


Chapter 6
Differentiation

In this chapter we look at two aspects of the relationship between differentiation
and integration. First, in Sect. 6.1, we look at changes of variables in d-dimensional
integrals. Such changes of variables occur, for example, when one evaluates an
integral over a region in R

2 by converting to polar coordinates. Then, in Sects. 6.2
and 6.3, we look at some deeper aspects of differentiation theory, including the
almost everywhere differentiability of monotone functions and of indefinite inte-
grals and the relationship between Radon–Nikodym derivatives and differentiation
theory. The Vitali covering theorem is an important tool for this. The discussion
of differentiation theory will be resumed when we discuss the Henstock–Kurzweil
integral in Appendix H.

6.1 Change of Variable in R
d

In this section we deal with changes of variable in R
d and with their relation to

Lebesgue measure. The main result is Theorem 6.1.7. Let us begin by recalling
some definitions.

Let Md be the set of all d by d matrices with real entries, and let D be a real-valued
function on Md . We will sometimes find it convenient to denote the columns of a d
by d matrix A by A1, A2, . . . , Ad and to write D(A1,A2, . . . ,Ad) in place of D(A).
The function D is multilinear if for each i and each choice of A j (for j �= i) the map
Ai �→ D(A1, . . . ,Ad) is linear, is alternating if D(A) = 0 holds whenever two of the
columns of A are equal, and is a determinant if it is multilinear, is alternating, and
satisfies D(I) = 1 (here I is, of course, the d by d identity matrix).

We need to recall a few basic facts about determinants.

Lemma 6.1.1. For each positive integer d there is a unique determinant on Md.

We follow the standard usage and use det(A) to denote the determinant of a
matrix A.
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156 6 Differentiation

Lemma 6.1.2. Let d be a positive integer, and let Md be the set of all d by d matrices
with real entries. Then

(a) det(AB) = det(A)det(B) holds for all A, B in Md,
(b) det(A) is nonzero if and only if A is invertible,
(c) det(A) is a polynomial in the components of A, and
(d) det(At) = det(A), where At is the transpose of A.

Proofs of Lemmas 6.1.1 and 6.1.2 can be found in Halmos [53] and Hoffman and
Kunze [61].

Recall that if T : Rd → R
d is linear, if A is the matrix of T with respect to

some ordered basis of R
d , and if B is the matrix of T with respect to some

possibly different ordered basis of R
d , then there is an invertible matrix U such

that A = UBU−1. It follows that det(A) = det(U)det(B)det(U−1) = det(B). Thus
det(T ), the determinant of the linear operator T , can be defined to be the determinant
of a matrix representing T ; it does not matter which ordered basis is used to compute
the matrix.

Let us prove the following special case of Theorem 6.1.7.

Proposition 6.1.3. Let T : Rd → R
d be an invertible linear map. Then

λ (T (B)) = |det(T )|λ (B)
holds for each Borel subset B of Rd.

Proof. The maps T and T−1 are continuous (check this) and hence measurable1

with respect to B(Rd) and B(Rd); thus T (B) is a Borel set if and only if B is a
Borel set.

Since T is invertible, there exist linear maps T1, T2, . . . , Tn such that T =
T1 ◦T2 ◦ · · · ◦Tn and such that each Tk operates on a vector x in one of the following
ways:

(a) one component of x is multiplied by a nonzero number, and the other compo-
nents are left unchanged;

(b) two components of x are interchanged, and the other components are left
unchanged;

(c) for some i and j the component xi is replaced with xi + x j, while the other
components of x are left unchanged

(see Exercise 1). In view of the relation det(T ) = det(T1)det(T2) . . .det(Tn), it
suffices to show that

λ (Tk(B)) = |det(Tk)|λ (B) (1)

holds for each k and each Borel set B.

1Since T−1(U) and T (U) are open and hence Borel whenever U is a open subset of R
d , the

measurability of T and T−1 follows from Proposition 2.6.2.
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First suppose that Tk arises through case (a) or case (b) above. Then it is easy
to check that (1) holds if B is a cube with edges parallel to the coordinate axes
and hence if B is an open set (use Lemma 1.4.2) or an arbitrary Borel set (use the
regularity of λ ).

Next suppose that Tk arises through case (c). Then there exist indices i and j
such that if x = (x1, . . . ,xd), then the ith component of Tk(x) is xi + x j, while the
other components of Tk(x) agree with the corresponding components of x. Let us
view R

d as the product of R (corresponding to the ith coordinate in R
d) with R

d−1

(corresponding to the remaining coordinates). Let B be a Borel subset of Rd . It is
easy to check that for each u in R

d−1 the sections at u of B and of Tk(B) are translates
of one another and hence have the same Lebesgue measure. Thus it follows from
the theory of product measures (in particular, from Theorem 5.1.4, an extension of
Example 5.1.5 to R

d , and the remarks at the end of Sect. 5.2) that λ (B) = λ (Tk(B)).
Since det(Tk) = 1 holds whenever Tk arises through case (c), the proof is complete.

�	
We will need the following standard facts about derivatives of vector-valued

functions; proofs can be found in a number of advanced calculus or basic analysis
texts,2 and are sketched in Exercises 2, 3, and 4.

Let X and Y be Banach spaces, let U be an open subset of X , and let x0 belong
to U . A function F : U →Y is differentiable at x0 if there is a continuous linear map
T : X → Y such that

lim
x→x0

‖F(x)−F(x0)−T (x− x0)‖
‖x− x0‖ = 0. (2)

It is easy to check that given x0 and F , there is at most one such map T ; it is called
the derivative of F at x0 and is denoted by F ′(x0). It is also easy to check that if
F is differentiable at x0, then F is continuous at x0. Furthermore, if T : X → Y is
continuous and linear, then it is differentiable, with derivative T , at each point in X .

The chain rule now takes the following form.

Proposition 6.1.4. Let X, Y , and Z be Banach spaces, and let U and V be open
subsets of X and Y . If x0 ∈ U, if G : U → Y is differentiable at x0 and satisfies
G(U) ⊆ V, and if F : V → Z is differentiable at G(x0), then F ◦G is differentiable
at x0, and

(F ◦G)′(x0) = F ′(G(x0))◦G′(x0).

A method for proving Proposition 6.1.4 is suggested in Exercise 5.
Let us now restrict our attention to the special case of the space Rd . It will prove

convenient to endow R
d with the norm ‖ · ‖∞ defined by

‖x‖∞ = max(|x1|, |x2|, . . . , |xd |)

2See Bartle [4], Hoffman [60], Loomis and Sternberg [85], Rudin [104], or Thomson, Bruckner,
and Bruckner [117].
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(here x1, x2, . . . , xd are the components of the vector x). It is easy to check that the
open sets and the continuous functions determined by ‖ · ‖∞ are the same as those
determined by the usual norm ‖ · ‖2 (see Exercise 6). If Rd is given the norm ‖ · ‖∞,
if T : Rd → R

d is linear, and if (ai j) is the matrix of T with respect to the usual
ordered basis of Rd , then T is continuous and its norm (see Sect. 3.5) is given by

‖T‖= max
i

d

∑
j=1

|ai j| (3)

(see Exercise 7).
Now let U be an open subset of Rd , let F be a function from U to R

d , and let
f1, . . . , fd be the components of F ; thus F(x) = ( f1(x), . . . , fd(x)) holds at each x in
U . Then F is said to be a C1 function (or to be of class C1) if the partial derivatives
∂ fi/∂x j, i, j = 1, . . . , d exist and are continuous at each point in U .

