
Advanced Linear Algebra – Week 10

Applications of the
Singular Value Decomposition

This week we will learn about:

• The pseudoinverse of a matrix,

• The operator norm of a matrix, and

• Low-rank approximation and image compression.

Extra reading and watching:

• Section 2.3.3 and 2.C in the textbook

• Lecture videos 38, 39, 40, and 41 on YouTube

• Moore–Penrose inverse (pseudoinverse) at Wikipedia

• Operator norm at Wikipedia

• Low-rank approximation at Wikipedia

Extra textbook problems:

? 2.3.2, 2.3.4(d,e,h), 2.C.4(a,b,d,e)

? ? 2.3.8–2.3.12, 2.C.1–2.C.3

? ? ? 2.3.15, 2.3.21, 2.C.5, 2.C.6, 2.C.9, 2.C.10

A 2.3.17(a)

1

https://www.youtube.com/watch?v=Jqg7JgCwQrk&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=39
https://www.youtube.com/watch?v=FDURdvi6WB4&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=40
https://www.youtube.com/watch?v=G2RKg1pHApc&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=41
https://www.youtube.com/watch?v=9QkKcEQQ38g&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=42
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
https://en.wikipedia.org/wiki/Operator_norm
https://en.wikipedia.org/wiki/Low-rank_approximation
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The Pseudoinverse
We have been working with the inverse of a matrix since early-on in introductory linear
algebra, and while we can do great things with it, it has some deficiencies as well. For
example, we know that if a matrix A ∈Mn is invertible, then the linear system Ax = b...

However, that linear system might have a solution even if A is not invertible. For example...

Example. Show that the linear system 1 2 3
−1 0 1
3 2 1


x1
x2
x3

 =

6
0
6


has a solution, but its coefficient matrix is not invertible.

It thus seems natural to ask whether or not there exists a matrix A† with the property
that a solution to the linear system Ax = b (when it exists) is x = A†b. Well...
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Definition 10.1 — Pseudoinverse of a Matrix
Suppose F = R or F = C, andA ∈Mm,n(F) has orthogonal rank-one sum decomposition

Then the pseudoinverse of A, denoted by A† ∈Mn,m(F), is the matrix

There are several aspects of the pseudoinverse that we should clarify:

• If A is invertible, ...

• If A has SVD A = UΣV ∗, then...

• The pseudoinverse is well-defined.

Example. Compute the pseudoinverse of the matrix

A =

 1 1 1 −1
0 1 1 0
−1 1 1 1

 .
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The nice thing about the pseudoinverse is that it always exists (even if A is not invertible,
or not even square), and it always finds a solution to the corresponding linear system (if a
solution exists). Not only that, but if there are multiple different solutions, it finds the
smallest one:

Theorem 10.1 — Pseudoinverses Solve Linear Systems
Suppose F = R or F = C, A ∈ Mm,n(F), and suppose that the system of linear equa-
tions Ax = b has at least one solution. Then

is a solution. Furthermore, if y is any other solution then ‖A†b‖ < ‖y‖.

Proof. We start by writing A in its orthogonal rank-one sum decomposition...
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�

To get a rough idea for why it’s desirable to find the solution with smallest norm, let’s
return to the linear system  1 2 3

−1 0 1
3 2 1


x1
x2
x3

 =

6
0
6


from earlier. The solution set of this linear system consists of the vectors of the form

This solution set contains some vectors that are hideous, and some that are not so hideous:

The guarantee that the pseudoinverse finds the smallest-norm solution means that we do
not have to worry about it returning “large and ugly” solutions like the first one above.

Geometrically, it means that the pseudoinverse finds the solution closest to the origin:
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Not only does the pseudoinverse find the “best” solution when a solution exists, it even
find the “best” non-solution when no solution exists!

This is strange to think about, but it makes sense if we again think in terms of norms
and distances—if no solution to a linear system Ax = b exists, then it seems reasonable
that the “next best thing” to a solution would be the vector that makes Ax as close to b as
possible. In other words, we want to find the vector x that...

