
Linear Algebra – Week 1

Vectors

This week we will learn about:

• What vectors are,

• How to manipulate vectors, and

• Linear combinations.

Extra reading and watching:

• Section 1.1 in the textbook

• Lecture videos 1, 2, and 3 on YouTube

• Vector at Wikipedia

Extra textbook problems:

? 1.1.1–1.1.3, 1.1.5–1.1.8

? ? 1.1.9–1.1.12

? ? ? 1.1.13(a), 1.1.14, 1.1.15

A 1.1.13(b)

1

https://www.youtube.com/watch?v=ea6p2eb7mTQ&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=1
https://www.youtube.com/watch?v=5H8nCvbLhfc&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=2
https://www.youtube.com/watch?v=7LDLe131WAI&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=3
http://en.wikipedia.org/wiki/Euclidean_vector
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Linear algebra is one of the branches of mathematics where everything “just
works”. Most of the objects that we introduce in this course will seem rather
simple and unremarkable at first, but we will be able to do a lot with them. Some
of the things we will be able to do are motivated very geometrically...

Example. Lengths, angles, and deformations (oh my!)

...while other applications will involve sifting through huge amounts of data:

Example. How does (well, did) Google work?
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Vectors
A vector is an ordered list of numbers like (3, 1). These lists can be as long as we
like, but we’ll start by considering 2-dimensional vectors in order to establish some
intuition for how they work, since we can interpret them geometrically in this case.

Several different notations are used for vectors:

The coordinates or entries of a vector only tell us how far the vector stretches
in the x- and y-directions; not where it is located in space.

Example. Coordinates of vectors.

That is, vectors represent...



Linear Algebra – Week 1 4

The order of the coordinates matters: for example, (2, 3) 6= (3, 2). For this
reason, 2D vectors are sometimes called “ordered pairs”. In another math class,
you might be introduced to objects called “sets”, where order does not matter.

• Two vectors are equal if and only if...

• The zero vector is...

• Recall that the set of all real numbers is denoted by R. Similarly,

Sometimes we want to combine two (or more) vectors to get new ones. For
example, we might want to think about what happens if we move along the path
of multiple different vectors, one after another. Where do we end up after doing
this? The answer is given by vector addition.

Example. Vector addition.

Specifically, if v = (v1, v2) and w = (w1, w2), then v + w = (v1 + w1, v2 + w2) is the
vector from the tail of v to the head of w.
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Another common way to manipulate vectors is to “scale” them (or “multiply
by a scalar”). The idea here is that we want to move in the same direction as a
given vector, but we want to change how far we move in that direction.

Example. Scalar multiplication.

Specifically, if v = (v1, v2) and c is a real number, then cv = (cv1, cv2) is the vector
that points in the same direction as v, but is c times as long (and if c < 0 then the
direction of the vector is reversed).

Finally, how do you think vector subtraction might be defined? If v = (v1, v2)
and w = (w1, w2), then

v−w =

is the vector from the to the .

Example. Vector subtraction.
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Example. Suppose that a regular hexagon has its center at the point (0, 0) and
one of its corners at the point (1, 0). Find the sum of the 6 vectors that point from
its center to its corners.

If v and w are the (non-parallel) sides of a parallelogram, then v+w and v−w
appear very naturally in that parallelogram...

Example. The parallelogram rule.
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3-Dimensional Vectors
Everything we have learned about vectors so far extends naturally to 3 dimensions.

A vector in 3 dimensions is an ordered triple like (1, 3, 2), and the set of
all ordered triples is denoted by R3. These are a bit harder to draw than their
2-dimensional counterparts, but it’s still possible...

Example. Drawing 3D vectors.

Everything we have seen in 2D carries over exactly how you would expect in 3D:

• Adding vectors still has the geometric interpretation of “following” both vec-
tors, one after the other.

• Adding vectors has the same formula you might expect:

• Scalar multiplication still has the geometric interpretation of stretching the
vector.

• Scalar multiplication has the same formula you might expect:
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High-Dimensional Vectors
Everything we have learned about vectors so far extends naturally to 4 (and more!)
dimensions.

We’ll get a bit more general now and consider an arbitrary number of dimensions.

A vector in n dimensions is an ordered n-tuple like (1, 2, 3, . . . , n), and the
set of all ordered n-tuples is denoted by Rn. These are a bit harder to draw than
their 2- and 3-dimensional counterparts...

Example. Drawing 4D (and 5D, and 6D...) vectors.

However, everything algebraic that we have seen for 2D and 3D vectors carries
over exactly how you would expect in higher dimensions:

• Adding vectors has the same formula you might expect:

• Scalar multiplication has the same formula you might expect:
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Even though we can’t draw vectors in Rn, we still want to be able to manipu-
late them. We have seen that vector addition and scalar multiplication work the
“naive” way. The following theorem shows some more properties that are similarly
“obvious”:

Theorem 1.1 — Properties of Vector Operations
Let v, w, x ∈ Rn be vectors and let c, d ∈ R be scalars. Then

a) v + w = w + v (commutativity)

b) (v + w) + x = v + (w + x) (associativity)

c) c(v + w) = cv + cw (distributivity)

d) (c + d)v = cv + dv (distributivity)

e) v + 0 = v

f) v + (−v) = 0

g) c(dv) = (cd)v

Proof. We will prove property (a) in class; you can try to prove some of the others
on your own (the method is quite similar).

which completes the proof. �
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Why did we even bother with the theorem on the previous page? They’re all
the type of thing you can just look at and “see” are true, right?

One reason is that we have to make sure that certain combinations of sym-
bols even make sense when we are in new and unfamiliar settings. For example,
associativity (property (b)) says that this expression makes sense:

We will soon introduce some operations that do not have these basic properties
like commutativity, so we will have to start being very careful.

Example. Simplify v + 2(w− v)− 3(v + 2w).

Linear Combinations
One common task in linear algebra is to start out with some given collection of
vectors v1, v2, . . . , vk and then use vector addition and scalar multiplication to
construct new vectors out of them. The following definition gives a name to this
concept.

Definition 1.1 — Linear Combinations
A linear combination of v1, v2, . . . , vk ∈ Rn is a vector of the form

c1v1 + c2v2 + · · ·+ ckvk,

where c1, c2, . . . , ck ∈ R.
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Example. Show that (1, 2, 3) is a linear combination of the vectors (1, 1, 1) and
(−1, 0, 1).

Example. Show that (1, 2, 3) is not a linear combination of (1, 1, 0) and (2, 1, 0).

When working with linear combinations, some particularly important vectors
are the ones with a single 1 in one of their entries, and all other entries equal to 0.
These are called the standard basis vectors:

Example. List and draw all of the standard basis vectors in R2 and R3.
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For now, the reason for our interest in these standard basis vectors is that every
vector v = (v1, v2, . . . , vn) ∈ Rn can be written as a linear combination of them. In
particular,

This idea of writing vectors in terms of the standard basis vectors is one of the
most useful tricks that we make use of in linear algebra: in many situations, if we
can prove that some property holds for the standard basis vectors, then we can use
linear combinations to show that it must hold for all vectors.

Example. Compute 3e1 − 2e2 + e3 ∈ R3.

Example. Write (3, 5,−2,−1) as a linear combination of e1, e2, e3, e4 ∈ R4.
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Lengths, Angles, and
the Dot Product

This week we will learn about:

• The dot product,

• The length of vectors and the angle between them, and

• The Cauchy–Schwarz and triangle inequalities.

Extra reading and watching:

• Section 1.2 in the textbook

• Lecture videos 4, 5, 6, and 7 on YouTube

• Dot product at Wikipedia

• Cauchy–Schwarz inequality at Wikipedia

Extra textbook problems:

? 1.2.1–1.2.3, 1.2.7, 1.2.8

? ? 1.2.4–1.2.6, 1.2.9–1.2.11

? ? ? 1.2.12, 1.2.13, 1.2.17–1.2.21

A 1.2.23

1

https://www.youtube.com/watch?v=PJfvKCXpWZM&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=4
https://www.youtube.com/watch?v=iffOTbS3IYw&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=5
https://www.youtube.com/watch?v=iQmX26y9ZvI&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=6
https://www.youtube.com/watch?v=f73qCiJCIXE&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=7
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
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The Dot Product
In 2D (and sometimes in 3D), it is fairly intuitive to talk about geometric quantities
like lengths or angles. You have used things like similar triangles and the law of
cosines for tackling problems like this in the past.

Using vectors, we can now generalize these concepts to arbitrary dimensions
(even though we can’t picture it)! Our main tool will be...

Definition 2.1 — Dot Product
If v = (v1, v2, . . . , vn) ∈ Rn and w = (w1, w2, . . . , wn) ∈ Rn then the dot
product of v and w, denoted by v ·w, is the quantity

v ·w def= v1w1 + v2w2 + · · ·+ vnwn.

Please be wary of what types of objects go into and come out of the dot product:

Intuitively, the dot product v ·w tells you how much v points in the direction of
w (or how much w points in the direction of v).

Example. 2D examples.
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Example. Higher-dimensional examples.

We have defined a new mathematical operation, so it’s time for another “obvi-
ous” theorem telling us what properties it satisfies:

Theorem 2.1 — Properties of the Dot Product
Let v,w, z ∈ Rn be vectors and let c ∈ R be a scalar. Then

a) v ·w = w · v (commutativity)

b) v · (w + z) = v ·w + v · z (distributivity)

c) (cv) ·w = c(v ·w)

Proof. We will prove property (a). You can try the rest on your own (the method
is quite similar).

This completes the proof. �
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Example. Compute 1
2(−1,−3, 2) · (6,−4, 2).

Example. Show that (v + w) · (v + w) = v · v + 2v ·w + w ·w for all v,w ∈ Rn.

Length of a Vector
We now start making use of the dot product to talk about things like the length of
vectors or the angle between vectors (even in high-dimensional spaces).

Example. Length of vectors in R2.
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Example. Length of vectors in R3.

In higher dimensions, we define the length of a vector so as to continue the
pattern that we observed above:

Definition 2.2 — Length of a Vector
The length of a vector v = (v1, v2, . . . , vn) ∈ Rn, denoted by ‖v‖, is defined by

‖v‖ def=
√

v · v =
√
v2

1 + v2
2 + · · ·+ v2

n.

Example. Compute the length of some vectors.