We will need the following facts.

Lemma 6.1.5. Let U be an open subset of Rd, and let F : U →R
d be a C1 function.

Then F is differentiable at each point in U, and the matrix of F ′(x) (with respect to
the usual ordered basis of Rd) is (∂ fi(x)/∂x j).

Lemma 6.1.6. Let U be an open subset of Rd, and let F : U →R
d be differentiable

at each point in U. If x0 and x1, together with all the points on the line segment
connecting them, belong to U and if ‖F ′(x)‖ ≤C holds at each point x on this line
segment, then

‖F(x1)−F(x0)‖∞ ≤C‖x1 − x0‖∞.

See Exercises 8 and 9 for sketches of proofs of these lemmas.
The Jacobian JF of the C1 function F is defined by JF(x) = det(F ′(x)). In view

of Lemmas 6.1.2 and 6.1.5, the Jacobian of such a function is continuous and hence
Borel measurable.

We turn to the main result of this section.

Theorem 6.1.7. Let U and V be open subsets of Rd, and let T be a bijection of U
onto V such that T and T−1 are both of class C1. Then each Borel subset B of U
satisfies

λ (T (B)) =
∫

B
|JT (x)|λ (dx), (4)

and each Borel measurable function f : V →R satisfies
∫

V
f dλ =

∫

U
f (T (x))|JT (x)|λ (dx), (5)

in the sense that if either of the integrals in (5) exists, then both exist and (5) holds.
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Munroe [92], Rudin [105], and Wheeden and Zygmund [127] carry the study of
the differentiation of measures and functions a bit farther than it is taken here. See
Bruckner [21], Bruckner [22], de Guzmán [33], Hayes and Pauc [56], Kölzow [74],
and Saks [106] for more advanced treatments of differentiation theory.

The proof of Theorem 6.3.11 given here is taken from Walker [123].
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holds at each x in [a,b]. Since ε was arbitrary,

F(x)≤ F(a)+
∫ x

a
F ′(t)dt

must hold at each such x. The reverse inequality can be proved by applying the same
argument to −F , and so the proof is complete. �	

Exercises

1. Let F : R → R be nondecreasing. Show that if ε is a positive number, then
each bounded interval contains only a finite number of values x such that
F(x+)− F(x−) ≥ ε . Use this observation to give a second proof of part (b)
of Lemma 6.3.2.

2. Prove the following modified version of Lemma 6.3.7: If F : [a,b] → R is
continuous and if D is the set consisting of those points in [a,b] at which F
is differentiable, then D ∈ B(R) and F ′ (as a function from D to R) is Borel
measurable.

3. Derive Theorem 6.3.6 from Proposition 6.3.10.
4. Let f and F be as in Theorem 6.3.6. Show by example that there can be points

x that are not Lebesgue points of f , but are such that F ′(x) exists and is equal to
f (x).

5. Show that the Cantor function provides a counterexample to two of the three
conjectures suggested just before the statement of Theorem 6.3.11.

6. Define F : [0,1]→R by

F(x) =

⎧
⎨

⎩

0 if x = 0,

x2 sin
1
x2 if 0 < x ≤ 1.

Show that F is differentiable everywhere on [0,1] but is not absolutely continu-
ous.

7. Show that there is a strictly increasing continuous function F : [0,1] → R such
that F ′(x) = 0 holds at λ -almost every x in [0,1]. (Hint: Let F be the sum of a
suitable series of functions, and use Proposition 6.3.5.)

Notes

The proof of Theorem 6.1.7 presented here was inspired by one given by
A.M. Gleason in some unpublished notes on advanced calculus.
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Note that, in view of the identity T−1(T (x)) = x, the chain rule implies that
(T−1)′(T (x))◦T ′(x) = I holds at each x in U . Thus T ′(x) is invertible, and so JT (x)
is nonzero, for each such x.

Note also that T and T−1 are Borel measurable (since they are continuous); thus
a subset B of U is a Borel set if and only if T (B) is Borel.

We need the following two lemmas for the proof of Theorem 6.1.7.

Lemma 6.1.8. Let U be an open subset of Rd, let G : U → R
d be a differentiable

function, let ε be a positive number, and let C be a cube that is a Borel set, is
included in U, has edges parallel to the coordinate axes, and is such that

‖G′(x)− I‖ ≤ ε

holds at each x in C. Then the image G(C) of C under G satisfies

λ ∗(G(C)) ≤ (1+ ε)d λ (C).

Proof. Let x0 be the center of C and let b be the length of the edges of C. Then
each x in C satisfies ‖x− x0‖∞ ≤ b/2, and so Lemma 6.1.6, applied to the function
x �→ G(x)− x, implies that each x in C satisfies

‖(G(x)− x)− (G(x0)− x0)‖∞ ≤ ε‖x− x0‖∞

and hence satisfies

‖G(x)−G(x0)‖∞ ≤ (1+ ε)‖x− x0‖∞ ≤ 1
2
(1+ ε)b.

Thus G(C) is a subset of the closed cube (with edges parallel to the coordinate axes)
whose center is at G(x0) and whose edges are of length (1+ ε)b. Since this cube
has measure (1+ ε)dbd , while C has measure bd , the lemma follows. �	
Lemma 6.1.9. Let U, V , and T be as in the statement of Theorem 6.1.7. Suppose
that a is a positive number and that B is a Borel subset of U.

(a) If |JT (x)| ≤ a holds at each x in B, then λ (T (B))≤ aλ (B).
(b) If |JT (x)| ≥ a holds at each x in B, then λ (T (B))≥ aλ (B).

Proof. First suppose that b is a positive number and that W is an open subset of U
such that

(a) W is compact and included in U , and
(b) |JT (x)|< b holds at each x in W .

Let ε be a positive number. Since W is compact and T is of class C1, the functions
that take x to the components3 of T ′(x)—that is, to the partial derivatives of the

3Here we are dealing with the components of the matrices of these operators with respect to the
usual ordered basis of Rd .
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components of T —are uniformly continuous on W (part (a) of Theorem C.12). A
similar argument shows that the components of (T ′(x))−1 are bounded on W . Thus
(see Eq. (3)) we can choose first a positive number M such that

‖(T ′(x))−1‖ ≤ M (6)

holds at each x in W and then a positive number δ such that

‖T ′(x)−T ′(x0)‖ ≤ ε
M

(7)

holds whenever x and x0 belong to W and satisfy ‖x− x0‖ ≤ δ .
According to Lemma 1.4.2 the set W is the union of a countable family {Ci} of

disjoint half-open cubes with edges parallel to the coordinate axes. By subdividing
these cubes, if necessary, we can assume that each has edges of length at most 2δ .
Let C be one of these cubes, let x0 be its center, and define G : U → R

d by

G = (T ′(x0))
−1 ◦T.

The chain rule implies that for each x in U we have

G′(x)− I = (T ′(x0))
−1 ◦T ′(x)− I

= (T ′(x0))
−1 ◦ (T ′(x)−T ′(x0)),

and so (6), (7), and Exercise 3.5.1 imply that

‖G′(x)− I‖ ≤ ‖(T ′(x0))
−1‖ · ‖T ′(x)−T ′(x0)‖

≤ M · ε
M

= ε

holds at each x in C. It now follows from Lemma 6.1.8 that λ (G(C)) ≤
(1+ ε)dλ (C). If we use Proposition 6.1.3 and the fact that T = T ′(x0)◦G, we find

λ (T (C)) = |det(T ′(x0))|λ (G(C))

≤ b(1+ ε)dλ (C).

Since C was an arbitrary one of the cubes Ci, it follows that

λ (T (W )) = ∑
i

λ (T (Ci))

≤ ∑
i

b(1+ ε)dλ (Ci) = b(1+ ε)dλ (W )

holds for each ε , and hence that λ (T (W ))≤ bλ (W ).
Now suppose that W is an arbitrary open subset of U such that |JT (x)|< b holds

at each x in W . We can choose an increasing sequence {Wn} of open sets such that
W = ∪nWn and such that the closure of each Wn is compact and included in U (the
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Lemma 6.3.13. Let H : [a,b]→ R be continuous, and let C be a countable subset
of [a,b]. Suppose that for each x in [a,b)−C there is a positive number δx such that
H(t)> H(x) holds at each t in the interval (x,x+δx). Then H is strictly increasing.

Proof. It suffices to prove that H is nondecreasing (why?), and for this it is enough
to show that numbers x1 and x2 in [a,b] that satisfy x1 < x2 and H(x1) > H(x2) do
not exist. Assume that such numbers do exist, and for each y between H(x1) and
H(x2) define a number xy by

xy = sup{x ∈ [x1,x2] : H(x)≥ y}.
It is easy to check that each xy satisfies H(xy) = y and belongs to the countable
exceptional set C. Since there are uncountably many such points xy, we have reached
a contradiction, and the proof is complete. �	
Proof of Theorem 6.3.11. Suppose that the function F satisfies the hypotheses of
Theorem 6.3.11 and that C is a countable subset of [a,b) such that F is differentiable
at each point of [a,b)−C. Let ε be a positive number. Lemma 6.3.12 (applied to the
function that agrees with F ′ where F is differentiable and that vanishes elsewhere)
provides a lower semicontinuous function g such that F ′(t) ≤ g(t) holds at each t
in [a,b)−C and such that

∫ b
a g(t)dt <

∫ b
a F ′(t)dt + ε . By adding a small positive

continuous function to g, if necessary, we can assume that F ′(t) < g(t) holds at
each t in [a,b)−C. Define G : [a,b] → R by G(x) = F(a)+

∫ x
a g(t)dt. The lower

semicontinuity of g implies that

lim
y↓x

G(y)−G(x)
y− x

≥ g(x)

holds at each x in [a,b). Thus

lim
y↓x

(G(y)−F(y))− (G(x)−F(x))
y− x

≥ g(x)−F ′(x)> 0

holds at each x in [a,b) − C, and so Lemma 6.3.13 implies that G − F is
nondecreasing. Since furthermore G(a) = F(a), it follows that F ≤ G. This and
the inequality

∫ b
a g(t)dt <

∫ b
a F ′(t)dt + ε imply that

F(x)≤ G(x) = F(a)+
∫ x

a
g(t)dt

= F(a)+
∫ x

a
F ′(t)dt +

∫ x

a
(g(t)−F ′(t))dt

≤ F(a)+
∫ x

a
F ′(t)dt + ε
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Of course, a function f : R → R is continuous if and only if it is both lower
semicontinuous and upper semicontinuous. Furthermore, it is easy to check that

(a) a function f : R → (−∞,+∞] is lower semicontinuous if and only if for each
real number A, the set {x ∈ R : A < f (x)} is open,

(b) a function f : R → [−∞,+∞) is upper semicontinuous if and only if for each
real number A, the set {x ∈ R : f (x) < A} is open,

(c) if U is an open subset of R, then the characteristic function χU is lower
semicontinuous,

(d) if C is a closed subset of R, then the characteristic function χC is upper
semicontinuous,

(e) if f and g are lower semicontinuous, then f + g is lower semicontinuous, and
(f) if { fn} is an increasing sequence of lower semicontinuous functions, then

limn fn is lower semicontinuous.

It follows (from (a) and (b)) that the upper semicontinuous functions and the lower
semicontinuous functions are Borel measurable.

Lemma 6.3.12. Let f : [a,b] → [−∞,+∞] be Lebesgue integrable. Then for each
positive ε there is a lower semicontinuous function g : R → (−∞,+∞] that is
integrable on [a,b] and satisfies

(a) f (t)≤ g(t) holds at each t in [a,b], and
(b)

∫ b
a g(t)dt <

∫ b
a f (t)dt + ε .

Proof. Let ε be a positive number. First suppose that f is nonnegative. There is a
nondecreasing sequence { fn} of nonnegative simple measurable functions such that
f = limn fn (Proposition 2.1.8), and so we can find Lebesgue measurable sets Ak, k=
1, 2, . . . , and positive real numbers ak such that f = ∑k akχAk (write each fn − fn−1

as a sum of positive multiples of characteristic functions). Use the regularity of
Lebesgue measure (Proposition 1.4.1) to choose open sets Uk, k = 1, 2, . . . , that
include the corresponding Ak’s and satisfy ∑k akλ (Uk) < ∑k akλ (Ak)+ ε/2. Then
the formula f ∞ =∑k akχUk defines a lower semicontinuous function f ∞ that satisfies

∫ b

a
f ∞(t)dt <

∫

∑
k

akχAk dt + ε/2 =

∫ b

a
f (t)dt + ε/2

and is such that f (t)≤ f ∞(t) holds for each t in [a,b].
Now suppose that f is an arbitrary integrable function on [a,b]. For each n define

a function hn by hn(x) = max( f (x),−n). The dominated convergence theorem
implies that

∫ b
a f (t)dt = limn

∫ b
a hn(t)dt and hence that we can choose a positive

integer N such that
∫ b

a hN(t)dt <
∫ b

a f (t)dt + ε/2. If we apply the argument in
the preceding paragraph to the nonnegative function hN +N, producing the lower
semicontinuous function f ∞, then the required function g is given by g = f ∞ −
Nχ[a,b]. �	
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details are left to the reader). Then each Wn satisfies λ (T (Wn)) ≤ bλ (Wn), and so
we have

λ (T (W )) = lim
n

λ (T (Wn))≤ lim
n

bλ (Wn) = bλ (W ). (8)

More generally, let B be a Borel subset of U such that |JT (x)| ≤ a holds at each x
in B. Let b be a number such that a < b. If W is an open subset of U that includes B
and if Wb is defined by Wb = {x ∈W : |JT (x)|< b}, then B ⊆Wb and inequality (8)
implies that

λ (T (B))≤ λ (T (Wb))≤ bλ (Wb)≤ bλ (W ).

Since b can be made arbitrarily close to a and since λ is regular (Proposition 1.4.1),
part (a) of the lemma follows.

We will prove part (b) by applying part (a) to the function T−1 : V → U . If
|JT (x)| ≥ a holds at each x in B, then |JT−1(y)| ≤ 1/a holds at each y in T (B), and so
part (a) of the lemma implies that λ (T−1(T (B)))≤ (1/a)λ (T (B)) or, equivalently,
that aλ (B)≤ λ (T (B)). �	
Proof of Theorem 6.1.7. First suppose that B is a Borel subset of U for which λ (B)
is finite. For each positive integer n define sets Bn,k, k = 1, 2, . . . , by

Bn,k =

{

x ∈ B :
k− 1

n
≤ |JT (x)|< k

n

}

.