The following theorem shows that choosing x = A†b also solves this problem:

Theorem 10.2 — Linear Least Squares
Suppose F = R or F = C, A ∈Mm,n(F), and b ∈ Fm. If x = A†b then

We won’t prove this theorem (see the textbook if you’re curious), but it comes up a lot
in statistics, since it can be used to fit data to a model. For example, suppose we had 4 data
points:

and we want to find a line of best fit for those data points (i.e., a line with the property that
the sum of squares of vertical distances between the points and the line is minimized). To
find this line, we consider the “ideal” scenario—we try (and typically fail) to find a line that
passes exactly through all n data points by setting up the corresponding linear system:
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Since this linear system has 4 equations, but only 2 variables (m and b), we do not
expect to find an exact solution, but we can find the closest thing to a solution by using the
pseudoinverse:

This exact same method also works for finding the “plane of best fit” for data points
(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn), and so on for higher-dimensional data as well. You
can even do things like find quadratics of best fit, exponentials of best fit, or other weird
functions of best fit.
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By putting together all of the results of this section, we see that the pseudoinverse gives
the “best solution” to a system of linear equations Ax = b in all cases:

The Operator Norm
We have seen one way of measuring the size of a matrix—the Frobenius norm. In practice,
the Frobenius norm is actually not very useful (it’s just used because it’s easy to calculate),
and the following norm is more commonly used instead:

Definition 10.2 — Operator Norm
Suppose F = R or F = C, and A ∈Mm,n(F). Then the operator norm of A, denoted
by ‖A‖, is either of the following (equivalent) quantities:

The operator norm is the maximum amount by which a matrix can stretch a vector:
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Before showing that ‖A‖ really is the largest singular value of A, let’s establish some of
its more basic properties.

Theorem 10.3 — Submultiplicativity
Suppose A ∈Mm,n and B ∈Mn,p. Then

Proof. Notice that a matrix A ∈ Mm,n cannot stretch any vector by more than a factor of
‖A‖:

�

Theorem 10.4 — Unitary Invariance
Let A ∈Mm,n and suppose U ∈Mm and V ∈Mn are unitary matrices. Then

Proof. We start by showing that every unitary matrix U ∈Mm has ‖U‖ = 1:

�
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As a side note, the previous two theorems both hold for the Frobenius norm as well (try
to prove these facts on your own). That is,

By combining unitary invariance with the singular value decomposition, we almost im-
mediately confirm our observation that the operator norm should equal the matrix’s largest
singular value, and we also get a new formula for the Frobenius norm:

Theorem 10.5 — Matrix Norms in Terms of Singular Values
Let A ∈Mm,n have rank r and singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Then

Proof. If we write A in its singular value decomposition A = UΣV ∗, then unitary invariance
tells us that ‖A‖ = ‖Σ‖ and ‖A‖F = ‖Σ‖F. Well,

�
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Example. Compute the operator and Frobenius norms of A =

 1 2 3
−1 0 1
3 2 1

.

Low-Rank Approximation
As one final application of the singular value decomposition, we consider the problem of
approximating a matrix by another matrix with small rank. One of the primary reasons why
we would do this is that it allows us to compress data that is represented by a matrix, since
a full n× n matrix requires us to store...

However, a rank-k matrix only requires us to store

Since 2kn is much smaller than n2 when k is small, it is much less resource-intensive to
store low-rank matrices than general matrices. Thus to compress data, instead of storing the
exact matrix A that contains our data of interest, we can sometimes find a nearby matrix
with small rank and store that instead.
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To actually find a nearby low-rank matrix, we use the following theorem:

Theorem 10.6 — Eckart–Young–Mirsky
Suppose F = R or F = C, andA ∈Mm,n(F) has orthogonal rank-one sum decomposition

with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Then the closest rank-k matrix to A (i.e., the rank-k
matrix B that minimizes ‖A−B‖) is

In other words, the Eckart–Young–Mirsky theorem says that...

We skip the proof of the Eckart–Young–Mirsky theorem (see the textbook if you’re
curious), and instead jump right into a numerical example to illustrate its usage.

Example. Find the closest rank-1 matrix to A =

 1 2 3
−1 0 1
3 2 1

.
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It is also worth noting that the Eckart–Young–Mirsky theorem works for many other
matrix norms as well (like the Frobenius norm)—not just the operator norm.

One of the most interesting applications of this theorem is that it lets us do (lossy) image
compression. We can represent an image by...

Applying the Eckart–Mirsky–Young theorem to those matrices then lets us compress the
image. For example, let’s use the following image:



Advanced Linear Algebra – Week 10 14

Let’s use MATLAB to compress the image by truncating its matrices’ singular value
decompositions:


