s ADVANCED LINEAR ALGEBRA — WEEK 1

VECTOR SPACES

This week we will learn about:

o Abstract vector spaces,
o How to do linear algebra over fields other than R,
e How to do linear algebra with things that don’t look like vectors, and

o Linear combinations and linear (in)dependence (again).

Extra reading and watching:

e Sections 1.1.1 and 1.1.2 in the textbook

Lecture videos 1, 1.5, 2, 3, and 4 on YouTube

Vector space at Wikipedia

Complex number at Wikipedia

Linear independence at Wikipedia

Extra textbook problems:
*x 1.1.1, 1.1.4(a—fh)
*% 1.1.2, 1.1.5, 1.1.6, 1.1.8, 1.1.10, 1.1.17, 1.1.18
**% 1.1.9,1.1.12, 1.1.19, 1.1.21, 1.1.22

2 none this week


https://www.youtube.com/watch?v=1ADC9rZQ11E&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=1
https://www.youtube.com/watch?v=-CDNQY1GTtA&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=2
https://www.youtube.com/watch?v=OYC2_jiO8ks&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=3
https://www.youtube.com/watch?v=RIDcmbIY70E&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=4
https://www.youtube.com/watch?v=nAaNM_xKpOk&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=5
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Linear_independence

ADVANCED LINEAR ALGEBRA — Week 1 2

In the previous linear algebra course (MATH 2221), for the most part you learned how

to perform computations with vectors and matrices. Some things that you learned how to
compute include:

—50|u+ians of linear sys’fems

- Ff oo( UO’I— of Hwo Md/}'rice,g
- Ram k of of M4+ri %

—T\/cmsfose/ 5F o  wmatrix

“Thverse o 4 matrix
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In this course, we will be working with many of these same objects, but we are going to

generalize them and look at them in strange settings where we didn’t know we could use
them. For example:

- \/aa’]'ors whose entries  ore no+ Yea{ Nm bers (F)
£9., Comp’ex numbers (£>, or Tinike
fields like Zf%@%%--gf—ii where
we do qalc(iHon cmol
mod

> P
CCVecb»s) ’H’)q)f do nd Jeek ke vectors.

6.9-7 rwl- \/4| Uec( Func‘HonS E&hdva moch

l'\ke, VecTors from IR") and we

can do linear  aloebry on  them
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In order to use our linear algebra tools in a more general setting, we need a proper
definition that tells us what types of objects we can consider. The following definition makes
this precise, and the intuition behind it is that the objects we work with should be “like”
vectors in R™:

Definition 1.1 — Vector Space

Let V be a set and let F be a field. Let v,w € V and ¢ € I, and suppose we have defined
two operations called addition and scalar multiplication on V. We write the addition of
v and w as v + w, and the scalar multiplication of ¢ and v as cv.

If the following ten conditions hold for all v,w,x € V and all ¢,d € F, then V is
called a vector space and its elements are called vectors:

a) viwey (closure under addition)
b) viw=w+vVv (commutativity)
c) (Vv+w)+x=v+(W+x) (associativity)

d) There exists a “zero vector” 0 € V such that v+ 0 = v.

e) There exists a vector —v such that v+ (—v) = 0.

f) ecveV (closure under scalar multiplication)
g) c(v+w)=cv+cw (distributivity)
h) (c+d)v=cv+dv (distributivity)

i) c(dv) = (cd)v

j) lv=v

Some points of interest are in order:

o A field F is basically just a set on which we can add, subtract, multiply, and divide
according to the usual laws of arithmetic.

EdeFI&S include fR> @7 Z..

Th this Covrse, the. 015. long .qz P
Feld  F wi Ol’wole s g

be either R « C
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e Vectors might not look at all like what you're used to vectors looking like. Similarly,
vector addition and scalar multiplication might look weird too (we will look at some
examples).

Example. R" is a vector space. = H.’ v

]

A” Pr"f’e‘/{' ies %"’m@h”'ﬁrwwro‘. TF V,wW, X€ R
an c)cl R~ then:

a) VrWe R v

b Vrw :Z"'*WUVZ*W%-- SV W) 2 (w,)rv,)w;rvz,.ﬂ,w,,)r\/,) =7 +7 VY
c) Similar +o (b)Y

GD 0 ’(070,.,.)0) works ¥

e) V=[V, Ve, Vn)  werks. /

P\'of»er'l’ies (F)- (\Q are  similac.

Example. F, the set of all functions f : R — R, is a vector space.