It follows from Lemma 6.1.9 that

k− 1
n

λ (Bn,k)≤ λ (T (Bn,k))≤ k
n

λ (Bn,k) (9)

and from the definition of Bn,k that

k− 1
n

λ (Bn,k)≤
∫

Bn,k

|JT (x)|λ (dx)≤ k
n

λ (Bn,k). (10)

We conclude from (9) and (10) that
∣
∣
∣
∣λ (T (Bn,k))−

∫

Bn,k

|JT (x)|λ (dx)

∣
∣
∣
∣≤

k
n

λ (Bn,k)− k− 1
n

λ (Bn,k) =
1
n

λ (Bn,k)

and, from this, since B = ∪kBn,k, that
∣
∣
∣
∣λ (T (B))−

∫

B
|JT (x)|λ (dx)

∣
∣
∣
∣≤

1
n

λ (B).

However, n is arbitrary and λ (B) is finite, and so

λ (T (B)) =
∫

B
|JT (x)|λ (dx).

Thus (4) is proved in the case where λ (B) is finite.
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If B is an arbitrary Borel subset of U , then it is the union of an increasing
sequence {Bk} of Borel sets of finite measure, and taking limits over k in the relation

λ (T (Bk)) =

∫

Bk

|JT (x)|λ (dx)

yields

λ (T (B)) =
∫

B
|JT (x)|λ (dx).

This completes the proof of (4).
We turn to the proof of (5). If f is the characteristic function of a Borel subset

C of V and if B = T−1(C), then (5) reduces to (4). The linearity of the integral and
the monotone convergence theorem now imply that (5) holds for all nonnegative
Borel functions. The case of an arbitrary Borel function f reduces to this through
the decomposition f = f+− f−. �	

With more work it is possible to prove somewhat strengthened versions of
Theorem 6.1.7 (see, for example, Theorem 8.26 in Rudin [105]). The version given
here, however, seems adequate for most purposes.

Example 6.1.10. Let us apply Theorem 6.1.7 to polar coordinates in R
2. Let R be

a positive number, let

U = {(r,θ ) : 0 < r < R and 0 < θ < 2π},
let

V = {(x,y) : x2 + y2 < R2},
and let V0 be the set consisting of those points in V that do not lie on the nonnegative
x-axis. Define T : U → R

2 by T (r,θ ) = (r cosθ ,r sinθ ). Then T , U , and V0 satisfy
the hypotheses of Theorem 6.1.7. Furthermore, JT (r,θ ) = r. Since V and V0 differ
only by a Lebesgue null set, each integrable function f : V → R satisfies

∫

V
f dλ =

∫

V0

f dλ =

∫ 2π

0

∫ R

0
f (r cosθ ,r sinθ )r dr dθ .

This is, of course, the standard formula for the evaluation of integrals by means of
polar coordinates. �	

Exercises

1. Show that if T : Rd →R
d is an invertible linear map, then T can be decomposed

as specified in the second paragraph of the proof of Proposition 6.1.3. (Hint: Let



6.3 Differentiation of Functions 175

Theorem 6.2.3 implies that there is a Lebesgue null set Nr such that (Dμr)(x) =
| f (x)− r| holds at each x in (a,b)−Nr. Let N be the Lebesgue null set ∪r∈QNr.
Suppose that x belongs to (a,b)−N, that I is a closed subinterval of (a,b) that
contains x, and that r is a rational number. Then

∫

I
| f (t)− f (x)|dt ≤

∫

I
| f (t)− r|dt +

∫

I
|r− f (x)|dt,

and so if we divide the terms of this inequality by λ (I) and let the length of I
approach 0, we find

lim
I

1
λ (I)

∫

I
| f (t)− f (x)|dt ≤ (Dμr)(x)+ |r− f (x)|= 2| f (x)− r|.

Since | f (x)−r| can be made arbitrarily small by an appropriate choice of the rational
number r, Eq. (2) follows.

In case f is Lebesgue measurable, rather than Borel measurable, we can complete
the proof by applying the preceding argument to a Borel measurable function that
agrees with f almost everywhere (see Proposition 2.2.5). �	

It is of course of interest to have easily verified conditions that imply the absolute
continuity of a function. One might conjecture that a continuous function on a closed
bounded interval is absolutely continuous if it is differentiable almost everywhere,
if it is differentiable almost everywhere and its derivative is integrable, or if it is
differentiable everywhere. These conjectures all fail (see Exercises 5 and 6), but the
following related result holds.

Theorem 6.3.11. Let F : [a,b]→ R be a continuous function such that

(a) F is differentiable at all except countably many of the points in [a,b], and
(b) F ′ is integrable.

Then F is absolutely continuous, and so F(x) = F(a)+
∫ x

a F ′(t)dt holds at each x
in [a,b].

Theorem 6.3.11 would fail if condition (b) were removed (see Exercise 6), and
so condition (a) does not imply condition (b). There is, however, an analogue to
Theorem 6.3.11 for the Henstock–Kurzweil integral in which condition (b) is not
needed; see Exercise 23 in Appendix H.

For the proof we need the following definitions and lemmas.
A function f : R → (−∞,+∞] is lower semicontinuous if for each x in R and

each real number A such that A < f (x) there is a positive number δ such that
A < f (t) holds whenever t satisfies |t − x| < δ . A function f : R → [−∞,+∞) is
upper semicontinuous if − f is lower semicontinuous. In other words, f is upper
semicontinuous if for each x in R and each real number A such that f (x) < A there
is a positive number δ such that f (t) < A holds whenever t satisfies |t − x| < δ .
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in [a,b]. Suppose that {(si, ti)} is a finite sequence of disjoint open subintervals of
[a,b]. Then for each i we have

|F(ti)G(ti)−F(si)G(si)| ≤ |F(ti)−F(si)| |G(ti)|+ |F(si)| |G(ti)−G(si)|
≤ N|F(ti)−F(si)|+M|G(ti)−G(si)|,

and so

∑
i

|F(ti)G(ti)−F(si)G(si)| ≤ N ∑
i

|F(ti)−F(si)|+M∑
i

|G(ti)−G(si)|.

Since F and G are absolutely continuous, we can make the sums on the right side
of this inequality small by making ∑i(ti − si) small. The absolute continuity of FG
follows.

Thus Corollary 6.3.8 can be applied to the function FG. Since FG′ and F ′G are
integrable (check this) and since

(FG)′(x) = F(x)G′(x)+F ′(x)G(x)

holds at almost every x in [a,b], the proof is complete. �	
Theorem 6.2.3 also implies the following strengthened version of Theorem 6.3.6

(see also Exercises 3 and 4).

Proposition 6.3.10. Suppose that f belongs to L 1(R,Mλ ∗ ,λ ,R). Then

lim
I

1
λ (I)

∫

I
| f (t)− f (x)|dt = 0 (2)

holds at λ -almost every x in R; here I is a closed interval that contains x, and the
limit is taken as the length of I approaches zero.

Points x at which (2) holds are called Lebesgue points7 of f , and the set of all
Lebesgue points of f is called the Lebesgue set of f .

Proof. It is enough to choose an arbitrary bounded open interval (a,b) and to show
that (2) holds at almost every x in (a,b).

Let us first suppose that the integrable function f is in fact Borel measurable. For
each rational number r let μr be the finite Borel measure on R defined by

μr(A) =
∫

A∩(a,b)
| f (t)− r|dt.

7Some authors use the condition limh→0+
1
h

∫ h
0 | f (x+ t)+ f (x− t)− 2 f (x)|dt = 0 as the defining

condition for being a Lebesgue point; of course each point that satisfies (2) is also a Lebesgue point
in this sense.
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A be the matrix of T with respect to the usual basis of Rd , and recall hows one can
use Gaussian elimination to find the inverse of A by performing row operations
on the d by 2d matrix (A|I), consisting of A followed by the d by d identity
matrix. How are linear maps satisfying conditions (a), (b), and (c) of the proof of
Proposition 6.1.3 related to row operations?)

2. Show that if F is differentiable at x0, then F ′(x0) is unique. (Hint: Check that if
S and T are both derivatives of F at x0, then

lim
x→x0

‖(S−T )(x− x0)‖
‖x− x0‖ = 0;

conclude that S = T .)
3. Show that if F is differentiable at x0, then F is continuous at x0. (Hint:

Use Eq. (2), together with the continuity of x �→ F ′(x0)(x), to verify that
limx→x0 ‖F(x)−F(x0)‖= 0.)

4. Show that if T : X → Y is a continuous linear map from one Banach space to
another, then T is differentiable, with derivative T , at each point in X . (Hint:
Simplify the expression T (x)−T (x0)−T (x− x0).)

5. Prove the chain rule, Proposition 6.1.4. (Hint: Let y0 = G(x0) and define
remainders RF,y0 and RG,x0 by

F(y) = F(y0)+F ′(y0)(y− y0)+RF,y0(y− y0)

and

G(x) = G(x0)+G′(x0)(x− x0)+RG,x0(x− x0);

then compute F(G(x)) in terms of F(G(x0)), G′(x0), F ′(G(x0)), RG,x0 , RF,y0 , and
x− x0. Consider the behavior of the remainders as x approaches x0.)

6. Let ‖ ·‖2 and ‖ ·‖∞ be the norms on R
d defined by ‖x‖2 = (∑i x2

i )
1/2 and ‖x‖∞ =

maxi |xi|.
(a) Show that each x in R

d satisfies ‖x‖∞ ≤ ‖x‖2 ≤
√

d ‖x‖∞.
(b) Use part (a) to show that the open sets determined by ‖ · ‖2 are the same as

those determined by ‖ · ‖∞.
7. Verify Eq. (3). (Hint: Suppose that x ∈ R

d and y = T (x), and calculate an upper
bound for |yi| in terms of ‖x‖∞ and the elements of the matrix (ai j). Also note
how to construct a vector x that satisfies ‖x‖∞ = 1 and ‖T (x)‖∞ = maxi ∑ j |ai j|
by letting x be an appropriate sequence of 1’s and −1’s.)

8. Prove Lemma 6.1.5. (Hint: First consider the derivatives (as linear operators from
R

d to R) of the components fi of F . Let x and x0 belong to U , and define
points u j, for j = 0, . . . , d, by letting the first j components of u j agree with
the corresponding components of x and letting the remaining components of u j

agree with the corresponding components of x0. If x0 is fixed and x is sufficiently
close to x0, then each ui belongs to U . Use the formula fi(x) − fi(x0) =



164 6 Differentiation

∑d
j=1( fi(u j)− fi(u j−1)), together with the mean value theorem (Theorem C.14),

to show that there are points v1, . . . , vd such that4

fi(x)− fi(x0) =
d

∑
j=1

(∂ fi(v j)/∂x j)(x j − x0, j) (11)

and such that for each j the point v j lies on the line segment connecting u j−1

and u j. Deduce the differentiability of fi at x0 and compute the matrix of f ′i (x0).
Finally, turn to F .)

9. Prove Lemma 6.1.6. (Hint: Let f1, . . . , fd be the components of F . It is enough
to show that | fi(x1)− fi(x0)| ≤C‖x1 − x0‖∞ holds for each i. Use the chain rule
to compute the derivative of the function t �→ fi(x0 + t(x1−x0)), and then use the
mean value theorem (Theorem C.14) and Exercise 3.5.1 to obtain the required
bound for | fi(x1)− fi(x0)|.)

6.2 Differentiation of Measures

Let C be the family consisting of those nondegenerate closed cubes in R
d whose

edges are parallel to the coordinate axes. In other words, let C be the collection of
all sets of the form

[a1,b1]× [a2,b2]×·· ·× [ad,bd ],

where [a1,b1], . . . , [ad ,bd ] are closed subintervals of R that have a common nonzero
length. For each cube C in C let e(C) be the length of the edges of C.

Suppose that A is a subset of Rd . A Vitali covering of A is a subfamily V of C
such that for each x in A and each positive number δ there is a cube C that belongs
to V , contains x, and satisfies e(C)< δ .

The following fact about Vitali coverings forms the basis for our treatment of
differentiation theory. The reader should note, however, that differentiation theory
can also be based on the “rising sun lemma” of F. Riesz; see, for example, Chapter I
of Riesz and Nagy [99].

Theorem 6.2.1 (Vitali Covering Theorem). Let A be an arbitrary nonempty
subset of Rd, and let V be a Vitali covering of A. Then there is a finite or infinite
sequence {Cn} of disjoint sets that belong to V and are such that ∪nCn contains
λ -almost every point in A.

Proof. First consider the case where the set A is bounded. Choose a bounded open
subset U of R

d that includes A, and let V0 consist of those cubes in V that are
included in U . It is clear that V0 is a Vitali covering of A. Let

δ1 = sup{e(C) : C ∈ V0}.

4The symbols x j and x0, j in (11) refer to the jth components of the vectors x and x0.
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holds at almost every x in [a,b], it follows from Propositions 2.1.5 and 2.2.2 that
g is Lebesgue measurable. Since the set of points where F is differentiable is the
complement in [a,b] of a Lebesgue null set, it follows that F ′ is also Lebesgue
measurable. �	

We can now derive the following characterization of the absolutely continuous6

functions on a closed bounded interval.

Corollary 6.3.8. A function F : [a,b]→ R is absolutely continuous if and only if it
is differentiable λ -almost everywhere, F ′ is integrable, and F can be reconstructed
from its derivative through the formula

F(x) = F(a)+
∫ x

a
F ′(t)dt. (1)

Proof. First suppose that F is absolutely continuous. Then F is also of finite
variation (Exercise 4.4.5), and so Proposition 4.4.6, applied to the function

x �→

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≤ a,

F(x)−F(a) if a < x < b,

F(b)−F(a) if b ≤ x,

provides a function f in L 1(R,B(R),λ ,R) such that

F(x) = F(a)+
∫ x

a
f (t)dt

holds at each x in [a,b]. Theorem 6.3.6 then implies that F is differentiable, with
derivative given by F ′(x) = f (x), at almost every such x; hence (1) follows.

The other half of the proof is easy; Proposition 4.4.6 (see also Proposition 2.2.5
or Exercise 2) implies that each F that has an integrable derivative and satisfies (1)
is absolutely continuous. �	

We are now in a position to prove the following version of integration by parts.

Corollary 6.3.9. Let F and G be absolutely continuous functions on the interval
[a,b]. Then

F(b)G(b)−F(a)G(a) =
∫ b

a
F(t)G′(t)dt +

∫ b

a
F ′(t)G(t)dt.

