s ADVANCED LINEAR ALGEBRA — WEEK 8

POSITIVE (SEMI)DEFINITENESS

This week we will learn about:

o Positive definite and positive semidefinite matrices,
o Gershgorin discs and diagonal dominance,
e The principal square root of a matrix, and

e The polar decomposition.

Extra reading and watching:

e Section 2.2 in the textbook

Lecture videos 30, 31, 32, and 33 on YouTube

Positive-definite matrix at Wikipedia,

Gershgorin circle theorem at Wikipedia

Square root of a matrix at Wikipedia

Polar decomposition at Wikipedia

Extra textbook problems:
* 2.2.1,2.2.2
*% 2.2.3,2.2.5-2.2.10, 2.2.12
* %% 2.2.11, 2.2.14, 2.2.16, 2.2.19, 2.2.22
2 22.18,2227, 2228


https://www.youtube.com/watch?v=bo8q_HW00wo&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=31
https://www.youtube.com/watch?v=gu-RKEAlguQ&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=32
https://www.youtube.com/watch?v=jLTrYS3yB9Y&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=33
https://www.youtube.com/watch?v=d8DXx5aLUcQ&list=PLOAf1ViVP13jdhvy-wVS7aR02xnDxueuL&index=34
https://en.wikipedia.org/wiki/Positive-definite_matrix
https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
https://en.wikipedia.org/wiki/Square_root_of_a_matrix
https://en.wikipedia.org/wiki/Polar_decomposition
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Recall that normal matrices play a particularly important role in linear algebra (they can
be diagonalized by unitary matrices). There is one particularly important family of normal
matrices that we now focus our attention on.

Definition 8.1 — Positive (Semi)Definite Matrices

Suppose F =R or F = C, and A = A* € M, (F). Then A is called
a) positive semidefinite (PSD) if v:Av > 0 for all v € F", and

b) positive definite (PD) if v*Av > 0 for all v # 0.

Positive (semi)definiteness is somewhat difficult to eyeball from the entries of a matrix,
and we should emphasize that it does not mean that the entries of the matrix need to be

positive. For example, if
1 -1 1 2
A:[—l 11 and B:[Q 1],

then...

The definition of positive semidefinite matrices perhaps looks a bit odd at first glance.
The next theorem characterizes these matrices in several other equivalent ways, some of
which are hopefully a bit more illuminating and easier to work with.
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Theorem 8.1 — Characterization of PSD and PD Matrices
Suppose F =R or F = C, and A = A* € M,,(F). The following are equivalent:

a) A is positive (semidefinite | definite),
b) All of the eigenvalues of A are (non-negative | strictly positive),

c) There exists a diagonal D € M,,(R) with (non-negative | strictly positive) diagonal
entries and a unitary matrix U € M,,(F) such that A = UDU*, and

d) There exists (a matrix | an invertible matrix) B € M, (IF) such that A = B*B.

Proof. We prove the theorem by showing that (a) = (b) = (¢) = (d) = (a).
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Example. Show that A = [_11 _111 is PSD, but not PD, in several different ways.
2 =1 1
Example. Show that A= |—1 2 1| is positive definite.

-1 2
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OK, let’s look at another way of determining whether or not a matrix is positive definite,
which has the advantage of not requiring us to compute eigenvalues.

Theorem 8.2 — Sylvester’s Criterion

Let A = A* € M,,. Then A is positive definite if and only if the determinant of the
top-left k£ x k block of A is strictly positive for all 1 < k < n.

We won’t prove Sylvester’s Criterion (a proof is in the textbook if you're curious), but
instead let’s jump right to an example to illustrate how it works.

2 =1 1
Example. Use Sylvester’s criterion to show that A= |—1 2 1| is positive definite.
- 1 2

Let’s wrap up this section by reminding ourselves of something that we already proved
about positive definite matrices a few weeks ago:

Theorem 8.3 — Positive Definite Matrices Make Inner Products

A function (-,-) : F* x F" — F is an inner product if and only if there exists a positive
definite matrix A € M,,(FF) such that

(v,w) =v*'Aw forall v,w e F".
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Diagonal Dominance and Gershgorin Discs

In order to motivate this next section, let’s think a bit about what Sylvester’s criterion says
when the matrix A is 2 x 2.

Theorem 8.4 — Positive Definiteness for 2 x 2 Matrices
a b
b d|-

a) A is positive semidefinite if and only if a,d > 0 and |b]* < ad, and

Let a,d € R, b € C, and suppose that A =

b) A is positive definite if and only if @ > 0 and |b|* < ad.

Indeed, case (b) is exactly Sylvester’s criterion. For case (a)...

Example. Show that A = l—ll _11] is positive semidefinite, but not positive definite.

