
Advanced Linear Algebra – Week 5

Inner Products and Orthogonality

This week we will learn about:

• Inner products (and the dot product again),

• The norm induced by the inner product,

• The Cauchy–Schwarz and triangle inequalities, and

• Orthogonality.

Extra reading and watching:

• Sections 1.3.4 and 1.4.1 in the textbook

• Lecture videos 17, 18, 19, 20, 21, and 22 on YouTube

• Inner product space at Wikipedia

• Cauchy–Schwarz inequality at Wikipedia

• Gram–Schmidt process at Wikipedia

Extra textbook problems:

? 1.3.3, 1.3.4, 1.4.1

? ? 1.3.9, 1.3.10, 1.3.12, 1.3.13, 1.4.2, 1.4.5(a,d)

? ? ? 1.3.11, 1.3.14, 1.3.15, 1.3.25, 1.4.16

A 1.3.18

1

https://www.youtube.com/watch?v=NpkFp-14M7M&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=18
https://www.youtube.com/watch?v=-tvsZ7Un8_g&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=19
https://www.youtube.com/watch?v=G2X7zfSyFqk&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=20
https://www.youtube.com/watch?v=0ogMWnPMyz8&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=21
https://www.youtube.com/watch?v=sjuRbORUvOE&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=22
https://www.youtube.com/watch?v=uFAtC5EYJVM&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=23
http://en.wikipedia.org/wiki/Inner_product_space
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
http://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
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There are many times when we would like to be able to talk about the angle between
vectors in a vector space V , and in particular orthogonality of vectors, just like we did in
Rn in the previous course. This requires us to have a generalization of the dot product to
arbitrary vector spaces.

Definition 5.1 — Inner Product
Suppose that F = R or F = C, and V is a vector space over F. Then an inner product
on V is a function 〈·, ·〉 : V × V → F such that the following three properties hold for
all c ∈ F and all v,w,x ∈ V :

a) 〈v,w〉 = 〈w,v〉 (conjugate symmetry)

b) 〈v,w + cx〉 = 〈v,w〉+ c〈v,x〉 (linearity in 2nd entry)

c) 〈v,v〉 ≥ 0, with equality if and only if v = 0. (positive definiteness)

• Why those three properties?

• Inner products are not linear in their first argument...

• OK, so why does property (a) have that weird complex conjugation in it?

• For this reason, they are sometimes called “sesquilinear”, which means...
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Example. Show that the following function is an inner product on Cn:

〈v,w〉 = v∗w =
n∑

i=1
viwi for all v,w ∈ Cn.

Example. Let a < b be real numbers and let C[a, b] be the vector space of continuous functions
on the interval [a, b]. Show that the following function is an inner product on C[a, b]:

〈f, g〉 =
∫ b

a
f(x)g(x) dx for all f, g ∈ C[a, b].

The previous examples are the “standard” inner products on those vector spaces. How-
ever, inner products can also be much uglier. The following example illustrates how the
same vector space can have multiple different inner products, and at first glance they might
look nothing like the standard inner products.
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Example. Show that the following function is an inner product on R2:

〈v,w〉 = v1w1 + 2v1w2 + 2v2w1 + 5v2w2 for all v,w ∈ R2.

There is also a “standard” inner product onMn, but before being able to explain it, we
need to introduce the following helper function:

Definition 5.2 — Trace
Let A ∈Mn be a square matrix. Then the trace of A, denoted by tr(A), is the sum of
its diagonal entries:

tr(A) def= a1,1 + a2,2 + · · ·+ an,n.

Example. Compute the following matrix traces:

The reason why the trace is such a wonderful function is that it makes matrix multipli-
cation “kind of” commutative:

Theorem 5.1 — Commutativity of the Trace
Let A ∈Mm,n and B ∈Mn,m be matrices. Then

tr(AB) = tr(BA).
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Proof. Just directly compute the diagonal entries of AB and BA:

�

The trace also has some other nice properties that are easier to see:

With the trace in hand, we can now introduce the standard inner product on the vector
space of matrices:

Example. Show that the following function is an inner product onMm,n:

〈A,B〉 = tr(A∗B) for all A,B ∈Mm,n.