=f
=Y
Adition and  scalar \mumr’icon"ion orc:/ meail

M«ywise. It f)%he} oind c)cJé[R then *

Ol) frged V

b) (Fro)) =5 + o) = () + F) =(5+)6)  fe all  x€[R,
== 5:4-9 = 3*?. v

O Similr 4o () V

d> The zero “Vector” s te  Jmnchon  defined
by 0670 £ o  xeR Y

¢ g defined by (PR=-FY  for ol xR/
Ete.
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Example. M, ,.(IF), the set of all m x n matrices with entries from F, is a vector space.

Similac  to }'Rn.
© % ABeM(F) thn AB-BAY Bt

Be careful: the operations that we call vector addition and scalar multiplication just have
to satisfy the 10 axioms that were provided—they do not have to look anything like what
we usually call “addition” or “multiplication.”

Example. Let V = {x € R : x > 0} be the set of positive real numbers. Define addition
@ on this set via usual multiplication of real numbers (i.e., x &y = zy), and scalar mul-
tiplication ® on this set via exponentiation (i.e., cOx = x¢). Show that this is a vector space.

¥ 292V ad  cdeR gy

a) XOY =xy 20, % ?@7 ey v

b) X@Y=xy=yx=yOX

c) Similee  to  (b). Vv

CD 6=1> Sincee then 002 24x=%. YV

&) ~R-% since I q0(R)-xE)-1-8.

F) c@?’=><c>oJ <o c@?év‘ 4

o) co(x® ?> = cO(x)/) ;(xy)c = chc = (x)0(y<) = (co¥) @(609’). /
b (+d)OR = X = W = () © (&) =(c0%) @ (o) V
(i) and ()) oz similar.

OK, so vectors and vector spaces can in fact look quite different from R”. However, doing
math with them isn’t much different at all: almost all facts that we proved in MATH 2221
actually only relied on the ten vector space properties provided a couple pages ago.

Thus we will see that really not much changes when we do linear algebra in this more

general setting. We will re-introduce the core concepts again (e.g., subspaces and linear
independence), but only very quickly, as they do not change significantly.
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Complex Numbers

As mentioned earlier, the field F we will be working with throughout this course will always
be R (the real numbers) or C (the complex numbers). Since complex numbers make linear
algebra work so nicely, we give them a one-page introduction:

We define i to be a number that satisfies 12 = —1 (clearly, 4 is not a member of R).
An imaginary number is a number of the form bi, where b € R.
Yarible name
A complex number is a number of the form a + %@ where a,b € R.
)
req' r"‘” ((‘mqgmqry ’ad"")—
Arithmetic with complex numbers Works how you might naively expect:

(a+bi)+ (c+di) = (q{—-c) (é+°’> /since %= ’1

(+bi)(e+di) = gje +odi + bei — bd = (ac~bd) +(atel +be)i.

Much like we think of R as a line, we can think of C as a plane, and the number a + b:

has coordinates (a,b) on that plane. T
¥)

b' oﬁ‘bi

Re

oibi =a-bi

"6“' - — — - _e
The length (or magnitude) of the complex number a + ib is |a + ib| := va? + b%.

The complex conjugate of the complex number a + b is a + ib := a — ib.

We can use the previous facts to check that (a + bi)(a + bi) = |a + bi]>.

(a+6i>(a~bi) =a +g151(*95/?+62 = q*+b = |a+bi]

We can also divide by (non-zero) complex numbers:

a+bi (q{—(") (c-di (ofckéo’) (Lc-owl)l

c+di ( \) c—cll) c ,\.cl ‘]’cr‘
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Subspaces

It will often be useful for us to deal with vector spaces that are contained within other vector
spaces. This situation comes up often enough that it gets its own name:

Definition 1.2 — Subspace

If V is a vector space and S C V, then S is a subspace of V if S is itself a vector space
with the same addition and scalar multiplication as V.

It turns out that checking whether or not something is a subspace is much simpler than
checking whether or not it is a vector space. In particular, instead of checking all ten vector
space axioms, you only have to check two:

Theorem 1.1 — Determining if a Set is a Subspace

Let V be a vector space and let S C V be non-empty. Then § is a subspace of V if and
only if the following two conditions hold for all v,w € § and all ¢ € F:

a) v+wesS (closure under addition)

b) ecveS (closure under scalar multiplication)

Proof. For the “only if” direction,

SUEqucas are Vechs Spetces,  s= #;g)/ Senlis{/
these 2 prepertios  (and the 8 s i Definition 11)

For the “if” direction, Wg ~ reed do  shew M Hase sther
3 peop erties  hold.
c(0,0,0,0),[,() hdd Fr ol TILREY, and SeV,
So Hm,y hold — for V,7,%S oo
* For (°'>) e peed o shw 0€S (ve kv 0<V)
\/J&") O,\‘/D76> omJ oves 6)1 (A) qgbove .

