s ADVANCED LINEAR ALGEBRA — WEEK 9

THE SINGULAR VALUE DECOMPOSITION

This week we will learn about:

« The singular value decomposition (SVD),
e Orthogonality of the fundamental matrix subspaces, and

o How the SVD relates to other matrix decompositions,

Extra reading and watching;:
e Section 2.3.1 and 2.3.2 in the textbook
e Lecture videos 34, 35, 36, and 37 on YouTube
o Singular value decomposition at Wikipedia

o Fundamental Theorem of Linear Algebra at Wikipedia

Extra textbook problems:
* 2.3.1, 2.3.4(a,b,c,f,g,i)
** 2.3.3, 2.3.5, 2.3.7
**x 2.3.14, 2.3.20
2 23.26


https://www.youtube.com/watch?v=g86N23CZ5c8&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=35
https://www.youtube.com/watch?v=3WqZaEYFzWA&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=36
https://www.youtube.com/watch?v=mDFag07Un8o&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=37
https://www.youtube.com/watch?v=8x67QZAvXaM&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=38
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Fundamental_theorem_of_linear_algebra
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If the Schur decomposition theorem from last week was “big”, then the upcoming theorem
is “super-mega-gigantic”. The singular value decomposition is possibly the biggest and most
widely-used theorem in all of linear algebra (and is my personal favourite), so we're going to
spend some time focusing on it.

Theorem 9.1 — Singular Value Decomposition (SVD)

Suppose F = R or F = C, and A € M,,,(F). Then there exist unitary matrices
U e M, (F) and V € M, (F) and a diagonal matrix ¥ € M,, ,(R) with non-negative

entries such that
A=UZV"

Furthermore, the diagonal entries of 3 (called the singular values of A) are the non-
negative square roots of the eigenvalues of A*A.

Let’s compare how this decomposition theorem is good and bad compared to our previous
decomposition theorems:

e Good:

quh&s fo every matrix  (even l’%%qnﬁlj/q\’>

» Good: matvix 2 in the m;olc”& S cliavgonofl
(mo+ 3\)5{' J'riqn_gulclrv) redl, non ~hegutive

« Kinda good, kinda bad: g
inda good, kinda ba V)f_go{ "_}\/Q Un(%anfjgs U and \/
Beter  than inVeﬁl’ié/&?

*
Proof. Consider the matrix A*A and assume that m > n... GF m < ﬂ) vse AN >

<ince AFA is F5D7 we Cdhn %m! o
5F6&+l’dl olacom/ooshLion of it A*A’VD\/*.

L et 2=@7 bt of size mxn (Fao‘ with ze l’o\«/S>.



ADVANCED LINEAR ALGEBRA — Week 9 3

Then (V) (2V9)=VZ'ZV"= VDV = A'A

By T/ﬁeorem 877 ﬂ)a’& exis‘/’s o *()V)i‘)‘olry
matrix U such Hm'f A= A

Vo :

Some notes about the SVD are in order:

o The singular values of A are exactly the square roots of the eigenvalues of A*A. Alter-
natively...

’Hle sc?/()qre, rools o\c P/ben\/efl Ves o’F AA*.

« Even though the singular values are uniquely determined by A, the diagonal matrix 3
isn’t.

Cdn F&rn’)(}'l'& #’L Olidgor)dl en%riés G)suu//y"ﬁ,zo_zz >

o The unitary matrices U and V are often not uniquely determined by A. Example:

For cny UniJrqry W, :[’UU“r is an SVD o L

)

\\

2z 5> i
Example. Let’s find the singular values of a matrix. A -1z 7
< 1,;17 A*A is 3)‘3
\

Do cigensteff 4 \\‘AA*= (%3 fi]E ZIJ‘[IQ ﬂ

4-x 3
Eigenvalies O - def(AX-2T) = Aejr([3 é/\D
= (4-2)(6-2) - 9= N -20) + 75
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Thofl' cz)/aa((ot’ho kas t’oé"s 15 omo( 5) So
those. dare. the f/igenvor}(/es s AAF
: A (’105 singulo:r \/otlues S, 7NIS uv’)°! G_z:dg:‘

To compute a full singular value decomposition (not just the singular values), we again
leech off of diagonalization. Notice that

it A= Y ZV# is adn SVD  then A*A = Vz-*f.\/*
IS d sPec% rql o’ecom)oos'n Jrion,

. Ca'umns o1c V are &igen\/ac"'ors cﬂc A*A.