As always, we have defined a new mathematical object, so we want a theorem
that tells us what its properties are.
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Theorem 2.2 — Properties of Vector Length
Let v ∈ Rn be a vector and let c ∈ R be a scalar. Then

a) ‖cv‖ = |c|‖v‖

b) ‖v‖ = 0 if and only if v = 0

Proof. To prove property (a), we just apply the relevant definitions:

To prove property (b), we have to prove two things:

This completes the proof. �

A vector with length 1 is called a unit vector. Every non-zero vector v ∈ Rn

can be divided by its length to get a unit vector:

Scaling v to have length 1 like this is called normalizing v (and this unit vector
w is called the normalization of v).
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Example. Normalize the vector (3, 4) ∈ R2.

Example. Show that the standard basis vectors are unit vectors.

We now start to look at somewhat more interesting properties of the dot product
and vector lengths. Our first result in this direction is an inequality that relates
the dot product of two vectors to their lengths:

Theorem 2.3 — Cauchy–Schwarz Inequality
Suppose that v,w ∈ Rn are vectors. Then |v ·w| ≤ ‖v‖‖w‖.

Proof. Define the vector x = ‖w‖v− ‖v‖w and then expand the quantity ‖x‖2 in
terms of the dot product:
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�

The above theorem is our first example of a theorem with a very non-obvious
proof: even though we can follow the steps and see that they are individually true,
the choice of x = ‖w‖v − ‖v‖w at the start was something like magic. This
particular choice of x was chosen so that the proof would give us what we wanted.
Other choices of x also result in true inequalities, but ones that are less useful than
Cauchy–Schwarz.

Example. Do there exist vectors v,w ∈ R2 with...

We have two main uses for the Cauchy–Schwarz inequality. The first is that it
helps us prove another geometrically “obvious” fact about vector lengths:
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Theorem 2.4 — Triangle Inequality
Suppose that v,w ∈ Rn are vectors. Then ‖v + w‖ ≤ ‖v‖+ ‖w‖.

Proof. We start by expanding ‖v + w‖2 in terms of the dot product:

�

Angle Between Vectors
The second immediate use of the Cauchy–Schwarz inequality is that it helps us
define angles in Rn. To get an idea of how this works, let’s start by thinking about
a triangle with sides given by the vectors v, w, and v−w:

Our reasoning above gave us a formula for the angle between two vectors in R2

(and in R3). We now state it as a definition in higher-dimensional spaces.
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Definition 2.3 — Angle Between Vectors
The angle θ between two non-zero vectors v,w ∈ Rn is the quantity

θ = arccos
 v ·w
‖v‖‖w‖

 .

Example. What is the angle between v = (1, 1, 1, 1) and w = (2, 0, 2, 0)?

Example. What is the angle between the diagonals of two adjacent faces of a cube?
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Recall that arccos(x) is only defined if −1 ≤ x ≤ 1. How do we know that
−1 ≤ v·w

‖v‖‖w‖ ≤ 1?

One special case of vector angles that is worth pointing out is the case when
v ·w = 0. When this happens...

This special case is important enough that we give it its own name:

Definition 2.4 — Orthogonality
Two vectors v,w ∈ Rn are called orthogonal if v ·w = 0.

Example. Show that the vectors (1, 1,−2) and (3, 1, 2) are orthogonal.

Example. Find a non-zero vector orthogonal to v = (v1, v2) ∈ R2
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Matrices and Matrix Operations

This week we will learn about:

• Matrices,

• Matrix addition, scalar multiplication, and matrix multiplication,

• The transpose, and

• Matrix powers and adjacency matrices of graphs.

Extra reading and watching:

• Section 1.3 in the textbook

• Lecture videos 8, 9, 10, 11, and 12 on YouTube

• Matrix multiplication at Wikipedia

• Transpose at Wikipedia

Extra textbook problems:

? 1.3.1, 1.3.2, 1.3.4, 1.3.12

? ? 1.3.3, 1.3.5–1.3.7, 1.3.9, 1.3.11, 1.3.13–1.3.15

? ? ? 1.3.8

A none this week

1

https://www.youtube.com/watch?v=ytOfBfUZKZM&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=8
https://www.youtube.com/watch?v=VoT5g5e3hy8&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=9
https://www.youtube.com/watch?v=ow7K6_3f33I&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=10
https://www.youtube.com/watch?v=IbCpt-Vm7J8&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=11
https://www.youtube.com/watch?v=KCUgWj5nhYc&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=12
http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Transpose
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Matrices
Previously, we introduced vectors, which can be thought of as 1D lists of numbers.
Now we start working with matrices, which are 2D arrays of numbers:

Definition 3.1 — Matrices
A matrix is a rectangular array of numbers. Those numbers are called the
entries or elements of the matrix.

Example. Examples of matrices.

The size of a matrix is a description of the number of rows and columns that
it has. A matrix with m rows and n columns has size m× n.

A 1 × n matrix is called a row matrix or row vector. An m × 1 matrix is
called a column matrix or column vector. An n× n matrix is called square.



Linear Algebra – Week 3 3

We use double subscripts to specify individual entries of a matrix: the entry of
the matrix A in row i and column j is denoted by ai,j. For example, if

then a1,3 = and a2,2 = .

Similarly, when we say “the (i, j)-entry of A”, we mean ai,j. Another notation
for this is [A]i,j, and we will see some examples shortly where this notation is ad-
vantageous.

With this notation in mind, a general m× n matrix A has the following form:

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
... ... . . . ...

am,1 am,2 · · · am,n

 .

Two matrices are equal if they have the same size and all of their entries (in
the same positions) are equal to each other.

Example. Some (un)equal matrices.

We useMm,n to denote the set of m× n matrices, and the shorthandMn for the
set of n× n matrices.
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Just like we could add vectors or multiply vectors by a scalar, we can also add
matrices and multiply matrices by scalars, and their definitions are exactly what
you would expect:

Definition 3.2 — Matrix Addition and Scalar Multiplication
Suppose A and B are m×n matrices, and c ∈ R is a scalar. Then their sum A+
B is the matrix whose (i, j)-entry is ai,j + bi,j, and the scalar multiplication
cA is the matrix whose (i, j)-entry is cai,j.

In other words, these operations are just performed entry-wise, as you might
expect. The definition of matrix addition only makes sense when A and B have
the same size.

Example. Matrix addition and scalar multiplication.

Matrix subtraction is defined analogously:
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Matrix addition, subtraction, and scalar multiplication satisfy all of the “natu-
ral” properties you might expect (e.g., A + B = B + A). We state these properties
as a theorem:

Theorem 3.1 — Properties of Matrix Operations
Let A, B, C ∈Mm,n and let c, d ∈ R be scalars. Then

a) A + B = B + A (commutativity)

b) (A + B) + C = A + (B + C) (associativity)

c) c(A + B) = cA + cB (distributivity)

d) (c + d)A = cA + dA (distributivity)

e) c(dA) = (cd)A

Proof. We will only prove part (c) of the theorem. The remaining parts of the
theorem can be proved similarly: just use the definition of matrix addition and use
the fact that all of these properties hold for addition of real numbers.

This completes the proof. �

Matrix Multiplication
What about matrix multiplication? Recall that multiplication was a bit tricky with
vectors: we only saw the dot product, which “multiplied” two vectors to give us a
number. Matrix multiplication is a bit different than this, and looks quite messy
and ugly at first glance. So hold onto your hats...
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Definition 3.3 — Matrix Multiplication
If A is an m× n matrix and B is an n× p matrix, then their product AB is
the m× p matrix whose (i, j)-entry is:

[AB]i,j def= ai,1b1,j + ai,2b2,j + · · ·+ ai,nbn,j.

In other words, the product AB is the matrix whose entries are all of the possible
dot products of the rows of A with the columns of B.

We emphasize that the matrix product AB only makes sense if A has the same
number of columns as B has rows. For example, it does not make sense to multiply
a 2× 3 matrix by another 2× 3 matrix, but it does make sense to multiply a 2× 3
matrix by a 3× 7 matrix.

Example. Compute the product of two matrices.
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When performing matrix multiplication, double-check that the sizes of your
matrices actually make sense. In particular, the inner dimensions of the matrices
must be equal, and the outer dimensions of the matrices will be the dimensions of
the matrix product:

As always, we have defined a new operation (matrix multiplication), so we want
to know what properties it satisfies.

Theorem 3.2 — Properties of Matrix Multiplication
Let A, B, and C be matrices (with sizes such that all of the multiplications
below make sense) and let c ∈ R be a scalar. Then

a) (AB)C = A(BC) (associativity)

b) A(B + C) = AB + AC (left distributivity)

c) (A + B)C = AC + BC (right distributivity)

d) c(AB) = (cA)B = A(cB)

Proof. We will only prove part (b) of the theorem. The remaining parts of the
theorem can be proved similarly: just use the definition of matrix multiplication.

�
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Notice that we did not say anything about commutativity (i.e., we did not claim
that AB = BA). Why not?

Example. Commutativity of matrix multiplication?

Example. FOILing matrices.

One particularly important square matrix is the one that consists entirely of 0
entries, except with 1s on its diagonal. This is called the identity matrix, and it
is denoted by I (or sometimes In if we want to emphasize it is n× n).

Similarly, the zero matrix is the one with all entries equal to 0. We denote it
by O (or Om,n if we care that it is m× n).
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Example. The identity matrix and zero matrix.

The previous example suggests the following general result, which is indeed true:

Theorem 3.3 — Multiplication by Identity or Zero
If A ∈Mm,n then AIn = A = ImA and AOn = Om,n = OmA.

We won’t prove the above theorem, but hopefully it seems believable enough.

Example. Diagonal matrices.

In general, the product of two diagonal matrices is just the entry-wise product
of the two matrices:
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The Transpose of a Matrix
We now introduce an operation on matrices that changes the shape of a matrix,
but not its contents. Specifically, it swaps the role of the rows and columns of a
matrix:

Definition 3.4 — The Transpose
Suppose A ∈Mm,n is an m× n matrix. Then its transpose, which we denote
by AT , is the n×m matrix whose (i, j)-entry is aj,i.

Intuitively, the transpose of a matrix is obtained by mirroring it across its main
diagonal.

Example. Let’s compute a transpose or two.

