold almost everywhere, then { f,} converges to f in mean.

Proof. First suppose that {f,} converges to f almost everywhere and hence that
{|f» — f]} converges to 0 almost everywhere. Relation (1) implies that

[fn = f1 < 1 fal + /1 < 28

holds almost everywhere. Thus we can use the dominated convergence theorem
(Theorem 2.4.5) to conclude that lim,, [ | f, — f|du = 0.

Now suppose that {f,} converges to f in measure and satisfies condition (1).
Then every subsequence of {f,} has a subsequence that converges to f almost
everywhere (Proposition 3.1.3), and so by what we have just proved, in mean. If
the original sequence {f,} did not converge to f in mean, then there would be a
positive number € and a subsequence {fy, } of {f,} such that [|f,, — fldu > ¢
holds for each k. Since this subsequence could have no subsequence converging to
f in mean, we have a contradiction. Thus { f,, } must converge to f in mean. a

Exercises

1. Let (X, <, u) be a measure space, and let A and Ay, Ay, ... belong to <. Show
that
(a) {xa,} converges to 0 in measure if and only if lim, (A,) =0,

(b) {xa,} converges to 0 almost everywhere if and only if p (N, Uy, Ax) =0,
and

(©) {xa,} converges to y4 almost everywhere if and only if the three sets
A, N U, Ak, and U7 Ny Ay differ only by u-null sets. (Hint: See
Exercise 2.1.1.)

2. Let u be counting measure on the o-algebra of all subsets of N, and let f and fi,
f2, ... be real-valued functions on N. Show that { f,,} converges to f in measure
if and only if it converges uniformly to f.

3. Let (X,<7,u) be a measure space, let f and fi, f», ... be real-valued «7-
measurable functions on X, and let g: R — R be Borel measurable. Show that if
{f} converges to f almost everywhere and if g is continuous at f(x) for almost
every x, then {go f,,} converges to g o f almost everywhere.



84 3 Convergence

4. Suppose that (X, ./, 1) is a measure space and that f and fj, f2, ... belong to
LY (X, o/, 1, R). Show that if {f,} converges to f in mean so fast that

2/|fn—f|du<+oo,

then {f, } converges to f almost everywhere.

5. Let u be a measure on (X, %/), and let f, fi, f>, ... and g, g1, g2, ... be real-
valued 7 -measurable functions on X.

(a) Show that if u is finite, if {f,} converges to f in measure, and if {g,}
converges to g in measure, then { f,,g,} converges to fg in measure.

(b) Can the assumption that u is finite be omitted in part (a)?

6. Let i be a finite measure on (X,<7) and f and fi, f>, ... be real-valued < -
measurable functions on X. Show that {f,} converges to f in measure if and
only if each subsequence of {f,} has a subsequence that converges to f almost
everywhere.

7. Egoroff’s theorem applies to sequences of measurable functions on a finite
measure space. One can ask about the situation where one has a family { f; };er
on a finite measure space (X,<7,u), where T is a subinterval of R of the form
[fo,+<°). (The following results are due to Walter [125].)

(a) Foreach nin N define g, by g,(x) = sup{|f;(x) — f(x)| : # € [n,+o0)}. Show
that if each g, is measurable, then the conclusion of Egoroff’s theorem holds
for the family {f; };er.

(b) Let {A,} be a sequence of disjoint subsets of [0, 1] that are not Lebesgue
measurable and are such that all the A,’s have the same (strictly positive)
Lebesgue outer measure. (See the discussion of nonmeasurable sets in
Sect. 1.4.) Define a subset B of [0, 1] X [1,+<0) by

B={(x,t) :x € A, and t = x + n for some n},

and for each ¢ let f; be the characteristic function of the set {x € [0,1] :
(x,t) € B}. Show that each f; is Borel measurable but that the conclusion
of Egoroff’s theorem fails for the family {f; };[1 1)

3.2 Normed Spaces

Let V be a vector space over R (or over C). A normon'V is a function || - ||: V = R
that satisfies

@ |v|| >0,

(b) ||v|| =0if and only if v =0,
(©) [lav]| = |ol|[v], and

(@) [utv[| < [luf + (]l
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on g only through the equivalence class (g) to which g belongs, and we can define a
map, again called T, from L9(X, <7, ) to (LP(X, <7, 1t))* by means of the formula
Tiq = T;. It is clear that T is linear. Since we have already seen that || T[] < [|gl|,
holds for each g in .£%(X,.<7, i), we need only verify the reverse inequality. Let us
consider two cases.

First suppose that p = 1 and hence that ¢ = 4. Let g be an element of
ZL=(X, 4, 1) such that ||g]| # 0, and let € be a positive number. Since {x € X:
lg(x)| > ||g|l- — €} is not locally u-null,'? there is a set A that belongs to <7, has
finite measure under u, and is such that the set B defined by

B=An{xeX:|g(x)| > g|-—e}

has nonzero measure. Let f = sgn(g)xs. Then f € Z'(X, o/, 1),

7l = [ lsen(eizsldu < [ zsdn = n(B),
and
1,(f) = [ gsen(exnd = [ lelzndit > (Igll-— ()

It is clear that | T, (f)| = T,(f), and so the preceding calculations, together with the
inequality |T,(f)] < |Tg|||| f]1, imply that ||g||. — & < ||Tg||. Since € can be made
arbitrarily close to 0, it follows that ||g||. < ||T;||. Thus || T;|| = |/g]|e-

Now suppose that 1 < p < 40 and hence that 1 < g < 4oo. Let g belong
to £9(X, </, 1), and define a function f by f = sgn(g)|g|?"!. The relation g =
p(g — 1) implies that |f|” = |g|?; thus f belongs to .£7(X, o/, 1) and satisfies
£l = (/ lgl?dp)"/7. Furthermore

() = [ sen(e)lel* "gdu = [ lgl7du.

Consequently it follows from the relation |7, (f)| < || T,|||| f||» that

[leltan <IT ([ 1el7an) G

and hence that ||g||4 < ||T,|| (this is clear if ||g||; = O; otherwise divide both sides
of (3) by ([ |g|?du)"/? and recall that 1 — 1/p = 1/q.) Thus || T, = ||g||, and the
proof is complete. O

12We are here assuming that the space X is not locally null. If X is locally null, then L' (X,.27, i)
and L= (X, <7, ) contain only 0, and the proposition is true (but uninteresting).
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to Z9(X,e/,u). Then fg is integrable whenever f belongs to £ (X, o/, 1)
(Proposition 3.3.2), and so the formula

() = [ fedu

defines a linear functional T, on .Z7(X o7, ). It is clear that if f; and f, belong to
ZP(X, o/, 1) and agree almost everywhere, then T, (f1) = T,(f2); thus we can use
the formula T, ((f)) = T,(f) to define a functional, also called T, on L7 (X7, 11).
Holder’s inequality (Proposition 3.3.2) implies that |T,(f)| < ||g||4|lf]l, holds for
each f in £P(X, o/, ). Thus T, is continuous on L” (X, o/, i), and || T, || < ||gll4-
We’ll see in the following proposition that || T, || = ||g||4- O

We will denote by T the map from .Z9(X,.o/, 1) to (LP(X,o/,1u))* that takes
the function g to the functional 7, defined above.

Proposition 3.5.5. Let (X, o/, 1) be a measure space, let p satisfy 1 < p < +e, and
let g be definedby 1 /p+1/q=1.Thenthemap T : L1(X, o, 1) — (LP (X, o/, 1))*
defined above induces an isometry of LY(X , o/ , 1) into (LP (X, </, 1))

Note that Proposition 3.5.5 says that T is an isometry info (LP(X, o/, 1u))*; it
does not say that T is surjective. Example 4.5.2 in the next chapter gives a case in
which T is not surjective. Later we will see that the map T is a surjection, and hence
an isometric isomorphism, if

(@) 1< p<+ooand (X, 1) is arbitrary,
(b) p=1 and u is o-finite, or
(¢c) p=1and (X, ,u) arises through certain topological constructions

(see Theorems 4.5.1, 7.5.4, and 9.4.8). It is because of this relationship between
LY(X, o/, 1) and (LP (X, </, 1t))* that numbers p and g satisfying 1 /p+1/g=1 are
called conjugate exponents.