Proof. We begin by showing that the function FG is absolutely continuous. Since
the functions F and G are continuous and the interval [a,b] is compact, there are
positive numbers M and N such that |F(x)| ≤ M and |G(x)| ≤ N hold at each x

6It is easy to modify the definition of absolute continuity for functions on R to make it apply to
functions on [a,b].
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For each n form the Lebesgue decomposition μn = μn,a +μn,s of μn with respect
to Lebesgue measure,5 let fn be a Radon–Nikodym derivative of μn,a with respect to
λ , and let Nn be a Borel set of Lebesgue measure zero on which μn,s is concentrated.
It is easy to check that ∑n μn,s is concentrated on ∪nNn and that ∑n μn,a(A) =∫

A ∑n fn dλ holds for each A in B(R). Thus the Lebesgue decomposition of μ is
given by μ = (∑n μn,a) + (∑n μn,s), and ∑n fn is a Radon–Nikodym derivative of
∑n μn,a with respect to λ . It now follows from Theorem 6.2.3 and Lemma 6.3.1 that

∑
n

F ′
n(x) = ∑

n
(Dμn)(x) = ∑

n
fn(x) = (Dμ)(x) = F ′(x)

holds at almost every x in R.
Arguments similar to those given in the second and third paragraphs of the proof

of Theorem 6.3.3 allow one to reduce the proposition to the case just considered;
the details are left to the reader. �	
Theorem 6.3.6 (Lebesgue). Suppose that f belongs to L 1(R,Mλ ∗ ,λ ,R) and that
F : R → R is defined by F(x) =

∫ x
−∞ f (t)dt. Then F is differentiable, and its

derivative is given by F ′(x) = f (x), at λ -almost every x in R.

Proof. First suppose that f is nonnegative, and define a finite Borel measure μ on
R by μ(A) =

∫
A f dλ . Let f0 be a Borel measurable function that agrees with f

almost everywhere (see Proposition 2.2.5). Then Theorem 6.2.3 and Lemma 6.3.1
imply that

F ′(x) = (Dμ)(x) = f0(x) = f (x)

holds at almost every x, and so the proof is complete in the case where f is
nonnegative.

An arbitrary f in L 1(R,Mλ ∗ ,λ ,R) can be dealt with through the decomposition
f = f+− f−. �	

We will often need to know that almost everywhere derivatives of reasonable
functions are measurable. This is given by the following lemma.

Lemma 6.3.7. Let F : [a,b] → R be a Lebesgue measurable function that is
differentiable almost everywhere. Suppose that g : [a,b]→ R satisfies g(x) = F ′(x)
almost everywhere. Then g is Lebesgue measurable, as is F ′ (whose domain is the
set where F is differentiable).

Proof. Extend F to the interval [a,+∞) by letting F(x) be equal to F(b) if x > b.
Since

g(x) = lim
n

n(F(x+
1
n
)−F(x))

5Thus μn,a � λ and μn,s ⊥ λ .
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Then δ1 satisfies 0 < δ1 < +∞ (recall that A is nonempty and U is bounded), and
we can choose a cube C1 that belongs to V0 and satisfies e(C1)> δ1/2. We continue
this construction inductively, producing sequences {δn} and {Cn} as follows. If A ⊆
∪n

k=1Ck, then the construction is complete. Otherwise there are points in A that lie
outside ∪n

k=1Ck, and so, since ∪n
k=1Ck is closed and V0 is a Vitali covering of A, there

are cubes in V0 that are disjoint from ∪n
k=1Ck. Thus the quantity δn+1 defined by

δn+1 = sup{e(C) : C ∈ V0 and C∩ (∪n
k=1Ck) =∅}

satisfies 0 < δn+1 < +∞, and we can choose a cube Cn+1 in V0 that satisfies
e(Cn+1)> δn+1/2 and is disjoint from ∪n

k=1Ck. This completes the induction step in
the construction of the sequences {δn} and {Cn}.

If this construction terminates in a finite number, say N, of steps, then A ⊆
∪N

n=1Cn and {Cn}N
n=1 is the required sequence. We turn to the case in which the

construction does not terminate.
Since the sets Cn are disjoint and included in the bounded set U , the series

∑n λ (Cn) must be convergent; thus limn λ (Cn) = 0 and hence limn δn = 0. For each n
let Dn be the cube in C with the same center as Cn but with edges 5 times as long as
those of Cn. Then, since λ (Dn) = 5dλ (Cn), the series ∑n λ (Dn) is also convergent.
We will show that

A−∪N
n=1Cn ⊆ ∪∞

n=N+1Dn (1)

holds for each positive integer N. This inclusion implies that

λ ∗(A−∪∞
n=1Cn)≤ λ ∗(A−∪N

n=1Cn)≤
∞

∑
n=N+1

λ (Dn);

since the convergence of ∑∞
n=1 λ (Dn) implies that limN ∑∞

n=N+1 λ (Dn) = 0, it
follows that λ ∗(A−∪∞

n=1Cn) = 0 and hence that {Cn} is the required sequence.
We turn to the proof of (1). Suppose that x belongs to A−∪N

n=1Cn. Since ∪N
n=1Cn

is closed and V0 is a Vitali covering of A, there are cubes in V0 that contain x and are
disjoint from ∪N

n=1Cn. Let C be such a cube. Then C meets ∪k
n=1Cn for some k, since

otherwise we would have e(C) ≤ δk for all k, contradicting limn δn = 0. Let k0 be
the smallest of those positive integers k for which C meets ∪k

n=1Cn. Then e(C)≤ δk0

and δk0/2 ≤ e(Ck0), and it follows that e(C) ≤ 2e(Ck0). The definition of the sets
Dn, the inequality e(C)≤ 2e(Ck0), and the fact that C∩Ck0 �=∅ together imply that
C ⊆ Dk0 . Since C was chosen to be disjoint from ∪N

n=1Cn, it follows that k0 ≥ N +1,
and so

x ∈C ⊆ Dk0 ⊆
∞⋃

n=N+1

Dn.

Relation (1) follows, since x was an arbitrary element of A−∪N
n=1Cn. This completes

the proof of the theorem in the case where A is bounded.
Now suppose that the set A is unbounded. Let U1, U2, . . . be disjoint bounded

open subsets of Rd such that λ (Rd − (∪∞
k=1Uk)) = 0; for example, the open cubes
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whose edges have length 1 and whose corners have integer coordinates will do. For
each k such that A∩Uk �=∅ we can use the preceding argument to choose a sequence
{Ck, j} j of disjoint cubes that belong to V and are such that ∪ jCk, j is included in Uk

and contains almost every point in A∩Uk. Merging the resulting sequences into one
sequence completes the proof. �	

Let μ be a finite Borel measure on R
d . Then (Dμ)(x), the upper derivate of μ at

x, is defined by

(Dμ)(x) = lim
ε↓0

sup

{
μ(C)
λ (C)

: C ∈ C , x ∈C, and e(C)< ε
}

, (2)

and (Dμ)(x), the lower derivate of μ at x, is defined by

(Dμ)(x) = lim
ε↓0

inf

{
μ(C)
λ (C)

: C ∈ C , x ∈C, and e(C)< ε
}

. (3)

The upper derivate and the lower derivate of μ are the [0,+∞]-valued functions Dμ
and Dμ whose values at x are given by (2) and (3). The measure μ is differentiable
at x if (Dμ)(x) and (Dμ)(x) are finite and equal, and at each such x the derivative
(Dμ)(x) of μ at x is defined by

(Dμ)(x) = (Dμ)(x) = (Dμ)(x). (4)

The derivative of μ is the function Dμ that is defined by (4) at each x at which μ is
differentiable and is undefined elsewhere.