Let’s now think about some basic properties that the transpose satisfies:

Theorem 3.4 — Properties of the Transpose
Let A and B be matrices (with sizes such that the operations below make sense)
and let c ∈ R be a scalar. Then

a) (AT )T = A

b) (A + B)T = AT + BT

c) (AB)T = BT AT

d) (cA)T = cAT
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Proof. Parts (a), (b), and (d) of the theorem are intuitive enough, so we will only
prove part (c):

�

As a bit of a side note: would you have initially guessed that (AB)T = AT BT?
Situations like this are why we prove things rather than just guessing based on
what “looks believable”.

Example. Let’s compute some more transposes.



Linear Algebra – Week 3 12

Example. Transpose of the product of many matrices.

The transpose has the useful property that it converts a column vector into the
corresponding row vector, and vice-versa. Furthermore, if v, w ∈ Rn are column
vectors, then we can use our usual matrix multiplication rule to see that

vT w =

In other words, we can use matrix multiplication to recover the dot product.

Matrix Powers
Matrix multiplication also lets us define powers of square matrices. For an integer
k ≥ 1, we define

and we also define A0 = I (analogously to how we define a0 = 1 whenever a is
a non-zero real number). The next theorem follows almost immediately from this
definition:

Theorem 3.5 — Properties of Matrix Powers
If A is square and k and r are nonnegative integers, then

• AkAr = Ak+r, and

• (Ak)r = Akr.
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Example. Compute some matrix powers.

Later in the course, we will see how to define things like and .

Block Matrices
Oftentimes, there are clear “patterns” in the entries of a large matrix, and it might
be useful to break that matrix down into smaller chunks based on some partition
of its rows and columns. For example:

A =



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 2 1 −1
0 0 0 0 −2 3


and B =



1 2 0 0
2 1 0 0
−1 1 0 0
0 0 1 2
0 0 2 1
0 0 −1 1





Linear Algebra – Week 3 14

When A and B are written in this way, as matrices whose elements are them-
selves matrices, they are called block matrices. Viewing matrices in this way
often simplifies calculations and reveals structure, especially when the matrix has
a lot of zeroes.

Remarkably, multiplication of block matrices works exactly as it does for regular
matrices:

And indeed, this is the exact same answer we would have gotten if we computed
AB the “long way”.
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We have to be careful when performing block matrix multiplication: it is only
valid if we choose the sizes of the blocks so that each and every matrix multiplication
being performed makes sense.

Example. Suppose

Which of the following block matrix multiplications make sense?

A B
B A

2

A B
O I3



A A
O A
I2 O



A B
O I3

 A A
O A



A B
O I3

 B O
I3 I3


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Partitioning matrices in different ways can lead to new insights about how
matrix multiplication works.

Theorem 3.6 — Matrix–Vector Multiplication
Suppose A ∈ Mm,n has columns a1, a2, . . . , an and v ∈ Rn is a column vector.
Then

Av = v1a1 + v2a2 + · · ·+ vnan.

Proof. We simply perform block matrix multiplication:

�

We of course can compute Av directly from the definition, but it’s nice to have
multiple ways to think about things.

Theorem 3.7 — Matrix Multiplication is Column-Wise
Suppose A ∈Mm,n and B ∈Mn,p are matrices. If bj is the j-th column of B,
then

AB =
[

Ab1 | Ab2 | · · · | Abp

]
.

Proof. Again, we perform block matrix multiplication:

�
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Linear Transformations

This week we will learn about:

• Understanding linear transformations geometrically,

• The standard matrix of a linear transformation, and

• Composition of linear transformations.

Extra reading and watching:

• Section 1.4 in the textbook

• Lecture videos 13, 14, 15, and 16 on YouTube

• Linear map at Wikipedia

Extra textbook problems:

? 1.4.1, 1.4.4, 1.4.5(a,b,e,f)

? ? 1.4.2, 1.4.3, 1.4.6, 1.4.7(a,b), 1.4.8, 1.4.14–1.4.16

? ? ? 1.4.18, 1.4.22, 1.4.23

A 1.4.19, 1.4.20

1

https://www.youtube.com/watch?v=HZCFVf5YH7g&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=13
https://www.youtube.com/watch?v=V8Ph36zHsLM&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=14
https://www.youtube.com/watch?v=hI5k4h8d0HI&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=15
https://www.youtube.com/watch?v=7Dw0jhDoF18&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=16
https://en.wikipedia.org/wiki/Linear_map
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Linear Transformations
The final main ingredient of linear algebra, after vectors and matrices, are linear
transformations: functions that act on vectors and that do not “mess up” vector
addition and scalar multiplication:

Definition 4.1 — Linear Transformations
A linear transformation is a function T : Rn → Rm that satisfies the follow-
ing two properties:

a) T (v + w) = T (v) + T (w) for all vectors v,w ∈ Rn, and

b) T (cv) = cT (v) for all vectors v ∈ Rn and all scalars c ∈ R.

Before looking at specific examples of linear transformations, let’s think geo-
metrically about what they do to Rn:

Another way of thinking about this: linear transformations are exactly the
functions that preserve linear combinations:
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Example. Which of the following functions are linear transformations?
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Recall that every vector v = (v1, v2, . . . , vn) ∈ Rn can be written in the form

By using the fact that linear transformations preserve linear combinations, we see
that

But this is exactly what we said before: if v ∈ R2 extends a distance of v1 in the
direction of e1 and a distance of v2 in the direction of e2, then T (v) extends the
same amounts in the directions of T (e1) and T (e2), respectively.

This also tells us one of the most important facts to know about linear trans-
formations:

Example. Suppose T : R2 → R2 is a linear transformation for which T (e1) = (1, 1)
and T (e2) = (−1, 1). Compute T (2, 3) and then find a general formula for T (v1, v2)
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One of the earlier examples showed that if A ∈ Mm,n is a matrix, then the
function T : Rm → Rn defined by T (v) = Av is a linear transformation. Amazingly,
the converse is also true: every linear transformation can be written as matrix
multiplication.

Theorem 4.1 — Standard Matrix of a Linear Transformation
A function T : Rn → Rm is a linear transformation if and only if there exists a
matrix [T ] ∈Mm,n such that

T (v) = [T ]v for all v ∈ Rn.

Furthermore, the unique matrix [T ] with this property is called the standard
matrix of T , and it is

Proof. We already proved the “if” direction, so we just need to prove the “only
if” direction. That is, we want to prove that if T is a linear transformation, then
T (v) = [T ]v, where the matrix [T ] is as defined in the theorem.

�
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Example. Find the standard matrix of the following linear transformations:

A Catalog of Linear Transformations
To get more comfortable with the relationship between linear transformations and
matrices, let’s find the standard matrices of a few linear transformations that come
up fairly frequently.
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Example. The zero and identity transformations.

Example. Diagonal transformations/matrices.

Example. Projection onto the x-axis.
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Example. Projection onto a line, Pu : Rn → Rn.

Example. Find the standard matrix of the linear transformation that projects R3

onto the line in the direction of the vector...
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Example. Rotation counter-clockwise around the origin by 90◦ (π/2 radians).

Example. Rotation Rθ : R2 → R2 counter-clockwise around the origin by an angle
of θ.
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Example. What vector is obtained if we rotate v = (1, 3) by π/4 radians counter-
clockwise?

Composing Linear Transformations
If T : Rn → Rm and S : Rm → Rp are linear transformations, then we can consider
the function defined by first applying T to a vector, and then applying S. This
function is called the composition of T and S, and is denoted by S ◦ T .

Formally, the composition S ◦ T is defined by (S ◦ T )(v) = S(T (v)) for all
vectors v ∈ Rn. It turns out that S ◦ T is a linear transformation whenever S and
T are linear transformations themselves, as shown by the next theorem.
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Theorem 4.2 — Composition of Linear Transformations
Suppose T : Rn → Rm and S : Rm → Rp are linear transformations with
standard matrices [T ] ∈ Mm,n and [S] ∈ Mp,m, respectively. Then S ◦ T :
Rn → Rp is a linear transformation, and its standard matrix is [S ◦T ] = [S][T ].

Proof. Let v ∈ Rn and compute (S ◦ T )(v):

�

The previous theorem shows us that matrix multiplication tells us how the
composition of linear transformations behaves. In fact, this is exactly why matrix
multiplication is defined the way it is.

Example. What vector is obtained if we rotate v = (4, 2) 45◦ counter-clockwise
around the origin and then project it onto the line y = 2x?
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Example. Find the standard matrix of the linear transformation T that projects
R2 onto the line y = (4/3)x and then stretches it in the x-direction by a factor of
2 and in the y-direction by a factor of 3.

Example. Derive the angle-sum formulas for sin and cos.



Linear Algebra – Week 5

Systems of Linear Equations

This week we will learn about:

• Systems of linear equations,

• Elementary row operations and Gaussian elimination, and

• The (reduced) row echelon form of a matrix.

Extra reading and watching:

• Section 2.1 in the textbook

• Lecture videos 17, 18, 19, 20, and 21 on YouTube

• System of linear equations at Wikipedia

• Gaussian elimination at Wikipedia

Extra textbook problems:

? 2.1.1, 2.1.2, 2.1.4, 2.1.5

? ? 2.1.7–2.1.9, 2.1.11, 2.1.15–2.1.17, 2.1.25, 2.1.26

? ? ? 2.1.18, 2.1.23, 2.1.24, 2.1.27–2.1.29

A none this week

1

https://www.youtube.com/watch?v=vkAODMUCx1Y&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=17
https://www.youtube.com/watch?v=LIBRGoIhsNs&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=18
https://www.youtube.com/watch?v=CWO2qcC3Wds&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=19
https://www.youtube.com/watch?v=KB26QVozvbM&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=20
https://www.youtube.com/watch?v=vNddfcsVB7M&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=21
http://en.wikipedia.org/wiki/System_of_linear_equations
http://en.wikipedia.org/wiki/Gaussian_elimination
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(Systems of) Linear Equations
Much of linear algebra is about solving and manipulating the simplest types of
equations that exist—linear equations:

Definition 5.1 — Linear Equations
A linear equation in n variables x1, x2, . . . , xn is an equation that can be
written in the form

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, a2, . . . , an and b are constants.

Example. Examples of linear and non-linear equations.

The point is that an equation is linear if each variable is only multiplied by a
constant: variables cannot be multiplied by other variables, they can only be raised
to the first power, and they cannot have other functions applied to them.

You (hopefully) learned how to manipulate linear equations quite some time
ago, and then you “ramped up” to non-linear equations (like x2 = 2 or 2x = 8). In
this course, we instead “ramp up” in a different direction: we work with multiple
linear equations simultaneously.
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Definition 5.2 — Systems of Linear Equations
A system of linear equations (or a linear system) is a finite set of linear
equations, each with the same variables x1, x2, . . . , xn.