We need a bit of notation for the proof of Proposition 3.5.5. Recall that if z is a
complex number, say z = x + iy, then Z (the complex conjugate of z) and sgn(z) are
defined by Z = x — iy and

P
0 ifz=0.
Itis easy to check that zZ = |z|* and zsgn(z) = |z| hold for each z and that | sgn(z)| = 1
holds for each nonzero z. If f is a complex-valued function on a set S, then f and
sgn(f) are the functions whose values at the point s are f(s) and sgn(f(s)).
In the following proof we will assume that the functions involved are complex-
valued. The details are essentially the same for real-valued functions (then Z = z and

sgn(z) is 1,0, or —1).

Proof of Proposition 3.5.5. It is clear that if g and g, are equal almost everywhere
(or, in case g = +oo, locally almost everywhere), then Ty, = Tg,. Thus 7, depends
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for each u and v in V and each o in R (or in C). Condition (c) says that || - ||
is homogeneous, and condition (d) says that it satisfies the triangle inequality.
If in condition (b) the words “if and only if” are replaced with the word “if,” but
conditions (a), (c), and (d) remain unchanged, then || - || is called a seminorm. Thus
anorm is a seminorm for which 0 is the only vector that satisfies ||v|| = 0. A normed
vector space (or a normed linear space) is a vector space together with a norm.

Examples 3.2.1. Let us consider a few examples.

(a) The function that assigns to each number its absolute value is a norm on R (or
on C). This is the norm that will be assumed whenever we deal with R or C as
a normed space.

(b) The formula ||(x1,...,x4)|l2 = (XL, |xi|?)!/? defines a norm on R? and on C¢
(the triangle inequality follows from Exercise 9 or from Minkowski’s inequality
(Proposition 3.3.3)).

(c) Let (X,.o7, 1) be a measure space and let ! (X, .o, 1, R) be the set of all real-
valued integrable functions on X. Then .Z' (X, o7, u,R) is a vector space over
R, and the formula

11 = [ 171du

defines a seminorm on .#!(X,.7,u,R). If f is an .&/-measurable function on
X such that f = 0 holds almost everywhere but not everywhere, then f satisfies
[I7]l1 =0 but not f = 0. Thus for many choices of (X, .o, 1t) the seminorm || - ||
is not a norm.

(d) Let [a,b] be a closed bounded interval, and let C[a,b] be the vector space of
all continuous real-valued functions on [a,b]. The function || - ||;: Cla,b] = R
defined by

b
7= [ Is1an

is a norm (note that a continuous function on [a,b] that vanishes almost
everywhere must vanish everywhere).
(e) The function || - || C[a,b] — R defined by the formula

(£l = sup{[f(x)| : x € [a, b]}

is a norm (the continuity of f and the compactness of [a,b] imply that || /|-
is finite; see Theorem C.12). It is called the uniform norm or the sup (for
supremum) norm on Cla, b].

(f) More generally, let X be an arbitrary nonempty set, and let V be a vector space
of bounded real-valued (or complex-valued) functions on X. Then the formula

[[fllee = sup{|f(x)] : x € X}

defines anormon V. O
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Recall that a metric on a set S is a function d: S x S — R that satisfies

(@) d(s,

t) >0,

(b) d(s,t) =0
t
t

ifand only if s =1,
d(t,s), and

(c) d(s,t) =
<d(r,s)+d(s,t)

(d) d(r,

for all r, s, and ¢ in S. Condition (d) says that d satisfies the triangle inequality.
If in condition (b) the words “if and only if” are replaced with the word “if,” but
conditions (a), (c), and (d) remain unchanged, then d is called a semimetric. A metric
space is a set S together with a metric on S.

It is easy to check that if V' is a vector space and if || - || is a norm (or a seminorm)
on V, then the formula

d(u,v) = ||lu—v]|

defines a metric (or a semimetric) on V.

Recall that if S is a metric space and if s and s1, 53, ... are elements of S, then the
sequence {s,} converges to s if lim, d(s,,s) = 0; the point s is then called the limit
of {s,} and is denoted by lim, s, (see Exercise 1). In particular, if V is a normed
linear space and if v and vy, v, ... are elements of V, then the sequence {v,}
converges to v (with respect to the metric induced by the norm on V) if and only
if limy, [|v, — v|| = 0.

Examples 3.2.2. Let us return to some of the examples above. The metric induced
on R? by the norm defined in Example 3.2.1(b) is the usual one, stemming from
the Pythagorean theorem. If (X,.<7, ) is a measure space and if f and fi, f2, ...
belong to Z! (X, .o/, u,R), then {f,} converges to f with respect to the seminorm?
defined in Example 3.2.1(c) if and only if it converges to f in mean (see Sect.3.1).

Finally, if f and fi, f>, ... are continuous functions on [a,b], then {f,} converges
to f with respect to the norm defined in Example 3.2.1(e) if and only if it converges
uniformly to f. a

Let d be a metric (or a semimetric) on a set S. Then a subset A of S is dense in S if
for each s in S and each positive € there is an element a of A that satisfies d(s,a) < €.
It is clear that A is dense in § if and only if for each s in § there is a sequence
{an} of elements of A such that lim, d(ay,s) = 0. A metric (or semimetric) space is
separable if it has a countable dense subset. For example, the rational numbers form
a countable dense subset of R, and so R is separable.

Now let S be an arbitrary metric space. A sequence {s,} of elements of S is a
Cauchy sequence if for each positive number € there is a positive integer N such
that d(sy,,s,) < € holds whenever m > N and n > N. Of course, every convergent
sequence is a Cauchy sequence (let s be the limit of {s, }, and note that d(sy,,s,) <

2Convergence with respect to a semimetric or a seminorm is defined in the same way as
convergence with respect to a metric or a norm. Note, however, that a sequence that is convergent
with respect to a semimetric or a seminorm might have several limits.
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Note that the function || - ||: V* — R that assigns to each functional in V* its
norm (as defined above) is in fact a norm on the vector space V*; for instance, the
calculation

(F+G)W) < [FMI+IGO) < IV +[IGIHIvI= (IFI+IGIDIv]

shows that ||F| + ||G|| is a bound for F + G and so implies that ||F + G|| <
I+ 1G]l

Example 3.5.2. Let [a,b] be a closed bounded subinterval of R, and let y be a finite
Borel measure on [a,b]. Define F: C[a,b] — R by letting

F(f) = [ fau ®)

hold for each f in C[a, b]. It is clear that F is a linear functional and that F is positive,
in the sense that each nonnegative'® f in C|a, b] satisfies F(f) > 0. We will see that
every positive linear functional on Cla, b] arises in this way (Theorem 7.2.8). O

Example 3.5.3. Now suppose that C[a, b] is given the norm || - ||.. defined by

[1f]leo = sup{|f (x)] : x € [a, ]}
(see Example 3.2.1(e) above). Then the functional F defined by (2) satisfies

P =| [ rau] < [111an < Wr1en(ao).

and so is bounded and hence continuous. Likewise, if u; and p, are finite Borel
measures on [a, b], then the linear functional G defined by

G(f) = [ fam ~ [ e

is continuous. We will see that every continuous linear functional on Cla,b] arises
in this way (Theorem 7.3.6). These facts and their generalizations form the basis for
many of the applications of measure theory.!! 0

Example 3.5.4. Suppose that (X,<7,u) is an arbitrary measure space, that p
satisfies 1 < p < +eoo, and that ¢ is defined by 1/p+ 1/g = 1. Let g belong

10The function f is called nonnegative if f(x) > 0 holds at each x in [a, ].
'The usefulness of these results seems to be attributable to two facts:

(a) If a linear functional on a space of functions can be represented as an integral, then the limit
theorems of Sect. 2.4 are applicable.

(b) The methods available for decomposing and analyzing measures are often easier to visualize
than those that apply directly to linear functionals.
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Proof. First suppose that there is a nonnegative number M such that inequality (1)
holds for each v in Vj. Then for each v and a in V| we have

ITW)=T(@ =TV -a)l| <M|v—a;

hence if € is a positive number and if we define 6 by 6 = £/M (let § be an arbitrary
positive number if M = 0), then ||7(v) — T'(a)|| < € holds whenever ||v —al| < &.
Thus T is continuous.

Now suppose that T is continuous, and choose a positive number § such that
IT()|| = IT(v)=T(0)|| < 1if ||v|]| = |[v—0]] < 8. Note that (1) holds if v =0,
whatever value we use for M. Now suppose that v # 0 and let w = v/||v]|. It follows
that if 0 < ¢ < 8, then we have |[tw|| < 6 and #||T(w)|| < 1, from which we get

1
IT)IE< vl

Since ¢ can be chosen arbitrarily close to 1/6, it follows that || T(v)|| < %Hv” Thus
inequality (1) holds, with M equal to 1/6. O

Let Vi and V, be normed linear spaces, and let 7: Vi — V, be linear. A
nonnegative number A such that | 7(v)|| < Al|v|| holds for each v in V; is called a
bound for T, and the operator T is called bounded if there is a bound for it (see also
Exercises 3 and 4). Thus Proposition 3.5.1 says that a linear operator is continuous
if and only if it is bounded. It is easy to check that if the operator T is bounded, then
the infimum of the set of bounds for T is a bound for 7. This smallest bound for T
is called the norm of T and is written ||T'||. It is not hard to check that || - || is a norm
on the vector space of all bounded linear operators from V; to V.

We turn to a few special cases. Suppose that V| and V, are normed linear spaces
and that 7: V| — V; is linear. Then 7 is an isometry if | T (v)|| = ||v|| holds for each
vin V}. Note that if 7 is an isometry and if v and w belong to Vi, then

IT)=TW)[ =T =w)l=v-wl,

and so T preserves distances. The linear operator T is an isometric isomorphism if
it is an isometry that is surjective (note that an isometry is necessarily injective and
so is bijective if and only if it is surjective). Thus an isometric isomorphism is a
bijection that preserves both linear and metric structure.

Let V be a normed linear space. Recall that a linear functional on V is a linear
operator on V whose values lie in R (if V is a vector space over R) or in C (if V is
a vector space over C). We will be particularly concerned with the bounded, that is,
continuous, linear functionals on V. It is easy to check that the set of all continuous
linear functionals on V is a subspace of the vector space of all linear functionals on
V; this subspace is called the dual space (or conjugate space) of V and is denoted
by V*. The space V* is sometimes called the topological dual space of V in order to
distinguish it from the space of all linear functionals on V (which is then called the
algebraic dual space of V).
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d(Sm,s)+d(s,s,)). On the other hand, if every Cauchy sequence in S converges to
a pointin S, then S is called complete. A normed linear space that is complete (with
respect to the metric induced by its norm) is called a Banach space.

It is a basic consequence of the axioms for the real number system that R is
complete under the metric defined by (x,y) + |x — y|.> The proofs of completeness
that we give for other spaces will depend ultimately on this fact.

Example 3.2.3. Let us show that Cla,b] is complete under the uniform norm.
Let {f,} be a Cauchy sequence in C[a,b]. For each x in [a,b] the sequence {f,(x)}
satisfies | fi (x) — fu ()| < || fm — full and so is a Cauchy sequence of real numbers;
thus it is convergent. Define a function f: [a,b] — R by letting f(x) = lim, f;,(x)
hold at each x in [a,b]. We need to show that {f,} converges uniformly to f and
that f is continuous. Let us begin by showing that the convergence of {f,,} to f is
uniform. Let € be a positive number, and use the fact that { f, } is a Cauchy sequence
to choose a positive integer N such that || f;y — fu|| < € holds whenever m and n
satisfy m > N and n > N. Then

[fin(x) = fa(x)| < &

holds for all x in [a,b] and all m and n satisfying m > N and n > N, and so (take
limits as m approaches infinity)

[f(x) = falx)[ <€

holds for all x in [a,b] and all n satisfying n > N. Thus || f, — f||- < € holds* when
n > N. Since € was arbitrary, we have shown that {f,} converges uniformly to f.

We turn to the continuity of f. Let xo belong to [a,b], and let € be an arbitrary
positive number. Choose a positive integer N such that ||f, — f|l. < €/3 holds
whenever n satisfies n > N, and then use the continuity of fy to choose a positive
number 6 such that |fy(x) — fiv(x0)| < €/3 holds if x belongs to [a,b] and satisfies
|x —xo| < O. It follows that if x € [a,b] and |x — xo| < &, then

[f () = f (o) | < 1 (x) = v ()| + S (%) = S (x0) | + | (x0) — f (x0)

£ € ¢
<ztztz=E&

3 3 3
Since € and xg were arbitrary, the continuity of f follows. This finishes our proof of
the completeness of Cla,b] under || - |- O

3See, for instance, Gleason [49], Hoffman [60], Rudin [104], or Thomson, Bruckner, and Bruckner
[117].

4Actually, the norm here and in the following paragraph is the norm from Example 3.2.1(f). We
can’t say that it is the norm from C|a, b] until we show that f is continuous.
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Example 3.2.4. Let us also note an example of a normed linear space that is not
complete. Consider the space C[—1, 1], together with the norm defined by || f|; =
fil | f|dA. For each n define a function f,: [—1,1] — R by

0 if—-1<x<0,
fa(x) =< nx if0<x§%,
1ifl<x<l.

It is easy to check that {f,} is a Cauchy sequence in C[—1, 1], but that there is no
continuous function f such that lim, || f, — f||1 = 0. Hence C[a, b] is not complete
under || - ||;. O

We close this section with a sometimes useful criterion for the completeness
of a normed linear space. Let V be a normed linear space, and let X;”_, v be an
infinite series with terms in V. The series Y. v is convergent if lim,, Y| vy exists,
and is absolutely convergent if the series Y;_; ||v|| of real numbers is convergent.
Recall that every absolutely convergent series of real numbers is convergent; for
more general normed linear spaces we have the following result.

Proposition 3.2.5. Let V be a normed linear space. Then V is complete if and only
if every absolutely convergent series with terms in'V is convergent.

Proof. First suppose that V is complete, and let 37 ; v be an absolutely convergent
series in V. Let {s,} be the sequence of partial sums of the series >° ; vk, and let
{t,} be the sequence of partial sums of the series Y;°_; ||v||; thus s, = Y}_, v and
tn = Y}_; ||lvk||- Note that if m < n, then

n

POV

k=m+1

n

< Y vl =t =t (1)

k=m+1

ll$n = smll =

The convergence of Y,° ||vk|| implies that {#,} is a Cauchy sequence and, in view
of (1), that {s,,} is a Cauchy sequence. Since V is complete, the sequence {s, }, and
hence the series Y;” | vk, must converge.

Next suppose that every absolutely convergent series in V is convergent, and let
{un} be a Cauchy sequence in V. Since {u,} is a Cauchy sequence, we can choose
(how?) a subsequence {u, } of {u,} such that [|uy,, , — up, || < 1/25" holds for each
k. Define a series Y;__; v by letting vi = u,, and letting vy = u,, —u,,_, if k > 1;
thus {uy, } is the sequence of partial sums of the series ¥, vk. Since ||vi| < 1/2*
holds if k > 1, the series Y, vk is absolutely convergent and hence convergent.
Thus the sequence {u,, } converges, say to u. The inequality

oo = wtn| < e =t || + [t — an|

implies that ||u — u,|| can be made small by making n (and k) large, and so the
original sequence {u, } also converges to u. The completeness of V follows. O
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3. Show that Proposition 3.4.3 would be false if p were allowed to be infinite. (Hint:
Construct a Borel subset A of [a,b] such that || x4 — f]|~ > 1/2 holds whenever
f is a step function.)

4. Show that Proposition 3.4.4 would be false if p were allowed to be infinite. (Hint:
Let A = [a,c], where a < ¢ < b. How small can || x4 — f|| be if f is continuous?)