Similarly, the columns of U are eigenvectors of AA*, but a slightly quicker (and slightly more
correct) way to compute the columns of U is to notice that

A=UZV", so AV=UZ  which _means
[Av, | A% -~~)A7n]=[sj7 SATH Gnlfif
LIF st 0 then m= SAT.

To Fm& #’]@ a_; CO, umns Co\'\/&S/Oono{;ng +a

6\37 07 Jo Grdm - Sahmio/f

Example. Compute a singular value decomposition of the matrix
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@ Constrvct 2 od ¢
s % %

=lo & O =|E O K
2 0 0 O and ¥ % K|

-\Beﬁ‘er |J’)ave

}fi ~17] ot"ym l
,-7_1/..»__.1/_12% ,_/L__L—/m )
TS "“L' . '][%j'g['lj

* Since ®3:O U-: can Le  ANY Uni?L

V&c+ o ‘H’)of" IS or"ﬁ%gomd{ ’ILo a, omo]
-(Z. Eg.) Use &Kdm'scbmio,+ o~ Crass

product 11 =& (L0001 ) = (2 1)

U’Oﬁ*ﬁC

Before delving into what makes the singular value decomposition so useful, it is worth
noting that if A € M,,,,(F) has singular value decomposition A = UXV* then AT and A*

have singular value decompositions
—_— T T X L3 4
=VZ U ad A=VZU,
In particular,

A, AT omol Aﬁ lfuve the same  sino.  Valves,
) S
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Geometric Interpretation

Recall that we think of unitary matrices as arbitrary-dimensional rotations and /or reflections.
Using this intuition gives the singular value decomposition a simple geometric interpretation.
Specifically, it says that every matrix A = UXV* € M,,, ,(F) acts as a linear transformation
from F" to F™ in the following way:

o First, OI'DP’\// \/*: ro’f”q+e cmc{/or r‘&ﬂeér F

e Then,

"‘PP'Y 27 strefch H:m a’on_o) its  coordinate
dxes omcl e,mAgcl n ﬂ:

e Finally, Ol(of’,\/ U : (o’f“q"’g/ ch/ol’ l’&‘F,eﬁ"— N:m

Let’s illustrate this geometric interpretation in the m = n = 2 case:

\/
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In particular, it is worth keeping track not only of how the linear transformation changes
a unit square grid on R? into a parallelogram grid, but also how it transforms...

’H’\(’/ uni f ciccle im‘{’o an &”f"os&.

Furthermore, the two radii of the ellipse are exactly

fhe siogular viles o A (s lory radis, 5. shed)

In higher dimensions, linear transformations send (hyper-)ellipsoids to (hyper-)ellipsoids.

For example, the matrix
1 2 3
-1 01
2 1

A:
3

from earlier deforms the unit sphere as follows:

6}’0 Lecyuse
e ot
&//i,aga IS QD)
nat 3D

The fact that the unit sphere is turned into a 2D ellipse by this matrix corresponds to
the fact that...

i+5 range 13 Q’o‘imemsionql (('.&7 l‘hs
cank is D).

In fact, the first two left singular vectors u; and uy (which point in the directions of the
major and minor axes of the ellipse) form an orthonormal basis of the range.