Some more terminology:

• A solution of a system of linear equations is a vector x = (x1, x2, . . . , xn)
whose entries satisfy all of the linear equations in the system.

• The solution set of a system of linear equations is the set of all solutions of
the system.

Example. Solving a linear system geometrically.

Example. Two more (weirder!) systems of linear equations.
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The above examples show that systems of linear equations can have no solu-
tions, exactly one solution, or infinitely many solutions. We will show shortly that
these are the only possibilities.

Note that we can also visualize systems of linear equations with 3 variables in
3 dimensions, but it’s a bit tougher:

Matrix Equations
One of the primary uses of matrices is that they give us a way of working with
linear systems much more compactly and cleanly. In particular, any system of
linear equations...
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can be rewritten as a single matrix equation:

Example. Write the following system of linear equations as a single matrix equa-
tion:

The advantage of writing linear systems in this way (beyond the fact that it
requires less writing) is that we can now make use of the various properties of
matrices and matrix multiplication that we already know to help us understand
linear systems a bit better. For example, we can now prove the observation that
we made earlier: every linear system has either 0, 1, or infinitely many solutions.

Theorem 5.1 — Trichotomy for Linear Systems
Every system of linear equations has either

a) no solutions,

b) exactly one solution, or

c) infinitely many solutions.
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Proof. We just need to show that if a linear system has at least two different
solutions, then it has infinitely many solutions.

�

When a system of linear equations has at least one solution (i.e., in cases (b)
and (c) of the theorem), it is called consistent. If it has no solutions (i.e., in
case (a) of the theorem), it is called inconsistent.

Solving Linear Systems
Let’s now discuss how we might find the solutions of a system of linear equations.
If the linear system has a certain special form, then solving it is fairly intuitive.

Example. Solve the following system of linear equations:
x + 3y − 2z = 5

2y − 6z = 4
3z = 6
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The procedure that we used to solve the previous example is called back sub-
stitution, and it worked because of the “triangular” nature of the equations. We
were able to easily solve for z, which we then could plug into the second equation
and easily solve for y, which we could plug into the first equation and easily solve
for x.

So let’s try to put every system of equations into this triangular form! We start by

To reduce the amount of writing we have to do when solving the linear system
Ax = b, we typically use the block matrix [ A | b ].

Example. Solve the following (much uglier) system of linear equations:

x + 3y − 2z = 5
3x + 5y + 6z = 7
2x + 4y + 3z = 8
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There were three basic types of operations that we performed on the matrix
when solving the previous system of linear equations. These are called the ele-
mentary row operations:

a) Adding a multiple of a row to another row (Ri + cRj).

b) Multiplying a row by a non-zero constant (cRi).

c) Interchanging rows (Ri ↔ Rj).

These are the only operations we will ever need to solve a linear system!
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As mentioned before, our goal when solving these systems of equations is to
first make the matrix “triangular.” We now make this a bit more precise.

Definition 5.3 — (Reduced) Row Echelon Form
A matrix is in row echelon form if it satisfies both of these properties:

a) All rows consisting entirely of zeros are below the non-zero rows.

b) In each non-zero row, the first non-zero entry (called the leading entry)
is to the left of any leading entries below it.

If the matrix also satisfies the following additional constraints, then it is in
reduced row echelon form (RREF):

c) The leading entry in each non-zero row is 1.

d) Each leading 1 is the only non-zero entry in its column.

Example. Some matrices that are and are not in (reduced) row echelon form.

To solve a system of linear equations, we use elementary row operations to
bring it into row echelon form. Once it is in this form, we can easily solve it via
back-substitution.
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Alternatively, we can use elementary row operations to bring a matrix all the
way into reduced row echelon form. Once an augmented matrix is in this form, the
solutions of the associated linear system can be read directly from the entries of
the matrix.

Example. Find the solutions of the systems of equations represented by the fol-
lowing augmented matrices:

The process of using elementary row operations to bring a matrix into a row
echelon form is called row reduction. The process of using row reduction to
find a row echelon form, and then back substitution to solve the system of linear
equations, is called Gaussian elimination.

Example. Use Gaussian elimination to solve the following system of linear equa-
tions:

x + 2y − 4z = −4
2x + 4y = 0
−x + y + 3z = 6
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Some notes about row echelon form and elementary row operations are in order:

• The elementary row operations are reversible: if there is an elementary row
operation that transforms A into B, then there is an elementary row operation
that transforms B into A.

• Is the row echelon form of a matrix unique or not unique?

• Two matrices are called row equivalent if one can be converted to the other
via elementary row operations.

The process of using row reduction to find a reduced row echelon form, and
hence solve the system of linear equations, is called Gauss–Jordan elimination.

Example. Use Gauss–Jordan elimination to solve the following linear system:
x + 2y − 4z = −4

2x + 4y = 0
−x + y + 3z = 6
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Some notes about reduced row echelon form and Gauss–Jordan elimination are in
order:

• Neither Gaussian elimination nor Gauss–Jordan elimination is a “better”
method than the other. Which one you use is typically just based on personal
preference.

• Is the reduced row echelon form of a matrix unique or not unique?

• To check if two matrices are row equivalent, check whether or not they have
the same reduced row echelon form.

Free Variables and Systems Without Unique
Solutions
Recall that systems of linear equations do not always have a unique solution: they
might have no solutions or infinitely many solutions. Identifying systems with no
solutions is intuitive enough...

Example. Solve the following system of linear equations:
x + 2y − 2z = −4

2x + 4y + z = 0
x + 2y + 7z = 2
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The behaviour in the previous example is what happens in general: a linear sys-
tem has no solutions if and only if the row echelon forms of its augmented matrix
[ A | b ] have a row consisting of zeros in the left (A) block and a non-zero entry in
the right (b) block.

Things are somewhat more complicated when a system of equations has in-
finitely many solutions, though. After all, how can we even describe all of the
solutions in this case? We illustrate the method with a couple more examples:

Example. Solve the following system of linear equations:

v − 2w + 2z = 3
x − 3z = 7

y + z = 4
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Example. Solve the following system of linear equations:

w − x− y + 2z = 1
2w − 2x− y + 3z = 3
−w + x− y = −3

Again, the behaviour in the previous example is completely general: variables
corresponding to columns that have a leading entry in the row echelon form are
called leading variables, and we write these variables in terms of the non-leading
variables (called free variables).

Each free variable corresponds to one “dimension” or “degree of freedom” in
the solution set. For example, if there is one free variable then the solution set is
a line, if there are two then it is a plane, and so on.
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Elementary Matrices
and Inverses

This week we will learn about:

• Elementary matrices,

• The inverse of a matrix, and

• How awesome inverses are.

Extra reading and watching:

• Section 2.2 in the textbook

• Lecture videos 22, 23, 24, and 25 on YouTube

• Elementary matrix at Wikipedia

• Invertible matrix at Wikipedia

Extra textbook problems:

? 2.2.1, 2.2.2

? ? 2.2.4–2.2.6, 2.2.8, 2.2.9, 2.2.13, 2.2.15, 2.2.20

? ? ? 2.2.7, 2.2.10, 2.2.11, 2.2.21, 2.2.22

A 2.2.23

1

https://www.youtube.com/watch?v=5178ErHm6bE&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=22
https://www.youtube.com/watch?v=UjSVdMqeXTU&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=23
https://www.youtube.com/watch?v=Gt2pqIQv4g4&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=24
https://www.youtube.com/watch?v=aq6qih0mNlU&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=25
https://en.wikipedia.org/wiki/Elementary_matrix
https://en.wikipedia.org/wiki/Invertible_matrix
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Elementary Matrices
Last week, we learned how to solve systems of linear equations by repeatedly ap-
plying one of three row operations to the augmented matrix associated with that
linear system. Remarkably, all three of those row operations can be carried out by
matrix multiplication (on the left) by carefully-chosen matrices.

For example, if we wanted to swap the first and second rows of the matrix

we could multiply it on the left by the matrix

Similarly, to perform the row operations and ,
we could multiply on the left by the matrices

Matrices that implement one of these three row operations in this way have a name:

Definition 6.1 — Elementary Matrices
A square matrix A ∈Mn is called an elementary matrix if it can be obtained
from the identity matrix via a single row operation.



Linear Algebra – Week 6 3

For example, the elementary matrix corresponding to the “Swap” row operation
Ri ↔ Rj looks like

Similarly, the elementary matrices corresponding to the “Addition” row operation
Ri + cRj and the “Multiplication” row operation cRi look like

Notice that if the elementary matrices E1, E2, . . . , Ek are used to row reduce a
matrix A to its reduced row echelon form R, then

In particular, E1, E2, . . . , Ek act as a log that keeps track of which row operations
should be performs to put A into RREF. Furthermore, if we define E = Ek · · ·E2E1,
then R = EA, so E acts as a condensed version of that log. Let’s now do an example
to see how to construct this matrix E.

Example. Let A =

Find a matrix E such that EA = R, where R is the RREF of A.
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The fact that the method of the previous example works in general can be
seen by combining some block matrix multiplication trickery with the fact that
multiplication on the left by an elementary matrix is equivalent to performing
the corresponding row operation. In particular, if row reducing [ A | I ] to some
other matrix [ R | E ] makes use of the row operations corresponding to elementary
matrices E1, E2, . . . , Ek, then

This means (by looking at the right half of the above block matrix) that E =
Ek · · ·E2E1, which then implies (by looking at the left half of the block matrix)
that R = EA. We state this observation as a theorem:

Theorem 6.1 — Row Reduction is Multiplication on the Left
If the block matrix [ A | I ] can be row reduced to [ R | E ] then...
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This theorem says that, not only is performing a single row operation equivalent
to multiplication on the left by an elementary matrix, but performing a sequence of
row operations is also equivalent to multiplication on the left (by some potentially
non-elementary matrix).

The Inverse of a Matrix
When working with (non-zero) real numbers, we have an operation called “divi-
sion,” which acts as an inverse of multiplication. In particular, a(1/a) = 1 for all
a 6= 0. It turns out that we can (usually) do something very similar for matrix
multiplication:

Definition 6.2 — Inverse of a Matrix
If A is a square matrix, the inverse of A, denoted by A−1, is a matrix (of the
same size as A) with the property that

If such a matrix A−1 exists, then A is called invertible.