5. Suppose that for each function f: R —+ R and each x in R we define a
function fy: R — R by fi(t) = f(r —x). (A similar definition applies to
complex-valued functions on R.) Show that if 1 < p < 4o and if f belongs
to LP(R,#A(R), 1), then

lim (1= il =0

holds for each x in R. (Hint: First, consider the case where f is a step function
that vanishes outside some bounded interval. Then use Proposition 3.4.3 (see the
remarks following the proof of Proposition 3.4.4).)

6. Show that the hypothesis of ¢-finiteness cannot be omitted in Proposition 3.4.5.
(Hint: Consider counting measure on (R, Z(R)).)

7. Show that in Lemma 3.4.7 condition (b) cannot be replaced with the assumption
that u is o-finite. (Hint: Let 2% be the algebra on R defined in Example 1.1.1(g),
let {r,} be an enumeration of Q, and let u be the Borel measure on R defined by

u = zn 5rn‘)

3.5 Dual Spaces

Recall that if V) and V; are vector spaces over R (or over C), then a function7: V} —
V, is a linear operator (or linear transformation) if for each v and w in V| and each
o in R (or in C) it satisfies T(v+w) = T(v) + T(w) and T (orv) = oT (v). Recall
also that if S| and S, are metric spaces, say with metrics d; and d,, then a function
f1 81— S, is continuous if for each point a in S| and each positive number € there
is a positive number & such that d>(f(s), f(a)) < € holds whenever s belongs to
S| and satisfies d(s,a) < 6. Thus if V| and V; are normed linear spaces, say with
norms || - ||; and || - ||2, then a function f: V| — V5 is continuous if and only if for
each a in V| and each positive number € there is a positive number 6 such that
Il f(v) = f(a)|l2 < € holds whenever v belongs to V; and satisfies ||v —al|; < .

When dealing with several normed spaces, we will often use the symbol || - || to
denote each of the norms involved. This will of course be done only when there
seems to be little chance of confusion.

Proposition 3.5.1. Let V| and V, be normed linear spaces, and let T : Vi — V, be
a linear operator. Then T is continuous if and only if there is a nonnegative number
M such that

ITW)II <My (D
holds for each v in V.
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and let .27 be the algebra (not the o-algebra) generated by %. Then 2 is the set of
finite unions of sets that have the form

CiNnGN---NCy

for some choice of N and some choice of sets Cy, ..., Cy in €. Clearly = is
countable and satisfies the hypotheses of Lemma 3.4.7.
Let .# be the collection of all finite sums

ZdeDja
J

where each d; is arational number” and each D belongs to <7 and satisfies it(D;) <
+oo. The set . is countable and is included in Z7 (X, %7, 1t); we will show that it
determines a dense subset of LP(X,.<7, ).

Let f belong to £P(X,/,1u), and let € be a positive number. Then there
is a simple function g that belongs to .£7(X, </, 1) and satisfies || f — g, < €
(Proposition 3.4.2). Suppose that the simple function g has the form 3’ ;a; x4, where
each A; belongs to &7 and satisfies t1(A;) < 4. We can choose rational numbers
d; such that

Sajxa;— 2 dixa;|| < Dlaj—djlllxa;lly, <e,

J J rJ

and then we can produce sets D in o7 such that || X;djxa; — X;d;xp; |l < € (use
Lemma 3.4.7). Since f and € are arbitrary, and since ¥;d;xp, belongs to . and
satisfies

Hf—zdﬂa), <|f—zllp+ Hg—Zdij,-
J 14 J

p

+ < 3e,

P

djxa; — 2. dixo,
J J

the proof is complete. a

Exercises

1. Use Proposition 3.4.3 to show that if 1 < p < +eo, then L”([a, b]) is separable.
2. Show that L™([a,b]) is not separable. (Hint: Consider the elements of L ([a,b])
determined by the characteristic functions of the sets [a, c|, where a < ¢ < b.)

9When dealing with the complex L” spaces, let each d i be a complex number whose real and
imaginary parts are rational.
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Exercises

1. Let S be a metric space, and let {s,} be a sequence of elements of S. Show that
{sn} converges to at most one point in S. (Thus the expression “lim,, s,,”” makes
sense.)

2. Let C'[0, 1] consist of those functions f: [0,1] — R such that f’ is defined and
continuous at each point in [0, 1] (of course f/(0) and f’(1) are to be interpreted
as one-sided derivatives). Show that
(a) the formula ||f| = fy |//(x)|dx defines a seminorm, but not a norm, on

C'[0,1], and
(b) the formula || f]| = |£(0)| + [01 |/ (x)|dx defines a norm on C'[0, 1].

3. Let ¢~ be the set of all bounded sequences of real numbers (of course ¢~ is
a vector space over R.) Show that ¢~ is complete under the norm defined in
Example 3.2.1(f).

4. Let ¢ be the set of all sequences {x,} of real numbers for which lim, x,, = 0.
Show that ¢ is a closed linear subspace of ¢~ (see Exercise 3) and hence that ¢
is complete under the norm || - || defined by ||{x,}||ec = sup,, |%x|.

5. Let u be a finite measure on (X,.<7). Show that
(a) the formula

_ [_If—sl

defines a semimetric on the collection of all real-valued .o7-measurable
functions on X, and
(b) lim,d(f,,f) =0 holds if and only if {f,} converges to f in measure.
6. Now let us consider an analogous result for the space (R, Z(R),1). Suppose that
h: R — R is defined by A(t) = 1/(1 4 ¢%). Show that
(a) the formula

If —sgl
d(f,g) |1 |f—g|hdl
defines a semimetric on the collection of all real-valued Borel measurable
functions on R, and
(b) lim,d(f,,f) = 0holds if and only if {f,} converges to f in measure on each
bounded subinterval of R.
7. Let V be a vector space over R. A function (+,-): V x V — R is an inner product
onV if

(i) (x,x) =0,

(ii) (x,x) =0if and only if x =0,
(iii) (x,y) = (y,x), and
(iv) (ox+By.z) = afx,z) +B(y.2)
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hold for all x, y, zin V and all ¢, B in R.5 An inner product space is a vector
space, together with an inner product on it. The norm || - || associated to the inner
product (-,-) is defined by ||x|| = 1/ (x,x).
(a) Prove that an inner product satisfies the Cauchy—Schwarz inequality: if
x,y € V, then |(x,y)] < |x|l|llyl]. (Hint: Define a function p: R — R by
p(t) = ||x||* +2¢(x,y) +£2|y||?, and note that p(¢) = ||lx+y||> > 0 holds for
each real #; then recall that a quadratic polynomial at” + bt -+ ¢ is nonnegative
for each ¢ only if b> —4ac < 0.)
(b) Verify that the norm associated to (-,-) is indeed a norm. (Hint: Use the
Cauchy—Schwarz inequality when checking the triangle inequality.)
8. Let (+,-) be an inner product on the real vector space V, and let || - || be the
associated norm. Show that
(@) [Px+yl[> + [lx = y[> = 2[|x][* +2]|y||* and
®) [x+y[* = [lx =yl = 4(x,y)
hold for all x,y in V. (The identity in part (a) is called the parallelogram law.)
9. (a) Check that the formula (x,y) = Zflzlxiyi defines an inner product on R?
(here, x and y are the vectors (x1,...,x7) and (y1,...,yq))-
(b) Conclude that the function | - ||: R? — R defined by ||x|2 = (3¢, x?)/? is
indeed a norm. (See part (b) of Exercise 7.)
10. Let £2 be the set of all infinite sequences {x, } of real numbers for which ¥, x2 <
+oo.

(a) Show that £? is a vector space over R. (Hint: Note that (x+y)? < 2x% +2y?
holds for all real x and y.)

(b) Show that the formula ({x,},{y»}) = 3,, %,y defines an inner product on £2
and hence (see part (b) of Exercise 7) that the formula ||{x, }|| = (2, x2)"/?
defines a norm on ¢2. (The issue is the convergence of ¥, x,V,..)

(c) Show that ¢? is complete under the norm defined in part (b) of this exercise.

11. A Hilbert space is an inner product space that is complete under the norm
defined by ||x|| = \/(x,x). Show that if H is a Hilbert space and if C is a
nonempty closed convex subset of H, then there is a unique point y in C that
satisfies

[yl = inf{[lz]| : z € C}.