‘For @), e\ eed to show VeS| (e knw FV)m
Vel, (0)7=-V,\ and (7S by (O)\ cbove.

N |
Ynest d;\,\ez,o\’w'é \' e, ) De}ini‘hm 14.
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Example. Is PP, the set of real-valued polynomials of degree at most p, a subspace of F?

PéPP méans (%)201 +d, X 4'01,_><1+-"+01PXF-

Clﬂf/&k 2 pre er‘)'les o  Theerem 1.1:
o) If P,67” (and  6f)=horhix +- +bx) Then

(pre)¥) (0(%>+GLC>‘)
(ol.,ﬁ—d X+ . +ch )+ b,+b x+ - +4 Xf> . \/
=(oloa—b (q +b)x (c:ff,-mél‘,))("> 6?
L) is similer o (q)) So ?F s g sULquce.

Example. Is the set of n x n reamatm’ces a subspace 0@

A

R T_
- réa
medns A A e mcr}‘ric%

C‘”BCk 2 /:\fo/cer‘hes e 7Leon_em 11
o) F A A _and B=B  hen
(A+B AT+R =A+B v
b) Tf A=A anJ ceR  then
@M'CN‘&A
Ye‘% thic s 4q suLs!ooloe of MH(I]O

Example. Is the set of 2 x 2 matrices with determinant O a subspace of My ?

No. For e,quFIei E‘”’”H:z,
)70 e set([25]) 0, |det()? f)
gd-be

but

Jet([b ][ ) det(fo T])=1# 0
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Spans, Linear Combinations, and Independence

We now present some definitions that you likely saw (restricted to R™) in your first linear
algebra course. All of the theorems and proofs involving these definitions carry over just fine
when replacing R™ by a general vector space V.

Definition 1.3 — Linear Combinations

Let V be a vector space over the field F, let vi,vs,..., vy € V, and let ¢1, ¢, ..., ¢, € F.
Then every vector of the form

C1V] + CoVo + - -+ + Cp Vg

is called a linear combination of v, vs, ..., Vv,.

Example. Is 3x"+2x+1 g linear combination of x° r 2 and  X¥+3 ?

Do H’MQQ‘; 6)<i5+ SC”,‘""S e, ofno' c, SUC}) %q‘}_
B r2xl 2 cl("z*2> + C.(<*3) 7 Match Up Fowcrsl

1.: - c
e 2 = C. with

ol tien
i; 1_ : 20‘ + SCz o colv
. No? no+ q /inedl" Combinat len.

A Il I O
. S 0
Example. Is [5 L-f] a linear combination of [2 3:' and [ | Z] ;

Do Hee exist SC'q,Tn:s c,l Oomol c, sveh
2] _
hat [3 J‘ C [Z _S] t Cz[' 2]? Metch Up entrles:
tep-left L=crc, bigh: 27c
boftomn-1efts 3= 2¢, 4, bettom it 1= 3¢, + 2¢,
ﬂ’lis lnec g}ls“)'&m hds c,:2, sz’l as g s.olufl'on.

. V&S) s o hnedr‘ Com[)inor}'ion‘
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Definition 1.4 — Span

Let V be a vector space and let B C V be a set of vectors. Then the span of B, denoted
by span(B), is the set of all (finite!) linear combinations of vectors from B:

ke N, CJGFandVJEBforalll<]<k‘}

span(B) def {Z CjV;

7=1

Furthermore, if span(B) = V then V is said to be spanned by B.

Example. Show that the polynomials 1,z, and x> span@

FO')IK)OVYNOI’S of Jearee =2
Almost by definition

T éP then  thee  ae  scabies 4,9, q

such Hw}f p(<)= atax + a.x* € span(2,, )

More 9@.09,(4//7)7 ?f g Spein (i) KXy x'°>.

Example. Is ¢ in the span of {1,x,2% 2°%,...}?
2)

Nol YOU ijl’ﬂ' *H]m/( o: y&S éecou/se
l*x*é + 3'* nzzxf (ﬂylor series)

B(H' the sum  on ‘Hﬂe r/@H' s net g

linese  combinat e, since it s imcfni%e/)/ ey

Tecms.

To see Andt 9K¢Sfdo(l)><)xz>~->7 netice H)cf(— the

oler'«\/quT\/&s o/F & are qi/ rior) — zexo.
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Example. Let E;; be the matriz with a 1 in its (i, j)-entry and zeros elsewhere. Show that
My is spanned by By 1, By 2, Esq, and Es .