Lemma 6.2.2. Let μ be a finite Borel measure on R
d. Then Dμ , Dμ , and Dμ are

Borel measurable.

Proof. Let U be the collection of all open cubes in R
d whose edges are parallel

to the coordinate axes, and for each U in U let e(U) be the length of the edges of
U . Note that for each cube C in C there is a decreasing sequence {Un} of cubes
in U for which C = ∩nUn and hence (Proposition 1.2.5) for which μ(C)/λ (C) =
limn μ(Un)/λ (Un). Likewise for each cube U in U there is an increasing sequence
{Cn} of cubes in C for which U = ∪nCn and hence for which μ(U)/λ (U) =
limn μ(Cn)/λ (Cn). It follows that (Dμ)(x) is given by

(Dμ)(x) = lim
ε↓0

sup

{
μ(U)

λ (U)
: U ∈ U , x ∈U , and e(U)< ε

}

.

For each positive ε let us define a function sε : Rd → [0,∞] whose value at x is the
supremum considered above:

sε (x) = sup

{
μ(U)

λ (U)
: U ∈ U , x ∈U , and e(U)< ε

}

.

Then for each a in R we have
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The following is one of the basic theorems of differentiation theory.

Theorem 6.3.3 (Lebesgue). Let F : R→ R be nondecreasing. Then F is differen-
tiable λ -almost everywhere.

Proof. First suppose that F is bounded, nondecreasing, and right-continuous, and
that it vanishes at −∞. Then there is a finite Borel measure μ such that F(x) =
μ((−∞,x]) holds at each x in R (Proposition 1.3.10), and so Theorem 6.2.3 and
Lemma 6.3.1 imply that F is differentiable almost everywhere.

Now remove the requirement that F be right-continuous, and define G : R→ R

by G(x) = F(x+). Then G is right-continuous (Lemma 6.3.2) and so, by what
we have just proved, differentiable almost everywhere. Note that F and G are
continuous at the same points and they agree at each point at which they are
continuous; furthermore, if F(x0) = G(x0), then F(x)−F(x0)

x−x0
lies between G(x)−G(x0)

x−x0

and G(x−)−G(x0)
x−x0

. Hence if G is differentiable at x0, then F is differentiable at x0, and
F ′(x0) = G′(x0). The almost everywhere differentiability of F follows.

Finally, suppose that F is an arbitrary nondecreasing function. It is enough to
prove that F is differentiable almost everywhere on an arbitrary bounded open
interval (a,b). Since we can reduce this to the preceding case by considering the
function

x �→

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≤ a,

F(x)−F(a) if a < x < b,

F(b)−F(a) if b ≤ x,

the proof is complete. �	
Corollary 6.3.4. Let F : R → R be of finite variation. Then F is differentiable
λ -almost everywhere.

Proof. Since each function of finite variation is the difference of two nondecreasing
functions (Proposition 4.4.2), this is an immediate consequence of Theorem 6.3.3.

�	
Proposition 6.3.5 (Fubini). Let Fn : R → R, n = 1, 2, . . . , be nondecreasing
functions such that the series ∑n Fn(x) converges at each x in R. Define F : R→ R

by F(x) = ∑n Fn(x). Then F ′ = ∑n F ′
n holds λ -almost everywhere.

Proof. First suppose that the functions Fn, for n = 1, 2, . . . , are bounded,
nondecreasing, and right-continuous, that they vanish at −∞, and that the function
F (defined by F(x) = ∑n Fn(x)) is bounded. Let μn, n = 1, 2, . . . , be the finite Borel
measures corresponding to the functions Fn, and define a Borel measure μ on R by
μ(A) = ∑n μn(A) (check that μ is a measure). Since we are temporarily assuming
that F is bounded and since μ((−∞,x]) = F(x) holds at each x, the measure μ is
finite.
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measure of A∩ I. (More precisely, let T be the map of the interval [0,
√

2] onto
I given by T (t) = (t/

√
2)(1,1), and define μ by μ(A) = λ (T−1(A)).) Find Dμ

and Dμ .
3. Let f be a nonnegative function in L 1(Rd ,B(Rd),λ ,R), and let μ be the finite

Borel measure on R
d given by μ(A) =

∫
A f dλ .

(a) Show that (Dμ)(x) = f (x) holds at each x at which f is continuous.
(b) Show by example that the equation (Dμ)(x) = f (x) need not hold at every x

in R
d .

4. Show by example that the assumption that μ � λ cannot be omitted in
Lemma 6.2.5.

6.3 Differentiation of Functions

Let us apply the results of Sect. 6.2 to the differentiation of functions of a real
variable. We begin with two lemmas.

Lemma 6.3.1. Let μ be a finite Borel measure on R, and let F : R→ R be defined
by F(x) = μ((−∞,x]). If μ is differentiable at x0, then F is differentiable at x0, and
F ′(x0) = (Dμ)(x0).

Proof. The differentiability of μ at x0 implies that μ({x0}) = 0 and hence that F

is continuous at x0. Thus F(x)−F(x0)
x−x0

is equal to μ([x0,x])
λ ([x0,x])

if x0 < x and to μ((x,x0])
λ ((x,x0])

if

x < x0. Now apply the definitions of (Dμ)(x0) and F ′(x0) (note that the half-open
interval (x,x0] causes no difficulty, since its measure is the limit of the measure of
[x+ 1

n ,x0] as n approaches infinity). �	
Lemma 6.3.2. Let F : R→ R be nondecreasing. Then

(a) the one-sided limits F(x−) and F(x+) exist at each x in R,
(b) the set of points at which F fails to be continuous is at most countably infinite,

and
(c) the function G : R → R defined by G(x) = F(x+) is nondecreasing and right-

continuous, and agrees with F at each point at which F is continuous.

Proof. Since F is nondecreasing, the limits F(x−) and F(x+) exist and are given
by F(x−) = sup{F(t) : t < x} and F(x+) = inf{F(t) : t > x}. For each x we have
F(x−)≤ F(x)≤ F(x+), and so F is continuous at x if and only if F(x−) = F(x+).
Let D be the set of points at which F is not continuous, and for each x in D choose
a rational number rx that satisfies F(x−)< rx < F(x+). Then rx and ry are distinct
whenever x and y are distinct elements of D, and the countability of D follows from
the countability of Q.

Now suppose that G is defined by G(x) = F(x+). Then G satisfies the relation
G(x) = inf{F(t) : t > x}, which implies that G is nondecreasing and right-
continuous. Since F(x) = F(x+) holds if F is continuous at x, the proof is complete.

�	
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{x ∈R
d : sε (x)> a}=

⋃
{

U ∈ U : e(U)< ε and
μ(U)

λ (U)
> a

}

,

and so sε is Borel measurable. If {εn} is a sequence of numbers that decreases to
0, then Dμ is the pointwise limit of the sequence of functions {sεn} and so is Borel
measurable. The measurability of Dμ can be proved in a similar way.

The measurability of Dμ is a consequence of Proposition 2.1.3 and the measura-
bility of Dμ and Dμ . �	

The following theorem is the main result of this section.