Simildrly) ‘HW’/ 31’0‘ t’ial»n" sn‘nj. VeC‘)"or 73 I’)qs
A= UzV =028 = Usg)=0 (e, %envl(m).
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This same type of argument works in general and leads to the following theorem:

Theorem 9.2 — Bases of the Fundamental Subspaces

Let A € M,,,, be a matrix with rank  and singular value decomposition A = UXV™,
where
U= [ul\UQ\ \um} and V = {Vl\vﬂ \vn}

Then
a) {uj,uy,...,u,} is an orthonormal basis of range(A),
b) {u,11,u,49,...,u,} is an orthonormal basis of null(A*),
c) {vi,Vva,...,v,} is an orthonormal basis of range(A*), and

d) {vyi1,Vri2,...,V,} is an orthonormal basis of null(A).

Proof. Let’s compute Av;:
A“- = UZ\/*V = UZ‘B‘&J-UZS = sdad’-.
I‘F S * O then A(é’ VS) = (_IS , se O e\fdnBBOD.
5lncg dim (r'omge(A» r and %U7,>172) )(Z?,g S et
s  adn orﬂvowormq/ subset  of | ‘}' iF
IS gn ONR iS omge(’A‘) (°'>
" TF STk O then AT So € I(A>
Smce dim (nu“(/\» TN zvm Verasy-- V %
s an ONB & nu” ». (‘*’)
For (4, : b same ﬁu‘nﬁ with A¥ n

Corollary 9.3 — Orthogonality of the Fundamental Subspaces
Suppose F=R or F = C, and A € M,, ,(F). Then

(<

a) range(A) is orthogonal to null(A*), and

b) null(A) is orthogonal to range(A*).
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In this corollary, when we say that one subspace is orthogonal to another, we mean that

every V&C‘,'ar in one of  the Spaces s
O(%Sond, +O evexr )/ \[@CA)—O\’ IAV) ‘Hq e O#’)&\".

Example. Compute a singular value decomposition of the matrix

A:

1 11 —1
0 11 0],
111 1

and use it to construct bases of the four fundamental subspaces of A.

ioens or ¥=l2 2 2 AT s 3"3
O Eigenshoff for A [ L,] (s 22

€/|'9€/V)Vd{06’5 qgre é) L{-) O; WDH’) Cor(@_s,oono/fng
6i3e,nvac+ol’5 (‘>'>’>> (17 07-0) ('>_2>’>> \’csloec‘}'fVe)y-
% % %
0 o
@Zz[gESOOJ and U=% o |
0 0o° ek oa
We ()560( AA’F (HO+ A*A)> so We 96‘," U (st \/>
T
| " &
0
) so we Use A* (net A> hee

X% |
[o ’ﬁ-

0
o)

\/ needs A moce CO'UW)hs (n‘- s fo‘+>,

EV']' Hw)’ Con be qn}/#)ir)g since S =0

-
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o |

‘ o
By insp&c’i’im: @’ Elo| and v :é [‘J wor k.
(Coh’) a l So FW\J Vid Grblm’ 5CI'TMI'0H—) ’Fo(' Q_xamlo lC>

B ONB f ol 7513 28000, £ (0705
ONB of  aull(A¥): 3003 = 2, 2'%
ONB of  vanoe(W): 7,737 520119, 5(ho0 )3
oNg of nuH(A> 3,%2= 55 0119, 0,001

Relationship With Other Matrix Decompositions

We now make sure that we really understand where the SVD fits into our world of matrix
decompositions. For example, one way of rephrasing the singular value decomposition is as
saying that we can always write a rank-r matrix as a sum of r rank-1 matrices in a very
special way:

Theorem 9.4 — Orthogonal Rank-One Sum Decomposition

Suppose F =R or F = C, and A € M,,,,(F) is a matrix with rank(A) = r. Then there
exist orthonormal sets of vectors {u;},_; C F™ and {v;}/_, C F" such that

-
—5—) ¥
A=Zs@v"  (=Uzv)
3_
where 01 > 09 > --- > 0, > 0 are the non-zero singular values of A.