The previous theorem basically says that a 2 x 2 matrix is positive (semi)definite as long
as its off-diagonal entries are “small enough” compared to its diagonal entries. This same
intuition is well-founded even for larger matrices. However, to clarify exactly what we mean,
we first need the following result that helps us bound the eigenvalues of a matrix based on
simple information about its entries.
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Theorem 8.5 — Gershgorin Disc Theorem
Let A € M,,(C) and define the following objects:

« 7;=_la;;| (the sum of the off-diagonal entries of the i-th row of A),
JFi

o D(a;;,m;) is the closed disc in the complex plane centered at a;; with radius r;.

Then every eigenvalue of A is in at least one of the D(a; ;, ;) (called Gershgorin discs).

Example. Draw the Gershgorin discs for...

Proof of Theorem 8.5. Let A be an eigenvalue of A with associated eigenvector v. Then...
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The Gershgorin disc theorem is an approximation theorem. For diagonal matrices we
have r; = 0 for all 7, so the Gershgorin discs have radius 0 and thus the eigenvalues are
exactly the diagonal entries (which we already knew from the previous course). However, as
the off-diagonal entries increase, the radii of the Gershgorin discs increase so the eigenvalues
can wiggle around a bit.

In order to connect Gershgorin discs to positive semidefiniteness, we introduce one addi-
tional family of matrices:

Definition 8.2 — Diagonally Dominant Matrices
Suppose that A € M,,(C). Then A is called

a) diagonally dominant if |a;;| > ) |a;;| for all 1 <i < n, and

J#
b) strictly diagonally dominant if |a;;| > > |a; ;| for all 1 <i < n.
i
Example. Show that the matriz
2 0 1
A=10 3 1
- 1 5

is strictly diagonally dominant, and draw its Gershgorin discs.
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In particular, since the eigenvalues of the previous matrix were positive, it was necessarily
positive definite. This same type of argument works in general, and leads immediately to
the following theorem:

Theorem 8.6 — Diagonal Dominance Implies PSD

Suppose that A = A* € M,,(C) has non-negative diagonal entries.
a) If A is diagonally dominant then it is positive semidefinite.

b) If A is strictly diagonally dominant then it is positive definite.

Be careful: this is a one-way theorem! DD implies PSD, but PSD does not imply DD.
For example,

Unitary Freedom of PSD Decompositions

We saw earlier that for every positive semidefinite matrix A we can find a matrix B such
that A = B*B. However, this matrix B is not unique, since if U is a unitary matrix and we
define C' = UB then

The following theorem says that we can find all decompositions of A using this same proce-
dure:

Theorem 8.7 — Unitary Freedom of PSD Decompositions

Suppose F =R or F = C, and B,C € M,,,,(F). Then B*B = C*C if and only if there
exists a unitary matrix U € M,,(F) such that C = UB.

For the purpose of saving time, we do not show the “only if” direction of the proof here
(it is in the textbook, in case you are interested).
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The previous theorem raises the question of how simple we can make the matrix B in a
positive semidefinite decomposition A = B*B. The following theorem provides one possible
answer: we can choose B so that it is also positive semidefinite.

Theorem 8.8 — Principal Square Root of a Matrix

Suppose F =R or F = C, and A € M,,(F) is positive semidefinite. Then there exists a
unique positive semidefinite matrix P € M, (F), called the principal square root of
A, such that

A=p?

Proof. To see that such a matrix P exists, we use our usual diagonalization arguments.

The principal square root P of a matrix A is typically denoted by P = /A, and is in
analogy with the principal square root of a non-negative real number (indeed, for 1 x 1
matrices they are the exact same thing).

Example. Find the principal square root of...
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By combining our previous two theorems, we also recover a new matrix decomposition,
which answers the question of how simple we can make a matrix by multiplying it on the
left by a unitary matrix—we can always make it positive semidefinite.

Theorem 8.9 — Polar Decomposition

Suppose F = R or F = C, and A € M, (F). Then there exists a unitary matrix
U € M, (F) and a positive semidefinite matrix P € M,,(IF) such that

A=UP.

Proof. Since A*A is positive semidefinite, we know from the previous theorem that

The matrix v/ A*A in the polar decomposition can be thought of as the “matrix version”
of the absolute value of a complex number |z| = v/Zz. In fact, this matrix is sometimes
even denoted by |A| = VA*A. Similarly, the polar decomposition of a matrix generalizes
the polar form of a complex number:

We don’t know how to compute the polar decomposition yet (since we skipped a proof
earlier this week), but we will learn a method soon.
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Over the past couple of weeks, we learned about several new families of matrices. It is
worth drawing a diagram illustrating their relationships with each other:

It is also worth noting that many of these families of matrices are analogous to important
subsets of the complex plane:
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