Inverses (when they exist) are unique (i.e., every matrix has at most one in-
verse). To see this...

Example. Show that
 3 −5
−1 2

 is the inverse of
2 5
1 3

.
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So if we are given a particular pair of matrices, it is easy to check whether or
not they are inverses of each other. But how could we find the inverse of a matrix
in the first place? We’ll see how soon!

As always, let’s think about what properties our new mathematical operation
(matrix inversion) has.

Theorem 6.2 — Properties of Matrix Inverses
Let A and B be invertible matrices of the same size, and let c be a non-zero
real number. Then

a) A−1 is invertible and (A−1)−1 = A

b) cA is invertible and (cA)−1 = 1
cA−1

c) AT is invertible and (AT )−1 = (A−1)T

d) AB is invertible and (AB)−1 = B−1A−1

Proof. Most parts of this theorem are intuitive enough, so we just prove part (d)
(you can prove parts (a), (b) and (c) on your own: they’re similar). To this end...

�
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The fact that (AB)−1 = B−1A−1 (as opposed to the incorrect (AB)−1 =
A−1B−1) is actually intuitive enough: you put on your socks before your shoes,
but when reversing that operation, you take off your shoes before your socks.

Not every matrix is invertible. For example,

However, there are even more exotic examples of non-invertible matrices. For
example, recall that if u is a unit vector then the matrix A = uuT ...

In order to come up with a general method for determining whether or not a
matrix is invertible (and constructing its inverse if it exists), we first notice that if
A has reduced row echelon form equal to I, then Theorem 6.1 tells us that

It thus seems like A being invertible is closely related to whether or not it can
be row reduced to the identity matrix. The following theorem shows that this is
indeed the case (along with a whole lot more):
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Theorem 6.3 — Characterization of Invertible Matrices
Let A ∈Mn. The following are equivalent:

a) A is invertible.

b) The reduced row echelon form of A is I (the identity matrix).

c) There exist elementary matrices E1, E2, . . . , Ek such that A = E1E2 · · ·Ek.

d) The linear system Ax = b has a solution for all b ∈ Rn.

e) The linear system Ax = b has a unique solution for all b ∈ Rn.

f) The linear system Ax = 0 has a unique solution.

Example. Determine whether or not the matrix A =
1 2
2 4

 is invertible.

We won’t rigorously prove the above theorem, but we’ll try to give a rough idea
for why some of its equivalences hold. First, notice that every elementary matrix
is invertible:
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Since the product of invertible matrices is still invertible, it follows that any matrix
of the form A = E1E2 · · ·Ek (where E1, E2, . . . , Ek are elementary) is invertible,
which shows why (c) =⇒ (a).

The connection between invertibility and linear systems can be clarified by
noting that if A is invertible, then we can rearrange the linear system

Thus (a) =⇒ (e), which implies each of (d) and (f).

When we combine our previous two theorems, we get a method for not only
determining whether or not a matrix is invertible, but also for computing its inverse
if it exists:

Theorem 6.4 — How to Compute Inverses
A matrix A ∈Mn is invertible if and only if the RREF of [ A | I ] has the form
[ I | B ] for some B ∈Mn. If the RREF has this form then A−1 = B.

Example. Determine whether or not the matrix A =
1 2
3 4

 is invertible, and find

its inverse if it exists.
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Example. Solve the linear system x + 2y = 3, 3x + 4y = 5.

Example. Find the inverse of


1 2 −1
2 2 4
1 3 −3

 if it exists.
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Example. Find the inverse of


2 1 −4
−4 −1 6
−2 2 −2

 if it exists.

Using our characterization of invertible matrices, we can prove all sorts of nice
properties of them. For example, even though the definition of invertibility required
that both AA−1 = I and A−1A = I, the following theorem shows that it is enough
to just multiply on the left or the right: you don’t need to check both.

Theorem 6.5 — One-Sided Matrix Inverses
Let A ∈ Mn be a square matrix. If B ∈ Mn is a matrix such that either
AB = I or BA = I, then A is invertible and A−1 = B.
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Proof. Suppose BA = I, and consider the equation Ax = 0.

This completes the proof of the BA = I case. Try to prove the case when AB = I
on your own. �

Similarly, we can even come up with an explicit formula for the inverse of
matrices in certain small cases. For example, for 2 × 2 matrices, we have the
following formula:

Theorem 6.6 — Inverse of a 2× 2 Matrix
Suppose A is the 2× 2 matrix

A =
a b
c d

 .

Then A is invertible if and only if ad− bc 6= 0, and if it is invertible then

A−1 = 1
ad− bc

 d −b
−c a

 .

Proof. If ad− bc 6= 0 then we can show that the inverse of A is as claimed just by
multiplying it by A:
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On the other hand, if ad− bc = 0 then ad = bc.

�

Example. Compute the inverse (or show that none exists) of the following matri-
ces:

Keep in mind that you can always use the general method of computing inverses
(row reduce [ A | I ] to [ I | A−1 ]) if you forget this formula for the 2× 2 case.
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Subspaces, Spans, and
Linear Independence

This week we will learn about:

• Subspaces,

• The span of a set of vectors, and

• Linear (in)dependence.

Extra reading and watching:

• Section 2.3 in the textbook

• Lecture videos 26, 27, 28, and 29 on YouTube

• Linear subspace at Wikipedia

• Linear independence at Wikipedia

Extra textbook problems:

? 2.3.1, 2.3.2, 2.3.4

? ? 2.3.3, 2.3.5, 2.3.6, 2.3.9–2.3.11, 2.3.18, 2.3.19

? ? ? 2.3.12, 2.3.14, 2.3.16, 2.3.22

A 2.3.27

1

https://www.youtube.com/watch?v=qPjh6SF_zPA&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=26
https://www.youtube.com/watch?v=vbJ3BmA_X3I&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=27
https://www.youtube.com/watch?v=Jke7UVzR8zQ&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=28
https://www.youtube.com/watch?v=ru3HKhdLcT4&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=29
https://en.wikipedia.org/wiki/Linear_subspace
https://en.wikipedia.org/wiki/Linear_independence
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Subspaces
Recall that linear systems can be interpreted geometrically as asking for the point(s)
of intersection of a collection of lines or planes (depending on the number of vari-
ables involved). The following definition introduces “subspaces”, which can be
thought of as any-dimensional analogues of lines and planes.

Definition 7.1 — Subspaces
A subspace of Rn is a non-empty set S of vectors in Rn such that:

a) If v and w are in S then v + w is in S.

b) If v is in S and c is a scalar, then cv is in S.

Properties (a) and (b) above together are equivalent to requiring that S is closed
under linear combinations:

Example. Is the set of vectors (x, y) satisfying y = x2 a subspace of R2?

Example. Is the set of vectors (x, y, z) satisfying x = 3y and z = −2y a subspace
of R3?
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Example. Is the set of vectors (x, y, z) satisfying x = 3y + 1 and z = −2y a sub-
space of R3?

In R3, lines and planes through the origin are subspaces (this is hopefully not
difficult to see for lines, and it can be seen for planes by using the parallelogram
law):
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Even though we can’t visualize subspaces in higher dimensions, you should keep
the line/plane intuition in mind: a subspace of Rn looks like a copy of Rm (for some
m < n) going through the origin.

Subspaces Associated with Matrices
Let’s now look at some other natural examples of subspaces that appear frequently
when working with matrices.

Definition 7.2 — Matrix Subspaces
Let A ∈Mm,n be an m× n matrix.

a) The range of A is the subspace of Rm, denoted by range(A), that consists
of all vectors of the form Ax.

b) The null space of A is the subspace of Rn, denoted by null(A), that
consists of all solutions x of the linear system Ax = 0.

Some remarks about these matrix subspaces are in order:

• null(A) is a subspace. Why?

• range(A) is a subspace. Why?
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• The term “range” is being used here in the exact same sense as in previous
courses.

Example. Describe the range and null space of the 2× 3 matrix
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The Span of a Set of Vectors
One way to turn a set that is not a subspace into a subspace is to add linear
combinations to it. For example, the set containing only the vector (2, 1) is not a
subspace of R2 because

To fix this problem, we could

In general, if our starting set contains more than just one vector, we might
also have to add general linear combinations of those vectors (not just their scalar
multiples) in order to create a subspace. This idea of enlarging a set so as to create
a subspace is an important one that we now give a name and explore.

Definition 7.3 — Span
If B = {v1, v2, . . . , vk} is a set of vectors in Rn, then the set of all linear
combinations of those vectors is called their span, and is denoted by span(B)
or span(v1, v2, . . . , vk).

For example, span
(
(2, 1)

)
is the line through the origin and the point (2, 1), as

we discussed earlier.
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Example. Show that span(e1, e2, e3) = R3.

The natural generalization of this fact holds in all dimensions:

Example. What is span
(
(1, 0, 3), (−1, 1,−3)

)
– a line, a plane, or something else?

We motivated the span of a set of vectors as a way of turning that set into a
subspace. We now state (but for the sake of time, do not prove) a theorem that
says the span of a set of vectors is indeed always a subspace, as we would hope.

Theorem 7.1 — Spans are Subspaces
Suppose v1, v2, . . . , vk ∈ Rn. Then span(v1, v2, . . . , vk) is a subspace of Rn.

In fact, you can think of the span of a set of vectors as the smallest subspace
containing those vectors.
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The range of a matrix can be expressed very conveniently as the span of a set
of vectors in a way that requires no calculation whatsoever:

Theorem 7.2 — Range Equals the Span of Columns
If A ∈Mm,n has columns a1, a2, . . . , an then range(A) = span(a1, a2, . . . , an).

This theorem follows immediately from

For example, if we return to the 2×3 matrix from earlier, we see that its range is...

We close this section by introducing a connection between the range of a matrix
and invertible matrices.

Theorem 7.3 — Spanning Sets and Invertible Matrices
Let A ∈Mn. The following are equivalent:

a) A is invertible.

b) range(A) = Rn.

c) The columns of A span Rn.

d) The rows of A span Rn.

Proof. The fact that properties (a) and (c) are equivalent follows from combining...
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The equivalence of properties (c) and (d) follows from the fact that

Finally, the equivalence of properties (b) and (c) follows immediately from

�

The geometric interpretation of the equivalence of properties (a) and (b) in the
above theorem is

Linear Dependence and Independence
Recall from earlier that a row echelon form of a matrix can have entire rows of
zeros at the end of it. For example, the reduced row echelon form of 1 −1 2

−1 1 −2

 is

This happens when there is some linear combination of the rows of the matrix
that equals the zero row, and we interpret this roughly as saying that one row the
rows of the matrix (i.e., one of the equations in the associated linear system) does
not “contribute anything new.” In the example above,
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The following definition captures this idea that a redundancy among vectors
or linear equations can be identified by whether or not some linear combination of
them equals zero.

