
Advanced Linear Algebra – Week 6

Adjoints and Unitaries

This week we will learn about:

• The adjoint of a linear transformation, and

• Unitary transformations and matrices.

Extra reading and watching:

• Sections 1.4.2 and 1.4.3 in the textbook

• Lecture videos 23 and 24 on YouTube

• Unitary matrix at Wikipedia

Extra textbook problems:

? 1.4.5(b,c,e,f), 1.4.8

? ? 1.4.3, 1.4.9–1.4.14, 1.4.21, 1.4.22

? ? ? 1.4.6, 1.4.15, 1.4.18

A 1.4.19, 1.4.28
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https://www.youtube.com/watch?v=G_pSlt7wVY4&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=24
https://www.youtube.com/watch?v=AJUw6ooN2Ig&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=25
https://en.wikipedia.org/wiki/Unitary_matrix
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We now introduce the adjoint of a linear transformation, which we can think of as a way
of generalizing the transpose of a real matrix to linear transformations between arbitrary
inner product spaces.

Definition 6.1 — Adjoint Transformations
Suppose that V and W are inner product spaces and T : V → W is a linear transfor-
mation. Then a linear transformation T ∗ :W → V is called the adjoint of T if

For example, the adjoint of a matrix A ∈Mm,n(R) is

Similarly, the adjoint of a matrix A ∈Mm,n(C) is

So far, we have been a bit careless and referred to “the” adjoint of a matrix (linear
transformation), even though it perhaps seems believable that a linear transformation might
have more than one adjoint. The following theorem shows that, at least in finite dimensions,
this is not actually a problem.
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Theorem 6.1 — Existence and Uniqueness of Adjoints
Suppose that V and W are finite-dimensional inner product spaces. For every linear
transformation T : V → W there exists a unique adjoint transformation T ∗ : W → V .
Furthermore, if B and C are orthonormal bases of V and W respectively, then

Proof. To prove uniqueness of T ∗, suppose that T ∗ exists, let v ∈ V and w ∈ W , and
compute 〈T (v), w〉 in two different ways:

�
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Example. Show that the adjoint of the transposition map T : Mm,n → Mn,m, with the
Frobenius inner product, is also the transposition map.

The situation presented in the above example, where a linear transformation is its own
adjoint, is important enough that we give it a name:

Definition 6.2 — Self-Adjoint Transformations
Suppose that V is an inner product space. Then a linear transformation T : V → V is
called self-adjoint if T ∗ = T .

For example, a matrix inMn(R) is self-adjoint if and only if it is...

and a matrix inMn(C) is self-adjoint if and only if it is...

Furthermore, a linear transformation is self-adjoint if and only if its standard matrix...



Advanced Linear Algebra – Week 6 5

Unitary Transformations and Matrices
In situations where the norm of a vector is important, it is often desirable to work with
linear transformations that do not alter that norm. We now start investigating these linear
transformations.

Definition 6.3 — Unitary Transformations
Let V and W be inner product spaces and let T : V → W be a linear transformation.
Then T is said to be unitary if

‖T (v)‖ = ‖v‖ for all v ∈ V .

We also say that a matrix is unitary if it acts as a unitary linear transformation on Fn.

Example. Show that the matrix U = 1√
2

[
1 −1
1 1

]
is unitary.

Fortunately, there is a much simpler method of checking whether or not a matrix (or a
linear transformations) is unitary, as demonstrated by the following theorem.
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Theorem 6.2 — Characterization of Unitary Matrices
Suppose F = R or F = C, and U ∈Mn(F). The following are equivalent:

a) U is unitary,

b) U∗U = I,

c) UU∗ = I,

d) (Uv) · (Uw) = v ·w for all v, w ∈ Fn,

e) The columns of U are an orthonormal basis of Fn, and

f) The rows of U are an orthonormal basis of Fn.

It is worth comparing these properties to corresponding properties of invertible matrices:

Proof of Theorem 6.2. We do not prove all equivalences of this theorem – for that you can
see the textbook. But we will demonstrate some of them in order to give an idea of why this
theorem is true.

The equivalence of (b) and (c) follows from the fact that

To see that (d) =⇒ (b), note that if we rearrange the equation (Uv) · (Uw) = v · w
slightly, we get
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To see that (b) implies (a), suppose U∗U = I. Then for all v ∈ Fn we have

To see that (b) is equivalent to (e), write U in terms of its columns U =
[

u1 | u2 | · · · | un

]
and then use block matrix multiplication to multiply by U∗:

The remaining implications can be proved using similar techniques. �

Checking whether or not a matrix is unitary is now quite simple, since we just have to
check whether or not U∗U = I. For example, if we again return to the matrix

U = 1√
2

[
1 −1
1 1

]

from earlier:

More generally, every rotation matrix and reflection matrix is unitary, as we now demon-
strate.
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Example. Show that every rotation matrix U ∈M2(R) is unitary.

Example. Show that every reflection matrix U ∈Mn(R) is unitary.

In fact, the previous two examples provide exactly the intuition that you should have
for unitary matrices—they are the ones that rotate and/or reflect Fn, but do not stretch,
shrink, or otherwise “distort” it. They can be thought of as “rigid” linear transformations
that leave the size and shape of Fn in tact, but possibly change its orientation.