The above inner product is typically called the Frobenius inner product or Hilbert–
Schmidt inner product. Also, a vector space together with a particular inner product is
called an inner product space.
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Norm Induced by the Inner Product
Now that we have inner products, we can define the length of a vector in a manner completely
analogous to how we did it with the dot product in Rn. However, in this more general
setting, we are a bit beyond the point of being able to draw a geometric picture of what
length means (for example, what is the “length” of a continuous function?), so we change
terminology slightly and instead call this function a “norm.”

Definition 5.3 — Norm Induced by the Inner Product
Suppose that V is an inner product space. Then the norm induced by the inner
product is the function ‖ · ‖ : V → R defined by

‖v‖ def=
√
〈v,v〉 for all v ∈ V .

Example. What is the norm induced by the standard inner product on Cn?

Example. What is the norm induced by the standard inner product on C[a, b]?

Example. What is the norm induced by the standard (Frobenius) inner product onMm,n?

Perhaps not surprisingly, the norm induced by an inner product satisfies the same basic
properties as the length of a vector in Rn. These properties are summarized in the following
theorem.

Theorem 5.2 — Properties of the Norm Induced by the I.P.
Suppose that V is an inner product space, v ∈ V is a vector, and c ∈ F is a scalar. Then
the following properties of the norm induced by the inner product hold:

a) ‖cv‖ = |c|‖v‖, and

b) ‖v‖ ≥ 0, with equality if and only if v = 0.
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The two other main theorems that we proved for the length in Rn were the Cauchy–
Schwarz inequality and the triangle inequality. We now show that these same properties
hold for the norm induced by any inner product.

Theorem 5.3 — Cauchy–Schwarz Inequality
Suppose that V is an inner product space and v,w ∈ V . Then

|〈v,w〉| ≤ ‖v‖‖w‖.

Furthermore, equality holds if and only if {v,w} is a linearly dependent set.

Proof. Let c, d ∈ F be arbitrary scalars, and expand ‖cv+dw‖2 in terms of the inner product:

�

For example, if we apply the Cauchy–Schwarz inequality to the Frobenius inner product
onMm,n, it tells us that

and if we apply it to the standard inner product on C[a, b] then it says that

Neither of the above inequalities are particularly pleasant to prove directly.
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Just as was the case in Rn, the triangle inequality now follows very quickly from the
Cauchy–Schwarz inequality.

Theorem 5.4 — The Triangle Inequality
Suppose that V is an inner product space and v,w ∈ V . Then

‖v + w‖ ≤ ‖v‖+ ‖w‖.

Furthermore, equality holds if and only if v and w point in the same direction (i.e.,
v = 0 or w = cv for some 0 ≤ c ∈ R).

Proof. Start by expanding ‖v + w‖2 in terms of the inner product:

�

Orthogonality
The most useful thing that we can do with an inner product is re-introduce orthogonality in
this more general setting:

Definition 5.4 — Orthogonality
Suppose V is an inner product space. Then two vectors v,w ∈ V are called orthogonal
if 〈v,w〉 = 0.

In Rn, we could think of “orthogonal” as a synonym for “perpendicular”, since two vectors
were orthogonal if and only if the angle between them was π/2. In general inner product
spaces this geometric picture makes much less sense (for example, what does it mean for the
angle between two polynomials to be π/2?), so it is perhaps better to think of orthogonal
vectors as ones that are “as linearly independent as possible.”’
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With this intuition in mind, it is useful to extend orthogonality to sets of vectors, rather
than just pairs of vectors:

Definition 5.5 — Orthonormal Bases
A basis B of an inner product space V is called an orthonormal basis of V if

a) 〈v,w〉 = 0 for all v 6= w ∈ B, and (mutual orthogonality)

b) ‖v‖ = 1 for all v ∈ B. (normalization)

Example. Examples of orthonormal bases in our “standard” vector spaces include...

Orthogonal and orthonormal bases often greatly simplify calculations. For example, the
following theorem shows us that linear independence comes for free when we know that a
set of vectors are mutually orthogonal.

Theorem 5.5 — Orthogonality Implies Linear Independence
Let V be an inner product space and suppose that the set B = {v1,v2, . . . ,vn} ⊂ V
consists of non-zero mutually orthogonal vectors (i.e., 〈vi,vj〉 = 0 whenever i 6= j).
Then B is linearly independent.
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Proof. Suppose c1v1 + c2v2 + · · ·+ cnvn = 0. Then...