We can  wite ey <2 matric [ ;
i e form [Z j] d\[/ovf/ +6[o o]+cw+ d|o T]/

E‘)' El;z E"L,l EZ.)Z

In gen&\’ol( /VL,,, " is Sﬁclnnec' Ay H?e
4 ! R
mn standard  matrix  onits E'ﬂ) Ei., -

Example. Determine whether or not the polynomial r(x) = x? — 3x — 4 is in the span of
the polynomials p(x) = 2? — x + 2 and q(z) = 22> — 3z + 1.

505“" check is o /ineer com[:inqﬁ,n

o p oind q/l, X -3x-4 < 4,(><‘~x+2> +c, (Zx‘—.3x+l>,
X L=c +le,

"5 ¢, -c,

1- -4 = 2¢,+c,

This  lines  system  has ¢,23 6,72 a5 o slobn

-

. 3 r Lé ’ln +‘0& SF‘IV) ;F ‘b omc( q, (r:-'sﬁ“—zc’/)

Our primary reason for being interested in spans is that the span of a set of vectors is

always a subspace (and in fact, we will see shortly that every subspace can be written as the
span of some vectors).

Theorem 1.2 — Spans are Subspaces

Let V be a vector space and let B C V. Then span(B) is a subspace of V.
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Proof. We just verify that the two defining properties of subspaces are satisfied:

Need +o eck 2 clogive f>t’°f>eA’H% F  Thescem 1.1:
d) Tk 77V365Pqn(8) then there are  scalars
ChCiyy e and  dydhygde such  hdt
V=cV re v, «- +ckVT< and  W=dV +d,V +. 4 d
for  some ,,\/z,- \/KeB
Then 7 =(ed )T+ (@) +os (),
which s ales  in s,oqn(B) v
b) Similer o [ob, Shew C\/GS(DOM(B) .

Definition 1.5 — Linear Dependence and Independence

Let V be a vector space and let B C V be a set of vectors. Then B is linearly
dependent if there exist scalars cq, cg, ..., cx € F, at least one of which is not zero,
and vectors vy, va, ..., Vi € B such that

C1V1 + CoVo + - - - + CpVE = 0.
If B is not linearly dependent then it is called linearly independent.
There are a couple of different ways of looking at linear dependence and independence.

For example:

o A set of vectors {vy, Vs, ..., v} is linearly independent if and only if

C1V1 + caVyg + - - + ¢ vy = 0 implies C‘-—'Cz:--‘:CK: O

o A set of vectors {vy,va,...,vi} is linearly dependent if and only if there exists a
particular j such that

) . . ., = —>
Vj1sa )me,ar‘ Coleﬂd+'on OF Vv, ? )VJ-'> :zn \71 ~
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In particular, a set of two vectors is linearly dependent if and only if they are scalar multiples
of each other.

Example. Is the set of polynomials { xz +3x +1 , X“=x + 7 } linearly dependent
or independent?

Incle,oe/véenf,l (N;l’ seslar mUHif(es sf each oHoet’)

, I 2 2 O - '
Example. Is the set ofmatmces{ 2 -~ , O | , | 2 }lmearly de-

pendent or independent?

2 | 2 2 -
Docs c,[z ~,]4—CZIO ,}r c_%[f 2]:0 i’”’/’,}’ C,_:(_Z:C}:O?

+°f‘-. I&'Pr 36l -I—ZCZ = O +0f‘rbh+: C, +2.c,2— ZC$ = O
Ao'l'l'om“leﬂ’: 25, ']"‘Cl-3 = O LO‘H—Om“l’BH: -C, +CZ -J'ZCB‘: O
/I-]QT.S hnéocr‘ SyS7LeVV) 1’](15 C, =C,= Cz = O dg I'}ZS'
Um‘o)/t/f’/ SOIU'Hon) sSo ’Hns set IS hnear‘)y molefencleml

Example. Is the set of functions {sin?(x), cos®(x), cos(2x)} C F linearly dependent or in-
dependent?

Deoes ¢ 5in(x) +cacos'(x) +c; cas(2)=0 imply  ¢=c,=¢;=07

Rgcq“ ‘qu‘f' Co. s(ZX) =cos ( x) - Sin‘(’(), (’l‘rig. 33&10"’1'-)-}/)

-

.. 5iv)z()<> - COSZ(X> + C05(2x> = O (C, - i) c,~ ’1) C, = 1)
.o This set  is  livearly dependent

Roughly, the reason that this final example didn’t devolve into something we can just
compute via “plug and chug” is that we don’t have a nice basis for F that we can work
with. This contrasts with the previous two examples (polynomials and matrices), where we
do have nice bases, and we’ve been working with those nice bases already (perhaps without
even realizing it).

We will talk about bases in depth next week!



