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(c) Show thatx+— |f(x)| is measurable with respect to the completion .27, of ./
under U.

(d) How should [ fdu be defined if [|f|dM is finite? (Of course I is the
completion of 1.)

5. Let (X,47) be a measurable space, and let E be a Banach space. An E-valued
measure on (X,2/) is a function v: o/ — E such that v(&) = 0 and such that
V(U Ai) = X2, V(A;) holds for each infinite sequence {A;} of disjoint sets in
&/ . The variation |v|: o/ — [0,4-c] of the E-valued measure Vv is defined by
letting |v|(A) be the supremum of the sums Y| |V(A;)|, where {A;}" | ranges
over all finite partitions of A into .2/ -measurable sets.

(a) Show that the variation of an E-valued measure on (X,47) is a positive
measure on (X, .<7).

(b) Show by example that the variation of an E£-valued measure may not be finite.
(Hint: Let X be N, let &7 be Z(N), let E be £2, and define v: o/ — E by
letting v(A) be the sequence

1 ifnea,
nw—
0 ifngA)

6. Let (X, <7, 1) be a measure space, let E be a Banach space, and let f: X — F be
Bochner integrable. Define v: o — E by V(A) = [ yafdu.
(a) Show that v is an E-valued measure on (X, %).
(b) Show that the variation |v| of v is finite.

7. Let A be Lebesgue measure on ([0,1],%([0,1])), and let E be the Banach
space L'([0,1],4([0,1]),4,R). Define v: %(]0,1]) — E by letting v(A) be the
element of E determined by the characteristic function y,4 of A.

(a) Show that v is an E-valued measure on ([0, 1],%([0,1])).

(b) Show that |v| is finite.

(c) Show that v is absolutely continuous with respect to A (in other words, show
that v(A) = 0 holds whenever A satisfies A(A) = 0).

(d) Show that there is no Bochner integrable function f: [0, 1] — E that satisfies
V(A) = [ xaf dA foreach A in %([0, 1]). Thus the Radon—-Nikodym theorem
fails for the Bochner integral. (Hint: Use Proposition E.11.)



Appendix E
The Bochner Integral

Let (X,<7) be a measurable space, let E be a real or complex Banach space (that
is, a Banach space over R or C), and let #(FE) be the c-algebra of Borel subsets
of E (that is, let Z(F) be the c-algebra on E generated by the open subsets of E).
We will sometimes denote the norm on E by |- |, rather than by the more customary
I - ||- This will allow us to use || - || for the norm of elements of certain spaces of
E-valued functions; see, for example, formula (7) below. A function f: X — E is
Borel measurable if it is measurable with respect to <7 and H(E), and is strongly
measurable if it is Borel measurable and has a separable range (here by the range
of f we mean the subset f(X) of E). The function f is simple if it has only finitely
many values. Of course, a simple function is strongly measurable if and only if it is
Borel measurable.

It is easy to see that if f is Borel measurable, then x — | f(x)| is <7-measurable
(use Lemma 7.2.1 and Proposition 2.6.1).

Note that if E is separable, then every E-valued Borel measurable function is
strongly measurable. On the other hand, if E is not separable and if (X,/) =
(E,#(E)), then the identity map from X to E is Borel measurable, but is not
strongly measurable.

E.1. (Proposition) Let (X,</) be a measurable space, and let E be a real or
complex Banach space. Then

(a) the collection of Borel measurable functions from X to E is closed under the
formation of pointwise limits, and

(b) the collection of strongly measurable functions from X to E is closed under the
formation of pointwise limits.

Proof. Part (a) is a special case of Proposition 8.1.10, and so we can turn to part (b).

Let {f,} be a sequence of strongly measurable functions from X to E, and
suppose that { f,,} converges pointwise to f. It follows from the separability of the
sets f,(X),n=1, 2, ..., that U, f,(X) is separable, that the closure of U, f,(X) is
separable, and finally that f(X) is separable (see D.33). Since f is Borel measurable
(part (a)), the proof is complete. O
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E.2. (Proposition) Ler (X,) be a measurable space, let E be a real or complex
Banach space, and let f: X — E be strongly measurable. Then there is a sequence
{fu} of strongly measurable simple functions such that

flx)= li’rln Ja(x)

and

()| <1/ (%)

,forn=1,2,...,
hold at each x in X.

Proof. We can certainly assume that f(X) contains at least one nonzero element of
E. Let C be a countable dense subset of f(X), let C™ be the set of rational multiples
of elements of C, and let {y, } be an enumeration of C™~. We can assume that y; = 0.
It is easy to check (do so) that

for each y in f(X) and each positive number € there is a term
ym of {yn} that satisfies |y,,| < |y| and |y, —y| < €. (1)

For each x in X and each positive integer n define a subset A, (x) of E by

An(x) ={yj:j<nand|y;| <[f(x)[}.