Definition 7.4 — Linear Dependence and Independence
A set of vectors B = {v1, v2, . . . , vk} is linearly dependent if there exist
scalars c1, c2, . . . , ck ∈ R, at least one of which is not zero, such that

c1v1 + c2v2 + · · ·+ ckvk = 0.

If a set of vectors is not linearly dependent, it is called linearly independent.

For example, the set of vectors {(2, 3), (1, 0), (0, 1)} is linearly...

On the other hand, the set of vectors {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is linearly...

In general, to check whether or not a set of vectors {v1, v2, . . . , vk} is linearly
independent, you should set

and then try to solve for the scalars c1, c2, . . . , ck. If they must all equal 0, then the
set is linearly independent, and otherwise it is linearly dependent.

Example. Are these vectors linearly independent?
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We saw in the previous example that we can check linear (in)dependence of a
set of vectors by placing those vectors as columns in a matrix and augmenting with
a 0 right-hand side. This is true in general:

Theorem 7.4 — Checking Linear Dependence
Let v1, v2, . . . , vn ∈ Rm be vectors and let A be the m × n matrix with these
vectors as its columns. The following are equivalent:

a) {v1, v2, . . . , vn} is a linearly dependent set.

b) The linear system Ax = 0 has a non-zero solution.

Some notes about linear (in)dependence are in order:

• A set of vectors is linearly dependent if and only if at least one of the vectors
can be written as a linear combination of the others.

• Every set of vectors containing the zero vector is linearly...
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• Geometrically, linear dependence means that...

• For a set of just 2 vectors, linear dependence means that...

Example. Is this set linearly independent?

We close this section by introducing a connection between linear independence
and invertible matrices, which we unfortunately have to state without proof due to
time constraints.

Theorem 7.5 — Independence and Invertible Matrices
Let A ∈Mn. The following are equivalent:

a) A is invertible.

b) The columns of A form a linearly independent set.

c) The rows of A form a linearly independent set.
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Bases of Subspaces and
the Rank of a Matrix

This week we will learn about:

• The dimension of a subspace,

• Bases of subspaces,

• The rank of a matrix, and

• The rank–nullity theorem.

Extra reading and watching:

• Sections 2.4 in the textbook

• Lecture videos 30, 31, 32, and 33 on YouTube

• Basis (linear algebra) at Wikipedia

• Rank (linear algebra) at Wikipedia

Extra textbook problems:

? 2.4.1, 2.4.2, 2.4.8

? ? 2.4.5, 2.4.6, 2.4.9, 2.4.10

? ? ? 2.4.11, 2.4.12, 2.4.13, 2.4.25, 2.4.30

A 2.4.27

1

https://www.youtube.com/watch?v=j2iLHEkHy0k&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=30
https://www.youtube.com/watch?v=03AbedID9ok&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=31
https://www.youtube.com/watch?v=RuWR7w6iocM&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=32
https://www.youtube.com/watch?v=K8i4Wg_spIA&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=33
https://en.wikipedia.org/wiki/Basis_(linear_algebra)
https://en.wikipedia.org/wiki/Rank_(linear_algebra)
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Bases of Subspaces
A plane in R3 is spanned by any two vectors that are parallel to the plane, but
not parallel to each other (i.e., are linearly independent). More than two vectors
could be used to span the plane, but they would necessarily be linearly dependent.
On the other hand, there is no way to use fewer than two vectors to span a plane
(the span of just one vector is just a line). This leads to the idea of a basis of a
subspace:

Definition 8.1 — Bases
A basis of a subspace S ⊆ Rn is a set of vectors in S that

a) spans S, and

b) is linearly independent.

The idea of a basis is that it is a set that is “big enough” to span the subspace,
but it is not “so big” that it contains redundancies. That is, it is “just” big enough
to span the subspace.

Example. The standard basis of Rn.

Example. Show that the set
{
(2, 1), (1, 3)

}
is a basis of R2.
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The above example demonstrates that the same subspace can (and will!) have
more than one basis:

However, the number of vectors in a basis of a given subspace is always the same,
which we now state as a theorem.

Theorem 8.1 — Uniqueness of Size of Bases
Let S be a subspace of Rn. Then every basis of S has the same number of
vectors.

We don’t prove the above theorem (it is a fairly long and ugly mess), but we
can use it to pin down something we have been hand-wavey about up until now: we
have never actually defined exactly what we mean by the “dimension” of a subspace
of Rn. We now fill in this gap:

Definition 8.2 — Dimension of a Subspace
Let S be a subspace of Rn. The number of vectors in a basis of S is called the
dimension of S.

As one minor technicality, we notice that the set S = {0} is a subspace of
Rn. However, the only basis of this subspace is the empty set {} (why?), so its
dimension is 0.
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Example. What is the dimension of Rn?

Example. Find a basis for S = span(v, w, x), where v = (1, 2, 3), w = (3, 2, 1),
x = (1, 1, 1). What is the dimension of this subspace?

We will now show how to find bases of the fundamental subspaces associated
with a matrix: range(A) and null(A).

Example. Find bases for the range and null space of the following matrix and thus
compute their dimensions: 

1 0 1 0 −1
1 1 0 0 1
−1 0 −1 1 4
2 1 1 −1 −3


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The quantities dim(range(A)) and dim(null(A)) that we computed in the pre-
vious example highlight a lot of the structure of the matrix A, so let’s have a closer
look at them now.

The Rank of a Matrix
With many of the technical details of this course out of the way, we are now in a
position to introduce one of the most important properties of a matrix: its rank.

Definition 8.3 — Rank of a Matrix
Let A ∈Mm,n be a matrix. Then its rank, denoted by rank(A), is the dimen-
sion of its range.

Rank can be thought of as a measure of how degenerate a matrix is, as it describes
how much of the output space can actually be reached by A.
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Example. Suppose A ∈ Mn is the standard matrix of a projection onto a line.
What is rank(A)?

Example. Suppose C ∈ M2 is the standard matrix of a rotation. What is
rank(C)?

One of the reasons why the rank of a matrix is so useful is that it can be
interpreted in so many different ways. While it equals the dimension of the range,
it also equals some other quantities that we have already seen as well:

Theorem 8.2 — Characterization of Rank
Let A ∈Mm,n be a matrix. Then the following quantities are all equal to each
other:

a) rank(A)

b) rank(AT ).

c) The number of non-zero rows in any row echelon form of A.

d) The number of leading columns in any row echelon form of A.
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Proof. To see the equivalence of (c) and (d)...

To see the equivalence of (a) and (d)...

The equivalence of (b) and (c) is similar:

�

Example. Find the rank of the matrix A =


0 0 −2 2 −2
2 −2 −1 3 3
−1 1 −1 0 −3


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Similarly, the nullity of a matrix, denoted by nullity(A), is the dimension of its
null space (i.e., the dimension of the solution set of the linear system Ax = 0). The
following theorem demonstrates the close connection between the rank and nullity
of a matrix:

Theorem 8.3 — Rank–Nullity
Let A ∈Mm,n be a matrix. Then rank(A) + nullity(A) = n.

Proof. We use the equivalence of the quantities (a) and (d) from the previous
theorem:

�

Example. Find the nullity of the matrix A =


0 0 −2 2 −2
2 −2 −1 3 3
−1 1 −1 0 −3


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The previous theorem makes some geometric sense—there are n dimensions that
go into A. rank(A) of them are sent to the output space, and the other nullity(A)
of them are “squashed away” by A. This observation leads immediately to yet
another characterization of invertibility:

Theorem 8.4 — Rank and Invertible Matrices
Let A ∈Mn. The following are equivalent:

a) A is invertible.

b) rank(A) = n

c) nullity(A) = 0
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Determinants

This week we will learn about:

• Determinants of matrices, and

• That’s it. Determinants, determinants, determinants.

Extra reading and watching:

• Section 3.2 in the textbook

• Lecture videos 34, 35, and 36 on YouTube

• Determinant at Wikipedia

Extra textbook problems:

? 3.2.1, 3.2.3, 3.2.4, 3.2.9

? ? 3.2.5–3.2.8, 3.2.10, 3.2.12, 3.2.17

? ? ? 3.2.14, 3.2.16, 3.2.18

A 3.2.19–3.2.21

1

https://www.youtube.com/watch?v=1Jkzf54lyXQ&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=34
https://www.youtube.com/watch?v=MU7vS4ixDLA&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=35
https://www.youtube.com/watch?v=wbu3deAxuEA&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=36
http://en.wikipedia.org/wiki/Determinant
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We now introduce one of the most important properties of a matrix: its deter-
minant, which roughly is a measure of how “large” the matrix is. More specifically,
recall that...

The determinant of A, which we denote by det(A), is the area (or volume) of
this image of the unit hypercube. In other words, it measures how much A expands
space when acting as a linear transformation.

Let’s now start looking at some of the properties of determinants, so that we can
(eventually!) learn how to compute it.

Definition and Basic Properties
Before we even properly define the determinant, let’s think about some properties
that it should have. The first important property is that, since the identity matrix
does not stretch or shrink Rn at all...
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Next, since every A ∈ Mn expands space by a factor of det(A), and similarly
each B ∈Mn expands space by a factor of det(B)...

We will also need one more property of determinants, which is a bit more
difficult to see. What happens to det(A) if we multiply one of the columns of A by
a scalar c ∈ R?

Similarly, if we add a vector to one of the columns of a matrix, then...
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In other words, the determinant is linear in the columns of a matrix (sometimes
called multilinearity). We now define the determinant to be the function that
satisfies this multilinearity property, as well as the other two properties that we
demonstrated earlier:

Definition 9.1 — Determinant
The determinant is the (unique!) function det : Mn → R that satisfies the
following three properties:

a) det(I) = 1,

b) det(AB) = det(A) det(B) for all A, B ∈Mn, and

c) for all c ∈ R and all v, w, a1, a2, . . . , an ∈ Rn, it is the case that

det
(
[ a1 | · · · | v + cw | · · · | an ]

)
= det

(
[ a1 | · · · | v | · · · | an ]

)
+ c · det

(
[ a1 | · · · | w | · · · | an ]

)
.