(Hint: Let d = inf{]|z : z € C}, and choose a sequence {z,} in C such that
lim,, ||z4|| = d. Note that the convexity of C implies that §(z, +2,) € C and
hence that ||3(zm + 24)|| > d. Use this inequality, together with part (a) of
Exercise 8, to show that {z,} is a Cauchy sequence. Check that lim,, z, is the
required point y. To check the uniqueness of y, suppose that y’ and y” belong
to C and satisfy ||y'|| = ||| = d, and apply the preceding argument to the
sequence ¥, y", ¥, y",....)

3 An inner product on a complex vector space V is a complex-valued function (-,-) on V x V that
satisfies (i), (ii), (iv), and (x,y) = (y,x) for all x, y, zin V and all o, B in C. In this book we will
deal with inner products only on real vector spaces.
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Since we can produce such a set B for each positive €, it follows that A € Z.
Consequently .% is closed under the formation of countable unions and so is a -
algebra. Since in addition @ C .% C & = o(%), % must be equal to <. Thus
every set in 27 can be approximated with sets in .. O

Lemma 3.4.7. Let (X, 47, 11) be a measure space. Suppose that <7 is an algebra of
subsets of X such that

(a) o(H) =, and
(b) X is the union of a sequence of sets that belong to <fy and have finite measure

under L.

Then for each positive € and each set A that belongs to <f and satisfies [L(A) < oo
there is a set Ay that belongs to <f and satisfies [L(A N Ap) < €.

Proof. Choose a sequence {B,,} of sets that belong to <%, have finite measure under
U, and satisfy X = U,B,. By replacing B, with Uj_,By, we can assume that the
sequence {B,} is increasing.

Let A belong to & and satisfy ft(A) < +oe. Proposition 1.2.5, applied to the
sequence {A N B,}, implies that there is a positive integer N such that u(ANBy) >
1(A) — &/2. Since the measure C — p(C N By) is finite, we can use Lemma 3.4.6
to obtain a set Ay that belongs to <% and satisfies u((A AAg) NBy) < €/2. Then
Ap N By belongs to o) and satisfies

(AL (Ao By)) < H(A A (ANBN)) + (AN By) A (Ao N By))

=u(A—(ANBy))+ u((AAA)NBy)
e ¢

<-+-=¢,
2+2

and the proof of the lemma is complete. a

Proof of Proposition 3.4.5. We can choose a countable subfamily € of <7 that
generates </ and contains sets B,,n =1, 2, ..., that have finite measure under y and
satisfy X = U, B,,. Let ¢ consist of the sets in ¢, together with their complements,
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let f be a step function on [a,b], let M = sup{|f(x)| : x € [a,D]}, and let & be a
positive number. It is easy to construct a continuous function g on [a,b] such that
sup{|g(x)| : x € [a,b]} <M and A({x € [a,b] : f(x) # g(x)}) < & (take a suitable
piecewise linear function). Then

[ gl an < QMPA(Gx: 109 £ 8(0)) < (2M)"5,

and so || f —g||, <2M8'/7. Since § is arbitrary and M depends only on f, the proof
is complete. O

The reader should note that Propositions 3.4.3 and 3.4.4 would fail if p were
allowed to be infinite (see Exercises 3 and 4).

Let us call a function on R a step function if for each interval [a, b] its restriction
to [a,b] is a step function. Analogues of Propositions 3.4.3 and 3.4.4 hold for
L’ (R, B(R), ) if we replace the set of step functions on [a,b] with the set of step
functions on R that vanish outside some bounded interval and if we replace the
set of continuous functions on [a, b] with the set of continuous functions on R that
vanish outside some bounded interval. The details are left to the reader. (See also
Proposition 7.4.3.)

Let o7 be a o-algebra on the set X. Then &7 is countably generated if there is
a countable subfamily & of ./ such that &7 = 6(%’). For example, the o-algebra
A(R) of Borel subsets of R is countably generated (see Exercise 1.1.2).

Proposition 3.4.5. Let (X, o, 1) be a measure space, and let p satisfy 1 < p < oo,
If U is o-finite and < is countably generated, then LP (X, 7 | |1) is separable.

The proof will depend on the following two lemmas.

Lemma 3.4.6. Let (X, o7, 1) be a finite measure space, and let <y be an algebra
of subsets of X such that of = 6 (). Then < is dense in <7, in the sense that for
each A in &/ and each positive number € there is a set Ay that belongs to <7y and
satisfies L(A A\ Ag) < €.

Proof. Let .# be the collection consisting of those sets A in .2/ such that for each
positive € there is a set Ay that belongs to <7 and satisfies ((A AAg) < €. Of course
oy C F,and so X € .. The identity A AAj = A A Ag implies that if A € .7, then
A€ € F; hence .Z is closed under complementation. Now let {A4,} be an infinite
sequence of sets in %, let A = U,A,, and let € be a positive number. Choose a
positive integer N such that (A — UYA,) < €/2 (see Proposition 1.2.5), and for
n=1,2,..., N choose a set B, that belongs to % and satisfies (A, AB,) < &/2N.
The set B defined by B = UIIV By, then belongs to o7 and satisfies
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12. Let H be a Hilbert space, and let Hy be a closed linear subspace of H.

13.

(a) Show that if x € H, then there is a unique point y in Hy such that
[[x—y|l =inf{[lx—z[| : 2 € Ho}.

(Hint: Apply Exercise 11 to the set {x—z:z € Hp}.)

(b) Show that if x and y are related as in part (a), then x —y is orthogonal to Hy,
in the sense that (x —y,z) = 0 holds for each z in Hy. (Hint: Let f(¢) = ||x—
y—17]|? = ||x—y||* = 2¢(x — y,2) +*||z||*. Then £(¢) is a quadratic polyno-
mial in ¢, which, by our choice of y, is minimized when ¢ = 0. Conclude that
(X - Z) = O)

Let V be a Banach space, and let v and vy, v, ... belong to V. The series
Ye1 Vk 18 said to converge unconditionally to v if for each positive € there is a
finite subset F; of N such that || Y;cr vk — v|| < € holds whenever F is a finite
subset of N that includes Fg.

(a) Show thatif 3,7 v converges absolutely, then it converges unconditionally
to some pointin V.

(b) Show that the converse of part (a) holds if V =R.

(c) Show that the converse of part (a) is not true in general. (Hint: Let V be o,
02, or £=))

14. Let V be the vector space of all real-valued Borel measurable functions on [0, 1].

15.

Show that convergence in measure (with respect to Lebesgue measure) is not
given by a seminorm on V. That is, show that there is no seminorm || - || on V
such that elements f, f1, f>, ... of V satisfy lim,, || f, — f|| = 0 if and only if { f,,}
converges to f in measure. (Hint: Show that if such a seminorm exists, then for
each positive ¢ there are functions g1, ..., g, in V such that ||g;|| < € holds for
each i but %2?11 gi is equal to the constant function 1. Derive a contradiction.)
Again, let V be the vector space of all real-valued Borel measurable functions
on [0, 1]. Show that convergence almost everywhere (with respect to Lebesgue
measure) is not given by a semimetric on V. (Hint: Use Proposition 3.1.3 to
show that if such a semimetric existed, then convergence in measure would
imply convergence almost everywhere.)

3.3 Definition of .#? and I?

Let (X, </, 1) be a measure space, and let p satisfy 1 < p < +eo (p need not be an
integer). Then .£?(X, o/, 1, R) is the set of all o/-measurable functions f: X — R
such that |f|? is integrable, and .Z7(X,«7,u,C) is the set of all 27-measurable
functions f: X — C such that | f|” is integrable (see Exercise 2.6.2).
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Note that if a € R and f € (X, o ,u,R), then of € LP(X,o,u,R), and
thatifa€ Cand f € XP(X,o/,u,C), then af € £P(X, o/, uu,C). Furthermore, if
f and g belong to £?(X, o/, u,R) or to £P(X, </, u,C), then

f)+ )" < (If )] +18())? < (2max{|f(x)],|g(x)]})”
<2717 +2|g ()

holds for each x in X, and so f + g belongs to Z7(X,o/,u,R) or to
ZLP (X, ,u,C). Thus £P(X, o/, u,R) is a vector space over R, and L7 (X, </, 1,
C) is a vector space over C.