Since y; = 0, each A, (x) is nonempty.
We now construct the required sequence {f, } by letting f;,(x) be the element of
Ap(x) that lies closest to f(x) (in case

|f(x) —yj| =inf{|f(x) —yi| : yi € Au(x)} (2)

holds for several elements y; of A,(x), let f,(x) be yj,, where jj is the smallest
value of j for which y; belongs to A,(x) and satisfies (2)). It is clear that each f,
is a simple function and that |f;,(x)| < |f(x)| holds for each n and x. Since the sets
{x € X : fu(x) = y;} can be described by means of inequalities involving |f(x)],
lyil, i=1, ..., n,and |f(x) —yi|, i =1, ..., n, each f, is strongly measurable.
Finally, observation (1) implies that {f,} converges pointwise to f (if y,, satisfies
the inequalities |yn| < |f(x)] and |y, — f(x)] < €, then |f,(x) — f(x)| < € holds
whenever n > m). O

Let us note two consequences of Propositions E.1 and E.2. The first is immediate:
a function from X to E is strongly measurable if and only if it is the pointwise limit
of a sequence of Borel (or strongly) measurable simple functions. The second is
given by the following corollary (see, however, Exercise 2).

E.3. (Corollary) Let (X,.<7) be a measurable space, and let E be a real or complex
Banach space. Then the set of all strongly measurable functions from X to E is a
vector space.
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E.11. (Proposition) Let (X, .o/, 1) be a measure space, let E be a real or complex
Banach space, and let f: X — E be integrable. Then

/(pofdu=<p(/fdu> (10)

holds for each @ in E*.
The reader should see Exercise 3 for a strengthened form of Proposition E.11.

Proof. 1t is easy to check (do so) that the integrability of ¢ o f follows from that
of f. If f is a simple integrable function, attaining the nonzero values ay, ..., a
on the sets Ay, ..., Ay, then each side of (10) is equal to 2{»‘:1 o(a;)u(A;); hence
(10) holds for simple integrable functions. Next suppose that f is an arbitrary
integrable function and that {f,} is a sequence of simple integrable functions such
that f(x) = lim,, f,,(x) and sup,, | f»(x)| <|f(x)| hold at each x in X (Proposition E.2).
Then Theorems E.6 and 2.4.5 enable us to take limits in the relation [ @o f,du =
o([ fadp), and (10) follows for arbitrary integrable functions. O

The reader should note Exercises 5 and 7, which show some difficulties that arise
in the extension of integration theory to vector-valued functions. The issues hinted at
in these exercises have been the subject of much research over the years; see Diestel
and Uhl [37] for a summary and for further references.

Exercises

1. Show that a simpler proof of Proposition E.2 could be given if the f,’s were not
required to satisfy the inequality | f, (x)| < |f(x)]-

2. Suppose that (X,.o7) is a measurable space and that E is a Banach space. Show
by example that the set of Borel measurable functions from X to E can fail to be
a vector space. (Hint: Let E be a Banach space with cardinality greater than that
of the continuum, and let (X, o) be (E X E, #(E) x B(E)). See Exercise 5.1.8.)

3. Let (X, </, 1) be a measure space, let E be a Banach space, and let f: X — E
be Bochner integrable. Show that [ fdu is the only element x of E that satisfies
©(xo) = [ @o fdu for each ¢ in E*. (Hint: Use Corollary E.8.)

4. (This exercise hints at another, rather common, way to define strong meas-
urability and Bochner measurability.) Suppose that (X,<7,u) is a measure
space and that £ is a Banach space. Let f: X — E be a function for which
there is a sequence {f,} of strongly measurable simple functions such that
f(x) =lim, f,(x) holds at p-almost every x in X.

(a) Show by example that f need not have a separable range.
(b) Show that there is a strongly measurable function g: X — E that agrees with
f p-almost everywhere.
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Proof. We can assume that E does not consist of 0 alone. Choose a sequence {y, }
whose terms form a dense subset of E. According to Corollary E.8, we can choose,
for each n, an element ¢, of E* that satisfies ||@,|| = 1 and @,(y,) = ||y||- Let us
check that the sequence { ¢, } meets the requirements of the lemma. Since each ¢,
satisfies || @, || = 1, it follows that

sup{|@. (V)| :n=1,2, ...} <[y]

holds for each y in E. For an arbitrary y in E we can find terms in the sequence {y, }
that lie arbitrarily close to y, and so the calculations

On(Y) = Oy = Yn) + ©u(yn) = @u(y — yu) + |l
and |@,(y — yu)| < | @alllly = yall = ||y — ynl| imply that

Iy[l = sup{l@n(y)| :n=1,2,...}.