Example. Compute the determinant of the matrix A =
2 0
0 3

.

Let’s start looking at some of the basic properties of the determinant. First, if
A ∈Mn is invertible then properties (a) and (b) tell us that
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This makes sense geometrically, since if A expands space by a factor of det(A)
then

On the other hand, if A is not invertible, then

We summarize our observations about the determinant of invertible and non-
invertible matrices in the following theorem:

Theorem 9.1 — Determinants and Invertibility
Suppose A ∈ Mn. Then A is invertible if and only if det(A) 6= 0, and if it is
invertible then det(A−1) = 1/ det(A).
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There are also a few other basic properties of determinants that are useful to
know, so we state them here (but for time reasons we do not explicitly prove them):

Theorem 9.2 — Other Properties of the Determinant
Suppose A ∈Mn and c ∈ R. Then

a) det(cA) = cn det(A), and

b) det(AT ) = det(A).

Example. Suppose A, B ∈ M3 are matrices with det(A) = 2 and det(B) = 5.
Compute...

Computation
In order to come up with a general method of computing the determinant, we start
by computing it on elementary matrices.

The elementary matrix corresponding to the row operation cRi has the form
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This matrix has determinant equal to...

The elementary matrix corresponding to the row operation Ri + cRj has the
form

This matrix has determinant equal to...

The elementary matrix corresponding to the row operation Ri ↔ Rj has the
form
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This matrix has determinant equal to...

Wait, so the determinant of a matrix can be negative? But it measures
area/volume!

Since multiplication on the left by an elementary matrix corresponds to per-
forming a row operation, we can rephrase our above calculations as the following
theorem:

Theorem 9.3 — Computing Determinants via Row Operations
Suppose A, B ∈Mn. If B is obtained from A via a single row operation, then
their determinants are related as follows:

cRi: det(B) = c · det(A),

Ri + cRj: det(B) = det(A), and

Ri ↔ Rj: det(B) = − det(A).

The above theorem gives us everything we need to know to be able to compute
determinants in general – row reduce A to I, keeping track of the row operations
that we performed along the way, and use the fact that det(I) = 1. If we cannot
row reduce to I, then A is not invertible, so det(A) = 0.
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Example. Compute the determinant of A =


1 1 1
1 2 4
1 3 9

.

In the previous example, the determinant of the row echelon form ended up
being the product of its diagonal entries. We now state this observation as a
theorem:

Theorem 9.4 — Determinant of a Triangular Matrix
Let A ∈Mn be a triangular matrix. Then det(A) is the product of its diagonal
entries:

det(A) = a1,1a2,2 · · · an,n.

Proof. The idea is that a triangular matrix can be row-reduced to I just by oper-
ations of the form Ri + cRj (which do not affect the determinant) and (1/a1,1)R1,
. . ., (1/an,n)Rn:

�



Linear Algebra – Week 9 10

By using this fact, we can compute determinants a bit more quickly, by just
row-reducing to row echelon form (instead of reduced row echelon form). This
method is best illustrated with another example.

Example. Compute the determinant of A =


1 2 3 0
1 1 2 3
0 −1 1 0
0 −1 3 0

.

Explicit Formulas and Cofactor Expansions
Remarkably, the determinant can be computed via an explicit formula just in terms
of multiplication and addition of the entries of the matrix. Before presenting the
general formula for n × n matrices, let’s start with what it looks like for 2 × 2
matrices.
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Theorem 9.5 — Determinant of 2× 2 Matrices
The determinant of a 2× 2 matrix is given by

det
a b

c d

 = ad− bc.

Proof. We prove this theorem by making use of multilinearity (i.e., defining prop-
erty (c) of the determinant):

Well,

Adding these two quantities together gives the desired formula. �

The above theorem is perhaps best remembered in terms of diagonals of the
matrix – the determinant of a 2 × 2 matrix is the product of its forward diagonal
minus the product of its backward diagonal.

Example. Compute the determinant of A =
1 2
3 4

.
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The formula for the determinant of a 3×3 matrix is somewhat more complicated:

Theorem 9.6 — Determinant of 3× 3 Matrices
The determinant of a 3× 3 matrix is given by

det



a b c
d e f
g h i


 = aei + bfg + cdh− afh− bdi− ceg.

Proof. Again, we make use of multilinearity (i.e., defining property (c) of the de-
terminant) to write

Let’s compute the first of the three determinants on the right by using a similar
trick on its second column:

Well, these two determinants are

The computation of the remaining terms in the determinant is similar. �
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We can also think of the formula for determinants of 3 × 3 matrices in terms
of diagonals of the matrix – it is the sum of the products of its forward diagonals
minus the sum of the products of its backward diagonals, with the understanding
that the diagonals “loop around” the matrix:

Example. Compute the determinant of A =


1 1 1
1 2 4
1 3 9

.

The following theorem tells us how to come up with these formulas in general,
and it is just a direct generalization of the 2×2 and 3×3 formulas that we already
saw.

Theorem 9.7 — Cofactor Expansion
Let A ∈ Mn. For each 1 ≤ i, j ≤ n, define ci,j = (−1)i+j det(Ai,j), where Ai,j

is the matrix obtained by removing the i-th row and j-th column of A. Then
the determinant of A can be computed via

det(A) = ai,1ci,1 + ai,2ci,2 + · · ·+ ai,nci,n for all 1 ≤ i ≤ n, and
det(A) = a1,jc1,j + a2,jc2,j + · · ·+ an,jcn,j for all 1 ≤ j ≤ n.
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That theorem is a mouthful! Several remarks are in order:

• If we use this theorem to compute the determinant of a 2×2 or 3×3 matrix,

• The above method of computing the determinant is called a “cofactor expan-
sion,” since the number ci,j is called the “(i, j)-cofactor of A.”

• The theorem gives multiple formulas for det(A):

Example. Compute the determinant of A =


2 1 −1 0
0 −2 1 3
0 0 1 0
−1 3 0 2

.
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Example. Compute the determinant of A =



0 −1 2 1 3
0 0 0 2 0
−2 1 1 −1 0
1 0 −3 1 0
2 1 −1 0 0


.

In general, computing determinants via cofactor expansions is extremely inef-
ficient. It’s not too bad for 2 × 2, 3 × 3, or maybe 4 × 4 matrices. But for an
n× n matrix A, a cofactor expansion contains n! terms being added up, and each
of those terms is the product of n entries of A. For example,

det




a b c d
e f g h
i j k `
m n o p



 = afkp− af`o− agjp + ag`n + ahjo− ahkn

− bekp + be`o + bgip− bg`m− bhio + bhkm

+ cejp− ce`n− cfip + cf`m + chin− chjm

− dejo + dekn + dfio− dfkm− dgin + dgjm.

Ugh! So for large matrices, use the Gaussian elminiation method instead. Nonethe-
less, cofactor expansions will be useful for us for theoretical reasons next week.
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Eigenvalues and Eigenvectors

This week we will learn about:

• Complex numbers,

• Eigenvalues, eigenvectors, and eigenspaces,

• The characteristic polynomial of a matrix, and

• Algebraic and geometric multiplicity.

Extra reading:

• Section 3.3 in the textbook

• Lecture videos 37, 38, and 39 on YouTube

• Complex number at Wikipedia

• Eigenvalues and eigenvectors at Wikipedia

Extra textbook problems:

? 3.3.1, 3.3.2

? ? 3.3.3, 3.3.5, 3.3.7, 3.3.9, 3.3.16, 3.3.20

? ? ? 3.3.6, 3.3.11–3.3.14

A 3.3.19, 3.3.23, 3.3.24

1

https://www.youtube.com/watch?v=unJjCemfYis&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=37
https://www.youtube.com/watch?v=6YE8L1-tJx8&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=38
https://www.youtube.com/watch?v=WRunN_X7lMs&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=39
https://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
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Eigenvalues and Eigenvectors
Some linear transformations behave very well when they act on certain specific
vectors. For example, diagonal matrices behave very well on the standard basis
vectors:

In the above example, we saw that there are vectors such that matrix mul-
tiplication behaved just like scalar multiplication: Av = λv. This is extremely
desirable in many situations: we often want matrix multiplication to behave like
scalar multiplication, and we often want general matrices to behave like diagonal
matrices. This leads to the following definition.

Definition 10.1 — Eigenvalues and Eigenvectors
Let A be a square matrix. A scalar λ is called an eigenvalue of A if there is a
non-zero vector v such that Av = λv. Such a vector v is called an eigenvector
of A corresponding to λ.

Example. Show that v = (1, 1) is an eigenvector of A =
2 1
1 2

, and find the
corresponding eigenvalue.
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OK, how do we go about actually finding eigenvalues and eigenvectors? It’s
easy enough when the eigenvector is given to us, but the real world isn’t that nice.

Well, we find them via a two-step process: first, we find the eigenvalues, then we
find the eigenvectors.

Step 1: Find the eigenvalues. Recall that λ is an eigenvalue of A if and only if
there is a non-zero vector v such that Av = λv. This is equivalent to...

In other words, λ is an eigenvalue of A if and only if the matrix A − λI has
non-zero null space. How can we find when a matrix has a non-zero null space?
Well...

• dim(null(A− λI)) > 0 if and only if...

• ...if and only if...

A-ha! This is the type of equation we can actually solve! So to find the eigenvalues
of A, we find all numbers λ such that det(A− λI) = 0.

Example. Find all eigenvalues of A =
1 2
5 4

.
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Step 2: Find the eigenvectors. Once you know the eigenvalues (from step 1),
the associated eigenvectors are the vectors v satisfying Av = λv. But this equation
holds if and only if...

In other words, to find all eigenvectors of A associated with the eigenvalue λ,
we compute null(A− λI).

Example. Find all eigenvectors of A =
1 2
5 4

.

The eigenvalues and eigenvectors can help us understand what a linear trans-
formation “looks like.”
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Since the set of all eigenvectors of A corresponding to λ is the nullspace of A−λI,
the set of eigenvectors forms a subspace (the nullspace is always a subspace). We
give this subspace a name:

Definition 10.2 — Eigenspace
Let A be a square matrix and let λ be an eigenvalue of A. The set of all
eigenvectors of A corresponding to λ, together with the zero vector, is called
the eigenspace of λ.