e This formulation is sometimes useful because... .
it lefe  us  bredk

A in'{—o r “/37.0,6&5)): oneg, ‘Fo( M&l’) G:)
e In fields other than R and C, ...
n fields other than R an #16 came %WW hous)
1?V+ with «[fn. fnalef.» instead o‘F “orthonocmal”



ADVANCED LINEAR ALGEBRA — Week 9 11

Proof. For simplicity, we again assume that m < n throughout this proof, and then we just

do block matrix multiplication in the singular value decompositon: _
| v*

A=UZ V=T & ‘T”’] 0% | O
(lek— O O - 6\m Vr
:):m'a: ,‘I?"-l 6'272* L Va
L@vvf)
i < T -0 when )77
= ZS\\UJV\) = S \/\3 . <ince GJ‘O \)

T2 U
\S-;\ W
[ |

In fact the singular value decomposition and the orthogonal rank-one sum decomposition
are “equivalent” in the sense that you can prove one to quickly prove the other, and vice-
versa. Sometimes they are both just called the singular value decomposition.

Example. Compute an orthogonal rank-one sum decomposition of the matrix

1
0
-1

11 -1
A= 11 0.
11 1

We Com,OU+ea! the ‘Fo”o\n/l'r’lg SYD  A=zUS\”

earlier His  week:
% % o
- - b O
U=|%6 o |, 270 2
% % X% ©

o
o
Then A=s 07"+ 0V, = @G@m[o o) %m[\ 2ol

N
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Similarly, the singular value decomposition is also “essentially equivalent” to the polar
decomposition:

F AM, has SVD AUV Hhen
A = m C\//sz*) < o Polqr‘ 0}6Com/b QSi+ior)
UnH‘qry pPsD o‘F A

In the opposite direction,

IF AeM.n )40!5 POqu" J&COMPOSf+ion A: UP
aod P s spechal decomprsitin  P=VDV"
HICV) A = (U V)D\/ is an SVD & A

If A € M, is positive semidefinite, then the singular value decomposition coincides
exactly with the spectral decomposition:

Spec“’ el c’écom,a." A= UD Ui with oliqﬁonq( enteies
of D \feql otnd Nnon - ncacr{' ive. This s
an  SVD! o Sing, vales  are e,bem/q/uas.

A slight generalization of this type of argument leads to the following theorem:

Theorem 9.5 — Singular Values of Normal Matrices

Suppose A € M,, is a normal matrix. Then the singular values of A are the absolute
values of its eigenvalues.

Proof. Since A is normal, we can use the spectral decomposition to write A = UDU*, where
U is unitary and D is diagonal...

(él/‘,' ‘H’l’, c’iqganoll an+rl'&5 o'F D Can b& n,%q’ll'fve/ComF,&(>.
Edc”’ o[ I dﬁona / en‘h’y cj j o'F D Can bf,
written in /Do/clr‘ ﬁ»rm: Jo = \/\jeiej. T)ﬁen
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e 9 20 0.0
L % 0 ¥
A=UDU" = U[O © S er][o‘/’o]u s an

L
Uni+qry =7

SVD o A

TA& J‘élngu’on’ vq/l}&S o‘F A are r.:lo’r|>

To see that the above theorem does not hold for non-normal matrices, consider the
following example:

Example. Compute the eigenvalues and singular values of the matrix
11
A= lo 1] '
E igemVol’Ues: l omol 1 (oll'dgoncl‘ en"‘ﬂ'eS)

Sin9u|qr valves: A*A= [ ][l l}zﬂ Zjl)
which  has 6'3?/1\/0IIU65 3'2—(31\@.

ﬂ')e, sin U’Ol'r \/OIIUP/S O-‘F /A\ are

H’)US Q, 2\‘22'_(3”"\&?) omo( G, ?";;‘(3’(5-),
w}‘)icl’l olo ﬂ°+ ec?/ual l