�

A fairly quick consequence of the previous theorem is the fact that if a set of non-zero
vectors is mutually orthogonal, and their number matches the dimension of the vector space,
then...

Example. Show that the set of Pauli matrices

B =
{[

1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

]}

is an orthogonal basis ofM2(C). How could you turn it into an orthonormal basis?

We already learned that all finite-dimensional vector spaces are isomorphic (i.e., “essen-
tially the same”) to Fn. It thus seems natural to ask the corresponding question about inner
products—do all inner products on Fn look like the usual dot product on Fn in some basis?
Orthonormal bases let us show that the answer is “yes.”



Advanced Linear Algebra – Week 5 11

Theorem 5.6 — All Inner Products Look Like the Dot Product
Suppose that B is an orthonormal basis of a finite-dimensional inner product space V .
Then

〈v,w〉 = [v]B · [w]B for all v,w ∈ V .

Proof. Write B = {u1,u2, . . .un}. Since B is a basis of V , we can write v = c1u1 + · · ·+cnun

and w = d1u1 + · · ·+ dnun. Then...

�

If we specialize even further to Cn rather than to an arbitrary finite-dimensional vector
space V , then we can say even more. Specifically, recall that if v,w ∈ Cn, E is the standard
basis of Cn, and B is any basis of Cn, then

By plugging this fact into the above characterization of finite-dimensional inner product
spaces (and assuming that B is orthonormal), we see that every inner product on Cn has
the form

We state this fact in a slightly cleaner form below:

Corollary 5.7 — Invertible Matrices Make Inner Products
A function 〈·, ·〉 : Fn×Fn → F is an inner product if and only if there exists an invertible
matrix P ∈Mn(F) such that

〈v,w〉 = v∗(P ∗P )w for all v,w ∈ Fn.
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For example, the usual inner product (i.e., the dot product) on Cn arises when P = I.
Similarly, the weird inner product on R2 from a few pages ago, defined by

〈v,w〉 = v1w1 + 2v1w2 + 2v2w1 + 5v2w2 for all v,w ∈ R2,

is what we get if we choose P =
[
1 2
0 1

]
. To see this, we verify that

Orthogonalization
We already showed how to determine whether or not a particular set is an orthonormal
basis, so let’s turn to the question of how to construct an orthonormal basis. While this is
reasonably intuitive in familiar inner product spaces like Rn orMm,n(C), it becomes a bit
more delicate when working in stranger inner products.

The process works one vector at a time to turn the vectors from some (not necessarily
orthonormal) basis B = {v1,v2, . . . ,vm} into an orthonormal basis C = {u1,u2, . . . ,um}.
We start by simply defining

To construct the next member of our orthonormal basis, we define

In words, we are subtracting the portion of v2 that points in the direction of u1, leaving
behind only the piece of it that is orthogonal to u1, as illustrated on the next page.
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In higher dimensions, we would then continue in this way, adjusting each vector in the
basis so that it is orthogonal to each of the previous vectors, and then normalizing it.
The following theorem makes this precise and tells us that the result is indeed always an
orthonormal basis.

Theorem 5.8 — Gram–Schmidt Process
Suppose B = {v1,v2, . . . ,vn} is a basis of an inner product space V . Define

Then C = {u1,u2, . . . ,un} is an orthonormal basis of V .

Proof. We actually prove that, not only is C an orthonormal basis of V , but also that

for all 1 ≤ k ≤ n.



Advanced Linear Algebra – Week 5 14

We prove this result by induction on k. For the base case of k = 1, ...

�

Since finite-dimensional inner product spaces (by definition) have a basis consisting of
finitely many vectors, and the Gram–Schmidt process tells us how to convert that basis into
an orthonormal basis, we now know that every finite-dimensional inner product space has
an orthonormal basis:

Corollary 5.9 — Existence of Orthonormal Bases
Every finite-dimensional inner product space has an orthonormal basis.

Example. Find an orthonormal basis for P2[−1, 1] with respect to the inner product

〈f, g〉 =
∫ 1

−1
f(x)g(x) dx.
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