Example. Find all eigenvalues, and bases of their corresponding eigenspaces, for

the matrix A =


2 −3 3
0 −1 3
0 −2 4

.
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There are some matrices that do not have any (real) eigenvalues or eigenvectors.
For example...

Example. Find all eigenvalues and eigenvectors of A =
0 −1
1 0

.

Complex Numbers
There are a few operations in your mathematical career that you have been told
you cannot do:

We now introduce something called complex numbers that let us “fix” one of
these “problems”: they let us work with square roots of negative numbers alge-
braically.
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Remarkably, you can do arithmetic with i just like you’re used to with real
numbers, and things have a way of just working out. But first, let’s get some
terminology out of the way:

• An imaginary number is a number of the form

• A complex number is a number of the form

Arithmetic with complex numbers works just like it does with real numbers, so
nothing surprising happens when you add or multiply them.

Example. Add and multiply some complex numbers.

Slightly more generally,

(a+ bi) + (c+ di) =

(a+ bi)(c+ di) =

However, division of complex numbers requires one minor “trick” to get our hands
on.
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Example. Divide some complex numbers.

The number that we multiplied the top and bottom by in the above example was
called the complex conjugate of the bottom (denominator). That is,

With just these basic tools under our belt, we can now find roots of quadratics
that don’t have real roots! We just use the quadratic formula like usual.

Example. Find the (potentially complex) solutions of the equation x2−2x+2 = 0.

The previous example hints at the following observation, which is indeed true:
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Just like we think of R as a line, we can think of C as a plane, and the number
a+ bi has coordinates (a, b) on that plane.

Example. Find all eigenvalues and eigenvectors of A =
0 −1
1 0

 (again).



Linear Algebra – Week 10 10

Back to Eigenvalues and Eigenvectors
Recall that the eigenvalues of a matrix A are the solutions λ to the equation
det(A− λI) = 0. This is a polynomial in λ, and we give it a special name:

Definition 10.3 — Characteristic Polynomial
Let A be a square matrix. Then det(A − λI) is called the characteristic
polynomial of A, and det(A−λI) = 0 is called the characteristic equation
of A.

The characteristic polynomial of an n × n matrix is always of degree n. Since
every degree-n polynomial has at most n distinct roots, this immediately tells us
that

Example. Find the characteristic polynomial, eigenvalues, and bases of the corre-

sponding eigenspaces, of A =


1 −1 −1
2 2 1

−1 1 2

.
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In the previous example, we had a 3×3 matrix with only 2 distinct eigenvalues.
However, the matrix has 3 eigenvalues if we count the multiplicities of the roots of
the characteristic polynomial: the eigenvalue λ = 1 once and the eigenvalue λ = 2
twice.

There is actually another notion of multiplicity of an eigenvalue that is also
important: the dimension of the corresponding eigenspace. These ideas lead to the
following definition:

Definition 10.4 — Multiplicity
Let A be a square matrix with eigenvalue λ.

• The algebraic multiplicity of λ is the multiplicity of λ as a root of the
characteristic polynomial of A.

• The geometric multiplicity of λ is the dimension of its eigenspace.

In the previous example...
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The fact that the geometric multiplicity of each eigenvalue was ≤ the algebraic
multiplicity was not a coincidence: it is our next theorem.

Theorem 10.1 — Geo. Mult. ≤ Alg. Mult.
Let A be a square matrix. Then the geometric multiplicity of each eigenvalue
is less than or equal to its algebraic multiplicity.

A remarkable fact called the Fundamental Theorem of Algebra says that every
polynomial of degree n has exactly n roots, counted according to multiplicity. This
immediately tells us that...

Example. Compute the algebraic and geometric multiplicities of the eigenvalues
of all matrices that we considered this week.
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Just like with determinants, our eigenvalue life becomes much easier when deal-
ing with triangular matrices.

Example. Compute the eigenvalues of the matrix


1 2 3
0 4 5
0 0 6

.

In general, because the determinant of a triangular matrix is just the product of
its diagonal entries, the eigenvalues of a triangular matrix are exactly its diagonal
entries:

Theorem 10.2 — Eigenvalues of Triangular Matrices
Let A be a triangular matrix. Its eigenvalues are exactly the entries on its main
diagonal (i.e., a1,1, a2,2, . . . , an,n).
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Diagonalization

This week we will learn about:

• Diagonalization of matrices,

• Matrix functions, and

• Why diagonalization is amazing.

Extra reading:

• Section 3.4 in the textbook

• Lecture videos 40, 41, 42, 43, and 44 on YouTube

• Diagonalizable matrix at Wikipedia

• Matrix exponential at Wikipedia

Extra textbook problems:

? 3.4.1

? ? 3.4.2, 3.4.4, 3.4.6, 3.4.7, 3.4.22

? ? ? 3.4.8–3.4.12, 3.4.21

A 3.4.23

1

https://www.youtube.com/watch?v=LoTuUy4aB7g&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=40
https://www.youtube.com/watch?v=xGkCoOjfotA&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=41
https://www.youtube.com/watch?v=INMXYEMTRVY&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=42
https://www.youtube.com/watch?v=fzkD49_86pU&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=43
https://www.youtube.com/watch?v=MaG1f0GJNJc&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=44
http://en.wikipedia.org/wiki/Diagonalizable_matrix
http://en.wikipedia.org/wiki/Matrix_exponential
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Diagonalization
One of the primary uses of eigenvalues and eigenvectors is that they let us put
(most) matrices into a form that makes them almost as easy to work with as
diagonal matrices.

Definition 11.1 — Diagonalizable Matrices
A square matrix A is called diagonalizable if there is a diagonal matrix D
and an invertible matrix P such that A = PDP−1.

To get an idea of why diagonalizability is useful, consider the problem of com-
puting a large power of a matrix, like A500.

• If A is a general matrix...

• If A is a diagonal matrix...

• If A is diagonalizable...
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But how could we ever hope to determine whether or not a matrix is diagonal-
izable? It turns out that eigenvalues and eigenvectors give us the answer:

Theorem 11.1 — Diagonalizability
Let A be an n× n matrix. Then the following are equivalent:

a) A is diagonalizable.

b) A has a set of n linearly independent eigenvectors.

Furthermore, if A is diagonalizable then A = PDP−1, where P is the matrix
whose columns are the n linearly independent eigenvectors, and D is the di-
agonal matrix whose diagonal entries are the eigenvalues corresponding to the
eigenvectors in P in the same order.

Proof. Start by noticing that the equation A = PDP−1 is equivalent to...

�
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Example. Diagonalize the matrix A =
1 2
5 4

.

OK, now that we’ve diagonalized this matrix... so what? How does it make our
lives easier? Well...

Example. Find a formula for An when A =
1 2
5 4

.



Linear Algebra – Week 11 5

Example. Find a formula for An when A =
0 −1
1 0

.
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The previous theorem is nice since it completely characterizes when a matrix is
diagonalizable. However, there is one special case that is worth pointing out where
it is actually much easier to prove that a matrix is diagonalizable.

Theorem 11.2 — Matrices with Distinct Eigenvalues
Let A be an n × n matrix with distinct eigenvalues λ1, λ2, . . . , λn. Then A is
diagonalizable.

Proof. We just need to prove that eigenvectors corresponding to different eigenval-
ues are linearly independent. To show this...

�
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Example. Show that the matrix A =
1 1
1 0

 is diagonalizable.

However, to actually perform the diagonalization itself, we still need to know the
eigenvectors.

The Fibonacci Sequence
As an example to demonstrate the usefulness of diagonalization, let’s investigate
the Fibonacci sequence, which is the sequence of integers that starts as follows:

A bit more properly, it is defined by

My question to you is: can we find a simple closed-form formula for the n-th term
of this sequence, without computing all of the previous terms first?
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What we will do is represent the Fibonacci sequence via matrix multiplication.
Notice that

Well, if we iterate this line of thinking, we get

Matrix multiplication is kinda nasty, but fortunately we already saw that this
matrix is diagonalizable, so we can compute large powers of it easily! So let’s find
its eigenvectors (we already computed its eigenvalues):
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Thus its diagonalization is:

Finally, we can use this diagonalization to compute arbitrary powers of the
matrix:

Thus we obtain the following simple formula for the n-th Fibonacci number:

The idea used throughout this example applies in a lot of generality: if we
can represent something by matrix multiplication, then there’s a good chance that
diagonalization (via eigenvalues/eigenvectors) can shed light on the problem.
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Arbitrary Matrix Powers
Once we have diagonalized a matrix, performing an operation on it is almost as easy
as performing that operation on a number. We already saw this with computing
large powers of a matrix: our procedure was...

a) First,

b) Next,

c) Finally,

This same basic idea works in lots of generality, and helps us talk about things
we wouldn’t even know how to define otherwise. For example...

What is a square root B of the matrix A?

OK, how could we find a square root of A?

Example. Find a square root of the matrix A =
 0 4
−1 5

.
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Similarly, we can use this method to define the r-th power of a diagonalizable
matrix for any real number r (i.e., r doesn’t need to be an integer):

Definition 11.2 — Matrix Powers
Let r be a real number and let A be a diagonalizable matrix (i.e., A = PDP−1

for some invertible P and diagonal D). Then Ar = PDrP−1, where Dr is
obtained by raising each of its diagonal entries to the r-th power.

Example. Compute Aπ when A =
 0 4
−1 5

.

Question to ponder: What happens when r = −1 in the above definition?
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Arbitrary Matrix Functions
The previous section just touched the tip of the iceberg: we can also extend any
function with a Taylor series to matrices now. For example, let’s consider the
function ex. Recall that

ex = 1 + x +

With that in mind, we define eA, where A is a square matrix, as follows:

That seems like it might be nasty to calculate in general. Fortunately, we can
just do what we usually do: diagonalize, apply the function ex to each diagonal
entry, and then un-diagonalize.

Example. Compute eA, where A =
 0 4
−1 5

.

Why does this work?
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The following properties of the matrix exponential are straightforward to check:

• eO = I

• eAe−A = I

There wasn’t really anything too special about the function ex here that let
us define it for matrices: we can do the same thing for any function that equals
its Taylor series, and the idea is exactly the same: just apply the function to the
diagonal entries in the diagonalization of the matrix.

Example. Compute sin(A), where A =
 0 4
−1 5

.

So go forth, and compute the sin, arctan, and log of matrices to your heart’s
content!

(Unless the matrices aren’t diagonalizable... in that case, take Advanced Linear
Algebra (MATH 3221) to learn what to do.)