We turn to the definition of £7(X,o/,u,R) and £P(X,o/,u,C) in the
case where p = 4oo. Let Z°(X,/,u,R) be the set of all bounded real-
valued 47-measurable functions on X, and let £~ (X, o/, 1u,C) be the set of all
bounded® complex-valued .7-measurable functions on X. It is easy to see that
ZL2(X, o ,u,R) and £*=(X, o/, u,C) are vector spaces.

In discussions that are valid for both real- and complex-valued functions we will
often use £P(X, o/, 1) to represent either L7 (X, o/, u,R) or L7 (X, o/ ,u,C).

Let us define, for each p, a function (in fact, a seminorm) || - ||, on Z7(X, o7, u).
If 1 < p < 4oo, we define || - ||, by

11 = ([ 1517 ).

For the case where p = 4 we need a few preliminaries. A subset N of X is
locally p-null (or simply locally null) if for each set A that belongs to .27 and satisfies
1(A) < +oo the set ANN is p-null. A property of points of X is said to hold locally
almost everywhere if the set of points at which it fails to hold is locally null. It is
easy to check that

(a) every u-null subset of X is locally p-null,
(b) if (X, 47, ) is o-finite, then every locally p-null subset of X is p-null, and
(c) the union of a sequence of locally u-null sets is locally y-null.

See Exercises 5 and 6 for some examples of locally ti-null sets that are not t-null.
We can define || - ||, in the case where p = 4o by letting || f||-. be the infimum
of those nonnegative numbers M such that {x € X : |f(x)| > M} is locally y-null.”
Note that if f € Z<(X, o/, 1), then {x € X : |f(x)| > || f|l~} is locally p-null, for
if {M, } is a nonincreasing sequence of real numbers such that || f||. = lim, M, and

5Some authors define £~ (X,.o7,u,R) and £~ (X, .o/, u,C) to consist of functions f that are
essentially bounded, which means that there is a nonnegative number M such that {x € X :
|f(x)| > M} is locally p-null (locally null sets are defined a bit later in this section). For most
purposes, it does not matter which definition of £ one uses. However, for the study of liftings
(see Appendix F), the definition given here is the more convenient one.

7We use locally null sets, rather than null sets, here and in the construction of the L™ spaces given
below in order to make Proposition 3.5.5, Theorem 7.5.4, and Theorem 9.4.8 true.
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We now turn to some results concerning Lebesgue measure on R. Let [a,b] be
a closed bounded interval. A real- or complex-valued function f on [a,b] is a step
function if there are real numbers ay, ..., a, such that

(@) a=ap<a;<...<a,=b,and
(b) f is constant on each interval (a;_1,a;).

We will use £?([a,b]) and L?([a,b]) as abbreviations for £?([a,b], %B([a,b]), )
and L?”([a,b],#([a,b]), ), where HB([a,b]) is the c-algebra of Borel subsets of
[a,b] and A is the restriction of Lebesgue measure to <7.

The following two propositions are often useful, since step functions and
continuous functions are usually easier to deal with than are more general functions.

Proposition 3.4.3. Suppose that [a,b] is a closed bounded interval and that p
satisfies 1 < p < 4oo. Then the subspace of L’(|a,b]) determined by the step
functions on |a,b) is dense in LP([a,b]).

Proof. Of course, each step function on [a, b] belongs to .Z”([a, b]). Since the Borel
measurable simple functions on [a,b] determine a dense subspace of LP([a,b])
(Proposition 3.4.2), it is enough to show that if f is a Borel measurable simple
function and if € is a positive number, then there is a step function g such that
|lf —gll, < &, and for this it is enough to check that if y4 is the characteristic
function of a Borel subset A of [a,b], then there are step functions g that make
lxa — gl| » arbitrarily small. So let A be a Borel subset of @, b] and let 6 be a positive
number. Use the construction of Lebesgue outer measure (or Proposition C.4 and the
regularity of Lebesgue measure) to choose a sequence {(a,,b,)} of open intervals
such that A C Uy, (an,b,) and Y, (b, —a,) < A(A)+ 6, and then choose a
positive integer N such that ¥° v ., (b, —a,) < 8. Let g be the characteristic
function of [a,b] N (UY (ay,b,)) and let h be the characteristic function of [a,b] N
(UT(an,bn)). Then g is a step function, and

lxa = 8llp < llxa = hllp+ R =gl

(i) " (o )

1 N+

< 8P4 8P =28'/r,

Since § is arbitrary, the proof is complete. a

Proposition 3.4.4. Suppose that [a,b] is a closed bounded interval and that p
satisfies 1 < p < oo, Then the subspace of L?([a,b]) determined by the continuous
functions on [a,b) is dense in LP([a,b]).

Proof. Of course, each continuous function on [a,b] belongs to Z7([a,b]).
Since the step functions on [a,b] determine a dense subspace of LP([a,b])
(Proposition 3.4.3), it is enough to prove that for each step function f and each
positive number € there is a continuous function g that satisfies || f — g/, < €. So
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thus g is integrable. Consequently g(x) is finite for almost every x (Corollary 2.3.14),
and the series Y fi(x) is absolutely convergent, and hence convergent, for almost
every x. Define a function f on X by

£ = {Zf—lfkoc) i 2(x) < Lon

0 otherwise.

Then f is measurable and satisfies |f|? < g, and so it belongs to £P(X, </, ).
Since lim, | ¥}_; fi(x) — f(x)| =0and | X}_, fi(x) — f(x)|? < g(x) hold for almost
every x, the dominated convergence theorem implies that lim,, || ¥}_, fx — f|, = 0.
The completeness of L” (X, .7, i) follows. O

Let (X,47, 1) be a measure space. We will say that a function f in £?(X, 7, 1)
determines the equivalence class (f) in L (X, <7, ) to which it belongs. Likewise,
if S is a subset of ZP(X, <7, ) and if T is a subset of LP(X, ./, 1), then we will
say that S determines T if T consists of the equivalence classes in LP(X,.o/, 1)
determined by the elements of S. This terminology will allow us to avoid a fair
amount of pedantic notation. (See also the next-to-the-last paragraph in Sect. 3.3.)

Proposition 3.4.2. Let (X, </, L) be a measure space, and let p satisfy 1 < p < oo,
Then the simple functions in £P (X, ,|L) form a dense subspace of £P(X, o/, 1)
and so determine a dense subspace of L (X, <7, 1L).

Proof. We will consider only real-valued functions. The corresponding results for
LP(X, o/, u,C) can be proved by separating a complex-valued function into its real
and imaginary parts.

Let us first consider the case where 1 < p < +oo. Let f belong to
ZLP(X, 4, u,R). Choose nondecreasing sequences {gi} and {/;} of nonnegative
simple &/-measurable functions such that f© = limyg; and f~ = limghy
(Proposition 2.1.8), and define a sequence {f;} by fx = gk — hx. Then each
fx is a simple «f-measurable function that satisfies |fi| < |f| and so belongs
to £LP(X,e/,u,R). Since these functions satisfy |fi(x) — f(x)] < |f(x)| and
limg | fx (x) — f(x)| = 0 at each x in X, the dominated convergence theorem, applied
to the pth powers of the functions |f; — f|, implies that limy || fx — f||, = 0. With
this the proof is complete in the case where 1 < p < oo,

Now suppose that p = 4oo. Let f belong to .£~(X, o/, 1,R), and let € be a
positive number. Choose real numbers ag, ay, ..., a, such that

apg<ar <...<ay

and such that the intervals (a;_1,a;] cover the interval [—||f||w, || f]l] and have
lengths at most €. Let A; = f~!((a;_1,a;]) fori=1, ..., n, and let f; = S aiXa;
Then f; is a simple <7-measurable function that satisfies ||f — fz|| < €. Since f
and € are arbitrary, the proof is complete. a
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such that for each n the set {x € X : |f(x)| > M,} is locally u-null, then the set
{xeX :|f(x)] > ||fll~} is the union of the sets {x € X : |f(x)| > M,} and so is
locally p-null. Thus || ||« is not only the infimum of the set of numbers M such that
{xe X :|f(x)| > M} is locally u-null but is itself one of those numbers.