Relation (8) follows. O

Proof of Theorem E.9. Let us assume that we are dealing with Banach spaces over
R; the case of Banach spaces over C is similar.

If f is strongly measurable, then (a) is immediate and (b) follows from
Lemma 7.2.1 and Proposition 2.6.1.

Now suppose that f satisfies (a) and (b). In view of (a), it suffices to show that f
is Borel measurable. Let Ej be the smallest closed linear subspace of E that includes
f(X). Then Ey is separable (if C is a countable dense subset of f(X), then Ej is the
closure of the set of finite sums of rational multiples of elements of C). We can
show that f is Borel measurable (that is, measurable with respect to .7 and #A(E))
by showing that it is measurable with respect to <7 and #(E;) (Lemma 7.2.2).

Let {¢@,} be a sequence in (Ep)* such that

Il =sup{[@(y)[ :n=1,2,...} ©)

holds for each y in Ey (Lemma E.10). Since each continuous linear functional on E
is the restriction to E of an element of E* (Theorem E.7), condition (b) implies that
for each n the function @, o f is «7-measurable. If B is a closed ball in Ey, say with
center yo and radius r, then f~!(B) is equal to

(e [0a(f(x) = @u(o) < 7},

and so belongs to &7. Since each open ball in Ej is the union of a countable
collection of closed balls, and since each open subset of Ey is the union of a
countable collection of open balls (recall that Ej is separable), the collection of
closed balls generates (Ep). It now follows from Proposition 2.6.2 that f is
measurable with respect to .27 and Z(E;) and the proof is complete. a
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Proof. Suppose that f and g are strongly measurable and that a and b are real
(or complex) numbers. Choose sequences {f,} and {g,} of strongly measurable
simple functions that converge pointwise to f and g respectively (Proposition E.2).
Since {af, + bg,} converges pointwise to af + bg, and since each af, + bg, is
strongly measurable (it is simple and each of its values is attained on a measurable
set), Proposition E.1 implies that af + bg is strongly measurable. O

We turn to the integration of functions with values in a Banach space. Let
(X,47,u) be a measure space, and let E be a real or complex Banach space.
A function f: X — E is integrable (or strongly integrable, or Bochner integrable)
if it is strongly measurable and the function x — | f(x)| is integrable.

The integral of such functions is defined as follows. First suppose that f: X — E
is simple and integrable. Let a1, ..., a, be the nonzero values of f, and suppose that
these values are attained on the sets Ay, ..., A,. Then Proposition 2.3.10, applied to
the real-valued function x — | f(x)|, implies that each A; has finite measure under p.
Thus the expression Y. | a;1t(A;) makes sense; we define the integral of f, written
[ fdu, to be this sum. It is easy to see that

[ rau < [ir1an )

It is also easy to see that if f and g are simple integrable functions and a and b are
real (or complex) numbers, then af + bg is a simple integrable function, and

[tar+bg)du=a [ rau-+b [ean. 4

Now suppose that f is an arbitrary integrable function. Choose a sequence {f, }
of simple integrable functions such that f(x) = lim, f,(x) holds at each x in X
and such that the function x — sup,, | f,;(x)| is integrable (see Proposition E.2). The
dominated convergence theorem for real-valued functions (Theorem 2.4.5) implies
that lim,, [ |f, — f|du = 0, and hence that limy, , [ |fin — fu|dpt = 0. Thus (see (3)
and (4)) {/ f.du} is a Cauchy sequence in E, and so is convergent. The integral
(or Bochner integral) of f, written [ fdy, is defined to be the limit of the sequence
{[ fudu}. (tis easy to check that the value of [ fdu does not depend on the choice
of the sequence {f; }: if {g,} is another sequence having the properties required of
{fu}, then lim,, [ |f, — gn|du = 0, from which it follows that lim,, [ (f, — g»)du =0
and hence that lim,, [ f,, du = lim, [ g,du.)

Let us note a few basic properties of the Bochner integral.

E.4. (Proposition) Ler (X, , 1) be a measure space, and let E be a real or
complex Banach space. Suppose that f,g: X — E are integrable and that a and
b are real (or complex) numbers. Then af + bg is integrable, and

ISee Exercise 4 for an indication of another standard definition of Bochner integrability.
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[tar+bedu=a [ rau+b [ gan. 5)

Proof. The integrability of af + bg follows from Corollary E.3 and the inequality
[(af +bg)(x)| < |a||f(x)|+ |b||g(x)]- Let {f,} and {g,} be sequences of simple
integrable functions that converge pointwise to f and g respectively and are such that
X+ sup,, | fn(x)] and x — sup,, |g,(x)| are integrable. Then the functions af;, + bg,
are simple and integrable, and they satisfy

/(afn+bgn)du:a/fndu+b/gndu ©)

(see (4)). Furthermore x — sup,, |(af, + bgn)(x)| is integrable, and so according to
the definition of the integral, we can take limits in (6), obtaining (5). O

E.5. (Proposition) Ler (X, 1) be a measure space, and let E be a real or
complex Banach space. If f: X — E is integrable, then | [ fdu| < [|f|du.

Proof. Let f be an integrable function, and let {f,} be a sequence of simple
integrable functions such that sup,, | f,(x)| < |f(x)| and f(x) = lim, f,(x) hold at
each x in X (Proposition E.2). Then

’/fndu’ < [1filu < [\flan

(see (3)); since [ fdu =lim, [ f,du, the proposition follows. O

The dominated convergence theorem can be formulated as follows for E-valued
functions.

E.6. (Theorem) Let (X, 1) be a measure space, let E be a real or complex
Banach space, and let g be a |0,+oo]-valued integrable function on X. Suppose that
f and fi, fo, ... are strongly measurable E-valued functions on X such that the
relations

Sflx)= li,lfl Ja(x)

and

Ifn(x)] < gx), forn=1,2,...,
hold at almost every x in X. Then f and fi, f2, ... are integrable, and [ fdu =
lim, [ f,du.

Proof. The integrability of f and f, f>, ... is immediate. Since |f,, — f| < 2g holds
almost everywhere, the dominated convergence theorem for real-valued functions
(Theorem 2.4.5) implies that lim,, [ |f, — f|du = 0. In view of Propositions E.4
and E.5, this implies that [ fdu = lim, [ f,du. O

Let Z!(X, ./, u,E) be the set of all E-valued integrable functions on X. Then
LY (X, o ,1u,E) is a vector space (see Proposition E.4). It is easy to check that the
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collection L' (X, .o, u, E) of equivalence classes (under almost everywhere equality)
of elements of .Z' (X, .27, i, E) can be made into a vector space in the natural way,
and that the formula

£l = [ If1dn ™

induces anormon L' (X,.«7, i, E) (and, of course, a seminorm on .2 (X,.«7, u, E)).
The proof of Theorem 3.4.1 can be modified so as to show that L! (X, o/ ,u,E) is
complete under || - ||;.

One often finds it useful to be able to deal with vector-valued functions in terms
of real- (or complex-) valued functions. For this we need to recall the Hahn—Banach
theorem.

E.7. (Hahn-Banach Theorem) Let E be a real or complex normed linear space,
let F be a linear subspace of E, and let @y be a continuous linear functional on
F. Then there is a continuous linear functional ¢ on E such that ||¢| = ||@o|| and
such that @q is the restriction of @ to F. In other words, @g can be extended to a
continuous linear functional on all of E without increasing its norm.

A proof of the Hahn—Banach theorem can be found in almost any basic text on
functional analysis (see, for example, Conway [31], Kolmogorov and Fomin [73],
Royden [102], or Simmons [109]).

We also need the following consequence of the Hahn—Banach theorem.

E.8. (Corollary) Let E be a real or complex normed linear space that does not
consist of 0 alone. Then for each y in E there is a continuous linear functional ¢ on
E such that ||@|| =1 and o(y) = ||y||-

Proof. Let y be a nonzero element of E, let F be the subspace of E consisting
of all scalar multiples of y, and let ¢y be the linear functional on F defined by
@o(ty) =t||y||- Then @y satisfies ||@p]| = 1 and @o(y) = ||y||, and we can produce the
required functional ¢ by applying Theorem E.7 to ¢p. (In case y = 0, let ¢ be an
arbitrary linear functional on E that satisfies ||| = 1.) O

Let us now apply Theorem E.7 and Corollary E.8 to the study of vector-valued
functions.

E.9. (Theorem) Let (X, /) be a measurable space, and let E be a real or complex
Banach space. A function f: X — E is strongly measurable if and only if

(a) the image f(X) of X under f is separable, and
(b) for each ¢ in E* the function @ o f is o/ -measurable.

We will use the following lemma in our proof of Theorem E.9.

E.10. (Lemma) Let E be a separable normed linear space over R or C. Then there
is a sequence { @, } of elements of E* such that

Iy =sup{[@(y)[ :n=1,2,...} ®)

holds for each y in E.



