
Linear Algebra – Week 1

Vectors

This week we will learn about:

• What vectors are,

• How to manipulate vectors, and

• Linear combinations.

Extra reading and watching:

• Section 1.1 in the textbook

• Lecture videos 1, 2, and 3 on YouTube

• Vector at Wikipedia

Extra textbook problems:

? 1.1.1–1.1.3, 1.1.5–1.1.8

? ? 1.1.9–1.1.12

? ? ? 1.1.13(a), 1.1.14, 1.1.15

A 1.1.13(b)

1

https://www.youtube.com/watch?v=ea6p2eb7mTQ&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=1
https://www.youtube.com/watch?v=5H8nCvbLhfc&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=2
https://www.youtube.com/watch?v=7LDLe131WAI&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=3
http://en.wikipedia.org/wiki/Euclidean_vector
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Linear algebra is one of the branches of mathematics where everything “just
works”. Most of the objects that we introduce in this course will seem rather
simple and unremarkable at first, but we will be able to do a lot with them. Some
of the things we will be able to do are motivated very geometrically...

Example. Lengths, angles, and deformations (oh my!)

...while other applications will involve sifting through huge amounts of data:

Example. How does (well, did) Google work?
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Vectors
A vector is an ordered list of numbers like (3, 1). These lists can be as long as we
like, but we’ll start by considering 2-dimensional vectors in order to establish some
intuition for how they work, since we can interpret them geometrically in this case.

Several different notations are used for vectors:

The coordinates or entries of a vector only tell us how far the vector stretches
in the x- and y-directions; not where it is located in space.

Example. Coordinates of vectors.

That is, vectors represent...
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The order of the coordinates matters: for example, (2, 3) 6= (3, 2). For this
reason, 2D vectors are sometimes called “ordered pairs”. In another math class,
you might be introduced to objects called “sets”, where order does not matter.

• Two vectors are equal if and only if...

• The zero vector is...

• Recall that the set of all real numbers is denoted by R. Similarly,

Sometimes we want to combine two (or more) vectors to get new ones. For
example, we might want to think about what happens if we move along the path
of multiple different vectors, one after another. Where do we end up after doing
this? The answer is given by vector addition.

Example. Vector addition.

Specifically, if v = (v1, v2) and w = (w1, w2), then v + w = (v1 + w1, v2 + w2) is the
vector from the tail of v to the head of w.
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Another common way to manipulate vectors is to “scale” them (or “multiply
by a scalar”). The idea here is that we want to move in the same direction as a
given vector, but we want to change how far we move in that direction.

Example. Scalar multiplication.

Specifically, if v = (v1, v2) and c is a real number, then cv = (cv1, cv2) is the vector
that points in the same direction as v, but is c times as long (and if c < 0 then the
direction of the vector is reversed).

Finally, how do you think vector subtraction might be defined? If v = (v1, v2)
and w = (w1, w2), then

v−w =

is the vector from the to the .

Example. Vector subtraction.
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Example. Suppose that a regular hexagon has its center at the point (0, 0) and
one of its corners at the point (1, 0). Find the sum of the 6 vectors that point from
its center to its corners.

If v and w are the (non-parallel) sides of a parallelogram, then v+w and v−w
appear very naturally in that parallelogram...

Example. The parallelogram rule.
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3-Dimensional Vectors
Everything we have learned about vectors so far extends naturally to 3 dimensions.

A vector in 3 dimensions is an ordered triple like (1, 3, 2), and the set of
all ordered triples is denoted by R3. These are a bit harder to draw than their
2-dimensional counterparts, but it’s still possible...

Example. Drawing 3D vectors.

Everything we have seen in 2D carries over exactly how you would expect in 3D:

• Adding vectors still has the geometric interpretation of “following” both vec-
tors, one after the other.

• Adding vectors has the same formula you might expect:

• Scalar multiplication still has the geometric interpretation of stretching the
vector.

• Scalar multiplication has the same formula you might expect:
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High-Dimensional Vectors
Everything we have learned about vectors so far extends naturally to 4 (and more!)
dimensions.

We’ll get a bit more general now and consider an arbitrary number of dimensions.

A vector in n dimensions is an ordered n-tuple like (1, 2, 3, . . . , n), and the
set of all ordered n-tuples is denoted by Rn. These are a bit harder to draw than
their 2- and 3-dimensional counterparts...

Example. Drawing 4D (and 5D, and 6D...) vectors.

However, everything algebraic that we have seen for 2D and 3D vectors carries
over exactly how you would expect in higher dimensions:

• Adding vectors has the same formula you might expect:

• Scalar multiplication has the same formula you might expect:
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Even though we can’t draw vectors in Rn, we still want to be able to manipu-
late them. We have seen that vector addition and scalar multiplication work the
“naive” way. The following theorem shows some more properties that are similarly
“obvious”:

Theorem 1.1 — Properties of Vector Operations
Let v, w, x ∈ Rn be vectors and let c, d ∈ R be scalars. Then

a) v + w = w + v (commutativity)

b) (v + w) + x = v + (w + x) (associativity)

c) c(v + w) = cv + cw (distributivity)

d) (c + d)v = cv + dv (distributivity)

e) v + 0 = v

f) v + (−v) = 0

g) c(dv) = (cd)v

Proof. We will prove property (a) in class; you can try to prove some of the others
on your own (the method is quite similar).

which completes the proof. �
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Why did we even bother with the theorem on the previous page? They’re all
the type of thing you can just look at and “see” are true, right?

One reason is that we have to make sure that certain combinations of sym-
bols even make sense when we are in new and unfamiliar settings. For example,
associativity (property (b)) says that this expression makes sense:

We will soon introduce some operations that do not have these basic properties
like commutativity, so we will have to start being very careful.

Example. Simplify v + 2(w− v)− 3(v + 2w).

Linear Combinations
One common task in linear algebra is to start out with some given collection of
vectors v1, v2, . . . , vk and then use vector addition and scalar multiplication to
construct new vectors out of them. The following definition gives a name to this
concept.

Definition 1.1 — Linear Combinations
A linear combination of v1, v2, . . . , vk ∈ Rn is a vector of the form

c1v1 + c2v2 + · · ·+ ckvk,

where c1, c2, . . . , ck ∈ R.
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Example. Show that (1, 2, 3) is a linear combination of the vectors (1, 1, 1) and
(−1, 0, 1).

Example. Show that (1, 2, 3) is not a linear combination of (1, 1, 0) and (2, 1, 0).

When working with linear combinations, some particularly important vectors
are the ones with a single 1 in one of their entries, and all other entries equal to 0.
These are called the standard basis vectors:

Example. List and draw all of the standard basis vectors in R2 and R3.
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For now, the reason for our interest in these standard basis vectors is that every
vector v = (v1, v2, . . . , vn) ∈ Rn can be written as a linear combination of them. In
particular,

This idea of writing vectors in terms of the standard basis vectors is one of the
most useful tricks that we make use of in linear algebra: in many situations, if we
can prove that some property holds for the standard basis vectors, then we can use
linear combinations to show that it must hold for all vectors.

Example. Compute 3e1 − 2e2 + e3 ∈ R3.

Example. Write (3, 5,−2,−1) as a linear combination of e1, e2, e3, e4 ∈ R4.
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