We need to derive some standard and important inequalities in order to prove
that the functions || - ||, are seminorms. Let us begin by introducing some notation.
Suppose that p satisfies 1 < p < 4. Then 0 < 1/p < 1, and so there is a real
number ¢ that satisfies 1/p+1/g = 1; g satisfies 1 < 1/g < +ec. The numbers
p and g are sometimes called conjugate exponents (see the remarks following the
proof of Proposition 3.5.5). The relation 1/p+ 1/g = 1 still holds if when p =1
we let ¢ = +oo, and if when p = +oo we let ¢ = 1; thus we can deal with all p that
satisfy 1 < p < 4-o0. Note that the relation 1/p + 1/g =1 implies that p+ g = pq,
and for finite p and g implies that p =g(p—1) and g = p(g—1).

We turn to the necessary inequalities.

Lemma 3.3.1. Let p satisfy 1 < p < +oo, let q be definedby 1/p+1/q=1, and let
x and y be nonnegative real numbers. Then

Proof. Since it is clear that the required inequality holds if either x =0 or y = 0, we
can assume that both x and y are positive. It is enough to prove that

ulirpt/a < Y
P 9
holds for all positive u and v (let u = x” and v = y?), and for this it is enough to
prove that

[1/ p < L + l

P q
holds for all positive ¢ (let 1 = u/v, and then multiply by v). However, this last
inequality is easy, since according to elementary calculus the function defined for

positive ¢ by
t 1
fs —4——1'/P

has a minimum value of 0. O

Proposition 3.3.2 (Holder’s Inequality). Ler (X, o/, 1) be a measure space, and
letpand gsatisfy 1 <p<+eo, 1 <g<+oo,and1/p+1/q=1.1f f € LP(X, o/, 1)
and g € L9(X, o ,10), then fg belongs to (X, </, 1) and satisfies [|fg|du <
1£1lpllgllg-

Proof. First suppose that p = 1 and ¢ = 4. If f and g belong to £ (X, o7, 1)
and £~ (X, o/, 1), respectively, then the set {x € X : f(x) # 0} is o-finite under
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i (see Corollary 2.3.11) and the set {x € X : |g(x)| > [|g]|} is locally p-null.
The intersection of these two sets in thus a p-null set, and so the inequality

If(X)g(x)] < [lglleo|f (x)]
holds at almost every x in X. It follows that fg € .Z!(X,.o7,u) and that

[1relan < [ lgl-lfidn = gl A1

A similar argument applies in case p = +ocand g = 1.
Now suppose that 1 < p < 40 and hence that 1 < g < +oo. Let f belong to
ZLP(X,o/, 1) and g belong to £7(X, <7, 1t). Lemma 3.3.1 implies that

If(x)glx)| < I%If(X)I”ﬂL élg(X)lq

holds for each x in X; hence if ||f]|, = 1 and ||g||; = 1, then fg belongs to
ZV(X,o/, 1) and satisfies

1

1 r 1 1
[1rsldu < [1fraus [igtan ==+ =1,
' P q. P q

In case neither || ||, nor ||g||4 is 0, we can use this inequality, with f and g replaced
by f/[|f]lp and g/]|g||¢. to conclude that

1 /
e | eldu <1
171151181l
and hence that
[176lan =171l (1)
Since inequality (1) is clear if ||f]|, = 0 or ||g]|; = O (for then fg vanishes almost
everywhere), the proof is complete. a

Proposition 3.3.3 (Minkowski’s Inequality). Let (X,o/, 1) be a measure space,
and let p satisfy 1 < p < oo If f and g belong to LP (X, </ ,|L), then [+ g belongs
to LP(X, o 1) and ||f+gllp, <[ fllp+ lIgllp-

Proof. First suppose that p = +e. Define Ny and N, by Ny = {x € X :
[fx)] > [Ifll«} and N2 = {x € X : |g(x)| > ||g|l}- Then N; and N, are locally
u-null, and the inequality

If () + g < 1F )]+ 1) < [Ifll+ Nl ]l

holds at each x outside the locally p-null set Ny UN,. Thus f+g € Z°(X, o, 1)
and [| £+ gl < [|flle= + [l lee-
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3.4 Properties of .£” and [

This section is devoted to some basic properties of the L” spaces.

Theorem 3.4.1. Let (X, o/, L) be a measure space, and let p satisfy 1 < p < oo,
Then LP (X, o/, 1t) is complete under the norm || - || .

Proof. According to Proposition 3.2.5, we need only show that each absolutely
convergent series in L? (X, .o/, 1) is convergent. We do this by considering functions
(not equivalence classes) in £”(X,.o7, 1), as outlined near the end of Sect. 3.3.

First suppose that p = +oo and that {f;} is a sequence of functions that belong
to £=(X, </, 1) and satisfy Y || fi]|l < +e. For each positive integer k let Ny =
{xeX :|fi(x)] > || fk|l~}. Then the series X fi(x) converges at each x outside Uy Vg,
and the function f defined by

Fx) = {Zkfk(x) %fx ¢ U Ve
0 ifx e Uka

is bounded and .7 -measurable. Since Uy N is locally null, the inequality

oo

< X Il

o k=n+1

‘f—ka
k=1

holds for each n, and so

=

<lim Y fille=0.
oo " k=nt1

n;pr— > fi
k=1

Thus L= (X, </, 1) is complete.
Now suppose that 1 < p < 4 and that {f;} is a sequence of functions that
belong to .Z7 (X, o7, 1) and satisfy ¥ || fi||, < +oo. Define g: X — [0, +oo] by

<) = (§|fk<x>|)p

(of course (4-o)P = 4-o0). Minkowski’s inequality (Proposition 3.3.3), applied to the
functions | f|, implies that

(/ (kil |fk|>pdli> " = kil | fel

holds for each n, and so it follows from the monotone convergence theorem that

. n 14 Lnd p
/gd[,L :11,131/ (2 |fk|) du < (Z ||fk||P> ;
. k=1 k=1

n
< D Il
P k=1
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5. Let X be a nonempty set, let & = {&, X}, and let 4 : &/ — [0,+oo] be defined by

0 ifA=go,
p(A) = .
+oo ifA=X.

Show that X is locally p-null but not y-null.

6. Suppose that for each subset A of R? and each real number x we denote the set
{y €R: (x,y) € A} by A,. Let &/ consist of those subsets A of R? that satisfy
Ay € B(R) for each x in R, and define t: &7 — [0, +o0] by

u(A) = Y. A(Ay) if A, # & for only countably many x,
o0 otherwise.

(a) Show that o7 is a G-algebra on R? and that u is a measure on (R?,.<7).
(b) Show that {(x,y) € R?:y =0} is locally p-null but not g-null.

7. Let (X, 2/, 1) be a finite measure space, and let f be an 7-measurable real- or
complex-valued function on X.

(a) Show that f belongs to £~ (X, </, ) if and only if

(i) f belongsto . £P(X, s, 1) for each p in [1,4-e), and
(i) sup{||fll,:1 < p < oo} is finite.

(b) Show that if these conditions hold, then || f||o = lim, 4o || || p-

8. (Jensen’s inequality.) Let (X, <7) be a measurable space, and let it be a measure
on (X,4/) such that u(X) = 1. Suppose that ¢: R — R is convex, in the sense
that @(rx+ (1 —1)y) <t@(x)+ (1 —1)@(y) holds for all x, yin R and all 7 in [0, 1].
(a) Show that ¢ is continuous, and hence Borel measurable.

(b) Show that if f belongs to ! (X, .o/, u,R), then

o( [rau) < [ooran.