Theorem 6.2.3. Let μ be a finite Borel measure on R
d. Then μ is differentiable at

λ -almost every point in R
d , and the function defined by

x �→
{
(Dμ)(x) if μ is differentiable at x,

0 otherwise

is a Radon–Nikodym derivative of the absolutely continuous part of μ .

We will need the following two lemmas for the proof of Theorem 6.2.3.

Lemma 6.2.4. Let μ be a finite Borel measure on R
d, let a be a positive real

number, and let A be a Borel subset of Rd such that (Dμ)(x) ≥ a holds at each
x in A. Then μ(A)≥ aλ (A).

Proof. We can certainly assume that A is nonempty. Let U be an open set that
includes A, let ε satisfy 0 < ε < a, and let V be the family consisting of those cubes
C in C that are included in U and satisfy μ(C) ≥ (a− ε)λ (C). Since (Dμ)(x) ≥ a
holds at each x in A, the family V is a Vitali covering of A. Thus the Vitali covering
theorem (Theorem 6.2.1) provides a sequence {Cn} of disjoint cubes that belong to
V and satisfy λ (A−∪nCn) = 0. If we use the fact that the sets Cn are disjoint and
included in U , the fact that each Cn satisfies μ(Cn) ≥ (a− ε)λ (Cn), and finally the
fact that λ (A−∪nCn) = 0, we find

μ(U)≥ ∑
n

μ(Cn)≥ ∑
n
(a− ε)λ (Cn)

= (a− ε)λ
(⋃

n

Cn

)
≥ (a− ε)λ (A).

Since μ is regular (Proposition 1.5.6) and ε can be made arbitrarily close to 0, the
inequality μ(A)≥ aλ (A) follows. �	
Lemma 6.2.5. Let μ be a finite Borel measure on R

d that is absolutely continuous
with respect to Lebesgue measure, let a be a positive real number, and let A be a
Borel subset of Rd such that (Dμ)(x)≤ a holds at each x in A. Then μ(A)≤ aλ (A).

Proof. We can again assume that A is not empty. Let U be an open set that includes
A, and let ε be a positive number. Arguments similar to those used in the proof of the
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preceding lemma show that there is a sequence {Cn} of disjoint closed cubes that
are included in U , satisfy μ(Cn) ≤ (a+ ε)λ (Cn), and are such that ∪nCn contains
λ -almost every point in A. Since μ is absolutely continuous with respect to λ , the
union of the sets Cn also contains μ-almost every point in A. It follows that

(a+ ε)λ (U)≥ (a+ ε)∑
n

λ (Cn)≥ ∑
n

μ(Cn) = μ(∪nCn)≥ μ(A).

Since λ is regular (Proposition 1.4.1) and ε is arbitrary, it follows that μ(A) ≤
aλ (A). �	
Proof of Theorem 6.2.3. We begin with the case where μ is singular with respect
to Lebesgue measure. Let N be a Borel set such that λ (N) = 0 and μ(Nc) = 0. For
each n define a subset Bn of Nc by

Bn = {x ∈ Nc : (Dμ)(x)≥ 1/n}.

Then Lemma 6.2.4 (with a equal to 1/n) implies that

λ (Bn)≤ nμ(Bn)≤ nμ(Nc) = 0

holds for each n. Thus {x ∈ R
d : (Dμ)(x) > 0}, since it is a subset of N ∪ (∪nBn),

has Lebesgue measure 0; since also 0 ≤Dμ ≤Dμ , it follows that μ is differentiable,
with derivative 0, λ -almost everywhere.

Next let us consider the case where μ is absolutely continuous with respect to
Lebesgue measure. We start by proving that in this case Dμ and Dμ are equal almost
everywhere. For positive rational numbers p and q such that p< q, define A(p,q) by

A(p,q) = {x ∈R
d : (Dμ)(x)≤ p < q ≤ (Dμ)(x)}.

Lemmas 6.2.4 and 6.2.5 imply that

qλ (A(p,q))≤ μ(A(p,q))≤ pλ (A(p,q));

it follows from this first that λ (A(p,q)) is finite and then, since p < q, that
λ (A(p,q)) = 0. Since (Dμ)(x)≤ (Dμ)(x) holds for every x, while

{x ∈R
d : (Dμ)(x)< (Dμ)(x)}=

⋃

p,q

A(p,q),

it follows that Dμ and Dμ are equal λ -almost everywhere. (Note that we have not
yet shown that they are finite almost everywhere.)

We continue to assume that μ � λ . Let f be a Radon–Nikodym derivative of μ
with respect to λ . An easy modification of the argument in the preceding paragraph
shows that f ≤ Dμ holds λ -almost everywhere (use the fact that whenever a is a
positive number and A is a Borel set such that f (x) ≥ a holds at each x in A, then
μ(A) =

∫
A f dλ ≥ aλ (A)). A similar argument shows that f ≥ Dμ holds λ -a .e.
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Since in addition f is finite almost everywhere, it follows that f , Dμ , and Dμ are
finite and equal almost everywhere and hence that μ is differentiable, with derivative
f , almost everywhere.

Finally, let μ be an arbitrary finite Borel measure on R
d , let μ = μa + μs be

its Lebesgue decomposition, and let f be a Radon–Nikodym derivative of μa with
respect to λ . Then

(Dμ)(x) = (Dμa)(x)+ (Dμs)(x) = f (x)+ 0 = f (x)

holds at almost every x, and the proof is complete. �	
Let E be a Lebesgue measurable subset of R

d . A point x in R
d is a point of

density of E if for each positive ε there is a positive δ such that
∣
∣
∣
∣
λ (E ∩C)

λ (C)
− 1

∣
∣
∣
∣< ε

holds wheneverC is a cube that belongs to C , contains x, and satisfies e(C)< δ . Less
formally, x is a point of density of E if limλ (E ∩C)/λ (C) = 1, where the limit is
taken as C approaches x (through the collection of cubes in C that contain x). A point
x is a point of dispersion of E if it is a point of density of Ec. Equivalently, x is a
point of dispersion of E if limλ (E∩C)/λ (C) = 0 holds as the cube C approaches x.

Corollary 6.2.6 (Lebesgue Density Theorem). Let E be a Lebesgue measurable
subset of Rd. Then λ -almost every point in E is a point of density of E, and λ -almost
every point in Ec is a point of dispersion of E.

Proof. First suppose that λ (E) < +∞, and define a finite Borel measure μ on R
d

by μ(A) = λ (A∩E). Choose a Borel subset E0 of E such that λ (E −E0) = 0 (see
Lemma 1.5.3). Since μ � λ and since χE0 is a Radon–Nikodym derivative of μ with
respect to λ , Theorem 6.2.3 implies that almost every x in E satisfies (Dμ)(x) = 1
and so is a point of density of E .

If λ (E) is infinite and if {En} is a sequence of Lebesgue measurable sets of finite
measure such that E = ∪nEn, then almost every point of E is a point of density of
some En and so is a point of density of E . Finally, almost every point of Ec is a point
of density of Ec and so is a point of dispersion of E . �	

Exercises

1. Show that the union of an arbitrary family of closed cubes with edges parallel
to the coordinate axes is Lebesgue measurable. (Hint: Use the Vitali covering
theorem.)

2. Let I be the line segment in R
2 that connects the points (0,0) and (1,1). Define a

finite Borel measure μ on R
2 by letting μ(A) be the one-dimensional Lebesgue