In particular, the integral of @ o f exists, either as a real number or as +oo.
(Hint: Show that for each xy in R there is a straight line (say given by the
equation y = ax + b) that passes through the point (xg, ¢(xo)) and never goes
above the graph of y = ¢(x). Then note that for a suitable such line we have
o([ fdu)=[(af+b)du < [@o fdu.)
9. Let (X, /) be a measurable space, and let 1 be a measure on (X,.27) such that
w(X) =1.Suppose that 1 < p; < py < oo

(a) Show that if f belongs to .£P2(X, o 1), then f belongs to L7 (X, 7, 1)
and satisfies ||f]|,, < ||f|/p,- (Hint: Use Holder’s inequality or Jensen’s
inequality.)

(b) Show thatif f and fi, f>, ... belong to £P2(X, <7, ) and if {f, } converges
to f in poth mean, then {f,} converges to f in p;th mean.
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Next suppose that p = 1. Then the inequality | f(x) +g(x)| < |f(x)|+ |g(x)| holds
ateachxin X, andso f+g € £ (X, o/, u) and

I +8li= [ 1 +glan< [1fldu+ [ leldu=1fl+ gl

Now consider the case where 1 < p < 4-o0. We checked that f+g € £P(X, o/, 1)
earlier in this section. Define g by 1/p+ 1/g = 1. Since p 4+ g = pg, it follows
that (|f +g|P~ )9 = |f + g|? and hence that |f +g|"~! € £9(X, </, u). Thus if we
use the fact that |f +g|” < (|f] +|g|)|f +g|”~! and then apply Hélder’s inequality
(Proposition 3.3.2) to the functions f and |f + g|[P~! and to the functions g and
|f+g|P~!, we can conclude that

Jir+ardu< [0+ leDls+ g7 au

= [17117 +gI7 du+ [ lgl1f -+l du

< 17+ 817 g + g1+ 217
. 1/q
=Wl + el 17+ epan)

If [|f+g|P du # 0, we can divide the terms of this inequality by ([ | f +g|?du)"/4,
obtaining

If +&llp <1171+ llgllp- 2
Since inequality (2) is clear if [|f+ g|?du = 0, the proof is complete. O

Corollary 3.3.4. Let (X, o/, 1L) be a measure space, and let p satisfy 1 < p < oo,
Then £P(X, </, 1) is a vector space, and || - ||, is a seminorm on LP(X, o/, |0).

Proof. We have already verified that £7(X, <7, 1) is a vector space. The triangle
inequality for || - ||, is the only other nontrivial thing to check, and it is given by
Proposition 3.3.3. a

Example 3.3.5. Suppose that 1 < p; < pp < 4oo. Then each sequence {a,} that
satisfies Y, |a,|P! < 4o also satisfies X, |a,|P? < +eo. Thus if u is counting measure
on the o-algebra o of all subsets of N, then .Z71 (N, o7, 1) C .£P2(N, o/, 1u). The
inclusion is reversed for finite measures: if y is a finite measure on a measurable
space (X, ), then £P2(X, o/ ,u) C .LP1(X, o/, 10). See Exercise 9. O

Note that if there are nonempty subsets A of X that belong to 2/ and satisfy
1 (A) =0, then there are nonzero functions f that belong to £? (X, .7, i) and satisfy
|| fll, = 0. Thus for many common measure spaces, the seminorms | - ||, are not
norms. Since norms and metrics are often easier to deal with than are seminorms
and semimetrics, the following construction of normed spaces LP(X,.o/, i) from
the spaces £?(X, .o/, 1) proves useful.
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Let (X,o/,1) be a measure space, and let A4P(X,o/, 1) be the subset of
ZLP(X, 4, 1) that consists of those functions f that belong to £7(X, .o/, 1) and
satisfy || f|l, = 0. Thus if 1 < p < 4o, then AP(X, o7, u) consists of the .o7-
measurable functions on X that satisfy [|f|?du = 0 (that is, that vanish almost
everywhere), and if p = 4o, then A 7(X, o/, 1) consists of the bounded .-
measurable functions on X that vanish locally almost everywhere. It is clear that
AP(X, 9 ,10) is a linear subspace of the vector space .£P(X, o/, 1). The space
LP(X,47,u) is defined to be the quotient ZP(X, o7, 1)/ NP (X, o/, ). Recall
that this means that L”(X, 7, ) is the collection of cosets of AP(X,7,u) in
LP(X,,11); these cosets® are by definition the equivalence classes induced by
the equivalence relation ~, where f ~ g holds if and only if f — g belongs to
NP(X, 4, 1u). Note that if 1 < p < 4o, then f ~ g holds if and only if f and g are
equal almost everywhere, and so LP(X,./, i) is formed by identifying functions in
ZLP(X, o/, 1) that agree almost everywhere. Likewise, L= (X, .o/, 1) is formed by
identifying functions in £~ (X, o7, 1) that agree locally almost everywhere.

For fin ZP (X, , 1) let (f) be the coset of A#P(X,47, 1) to which f belongs.
It is easy to check that the formulas (f) + (g) = (f +g) and o(f) = (o.f) define
operations that make L” (X, .o/, 1) into a vector space. Furthermore, if f and g are
functions that belong to .Z7(X, </, i) and satisfy f ~ g, then || f]|, = ||gl|, (check
this). Thus we can define a function, again called || - || ,, on L? (X, <7, 1) by means of
the formula ||(f)||, = | f|| - It is easy to check that || - ||, is a norm on L?(X, </, i)
(see Corollary 3.3.4).

We will, of course, write L” (X, %7, u,R) or LP(X,%/,u,C) when the real and
complex cases must be distinguished from one another.

It is often convenient to act as though the elements of LP(X,</,u) were
functions, rather than equivalence classes of functions. In fact, some authors use
the same symbol for £P(X,/,u) and LP(X,/,1t). We will try to avoid this
identification of functions and classes of functions, since it can lead to confusion
(especially in the study of stochastic processes). However to simplify notation
we will often deal with £?(X,.«/, ) when proving theorems about L” (X, <7, ).
For example, in the next section we will prove that LP(X,<7, 1) is complete by
showing that if Y f¢ is a series in Z7(X,.o/, 1) such that Y || fx||, < 4-oe, then
there is a function f in ZP(X,o/, 1) such that lim, || f — X7_, fill, = O (recall
Proposition 3.2.5). This will imply the completeness of L”(X, <7, 1) and yet avoid
the cumbersome notation associated with equivalence classes.

We close this section with a definition. Let (X,.o/, 1) be a measure space, let
p satisfy 1 < p < +oo, and let f and fi, f5, ... belong to £? (X, ). Then
{fu} converges to f in pth mean (or in LP-norm) if lim, [ |f, — f|Pdu = 0,
or, equivalently, if lim, || f, — f||, = 0. There are a number of results relating

8Equivalently, for each fin 7 (X, .o/, i) the coset to which f belongs is the set f+.4P(X, .o/ , 1)
and hence the set {f +g:g€ N/ P(X, o, 1)}
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convergence in pth mean to convergence in measure and convergence almost
everywhere; the reader would do well to formulate and prove some of them, using
the corresponding results in Sect. 3.1 as models (see also Exercise 9).

Exercises

1. Use the inequality (x —y)? > 0 to give an alternate proof of Lemma 3.3.1 in the
case where p =g = 2.

2. Give an alternate proof of Lemma 3.3.1 by noting that x” / p and y? /g are the areas
of the shaded regions in Fig. 3.1. (The curve in Fig. 3.1 represents the graph of
the equation # = s”~!, or, equivalently, of the equation s = t9~!)

3. Let (X, 47, ) be a measure space. Check that the formula

(- (&)) = [ Fed

defines an inner product on L2 (X, <, 1, R) and that the norm associated with this
inner product is the usual norm on L*(X,.«7, i, R).

4. Let £ be the c-algebra of Borel subsets of [0,1] and let A be the restriction
of Lebesgue measure to %. Show that if 1 < p <2 or 2 < p < +eo then
there is no inner product on L?([0,1],%,4,R) that induces the usual norm on
LP(]0,1],4,A,R). (Hint: A norm that comes from an inner product must satisfy
the identity in part (a) of Exercise 3.2.8.)

Fig. 3.1 Region used in Exercise 2 for proof of Lemma 3.3.1



