
Linear Algebra – Week 3

Matrices and Matrix Operations

This week we will learn about:

• Matrices,

• Matrix addition, scalar multiplication, and matrix multiplication,

• The transpose, and

• Matrix powers and adjacency matrices of graphs.

Extra reading and watching:

• Section 1.3 in the textbook

• Lecture videos 8, 9, 10, 11, and 12 on YouTube

• Matrix multiplication at Wikipedia

• Transpose at Wikipedia

Extra textbook problems:

? 1.3.1, 1.3.2, 1.3.4, 1.3.12

? ? 1.3.3, 1.3.5–1.3.7, 1.3.9, 1.3.11, 1.3.13–1.3.15

? ? ? 1.3.8

A none this week

1

https://www.youtube.com/watch?v=ytOfBfUZKZM&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=8
https://www.youtube.com/watch?v=VoT5g5e3hy8&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=9
https://www.youtube.com/watch?v=ow7K6_3f33I&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=10
https://www.youtube.com/watch?v=IbCpt-Vm7J8&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=11
https://www.youtube.com/watch?v=KCUgWj5nhYc&list=PLOAf1ViVP13jmawPabxnAa00YFIetVqbd&index=12
http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Transpose
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Matrices
Previously, we introduced vectors, which can be thought of as 1D lists of numbers.
Now we start working with matrices, which are 2D arrays of numbers:

Definition 3.1 — Matrices
A matrix is a rectangular array of numbers. Those numbers are called the
entries or elements of the matrix.

Example. Examples of matrices.

The size of a matrix is a description of the number of rows and columns that
it has. A matrix with m rows and n columns has size m× n.

A 1 × n matrix is called a row matrix or row vector. An m × 1 matrix is
called a column matrix or column vector. An n× n matrix is called square.



Linear Algebra – Week 3 3

We use double subscripts to specify individual entries of a matrix: the entry of
the matrix A in row i and column j is denoted by ai,j. For example, if

then a1,3 = and a2,2 = .

Similarly, when we say “the (i, j)-entry of A”, we mean ai,j. Another notation
for this is [A]i,j, and we will see some examples shortly where this notation is ad-
vantageous.

With this notation in mind, a general m× n matrix A has the following form:

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
... ... . . . ...

am,1 am,2 · · · am,n

 .

Two matrices are equal if they have the same size and all of their entries (in
the same positions) are equal to each other.

Example. Some (un)equal matrices.

We useMm,n to denote the set of m× n matrices, and the shorthandMn for the
set of n× n matrices.
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Just like we could add vectors or multiply vectors by a scalar, we can also add
matrices and multiply matrices by scalars, and their definitions are exactly what
you would expect:

Definition 3.2 — Matrix Addition and Scalar Multiplication
Suppose A and B are m×n matrices, and c ∈ R is a scalar. Then their sum A+
B is the matrix whose (i, j)-entry is ai,j + bi,j, and the scalar multiplication
cA is the matrix whose (i, j)-entry is cai,j.

In other words, these operations are just performed entry-wise, as you might
expect. The definition of matrix addition only makes sense when A and B have
the same size.

Example. Matrix addition and scalar multiplication.

Matrix subtraction is defined analogously:
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Matrix addition, subtraction, and scalar multiplication satisfy all of the “natu-
ral” properties you might expect (e.g., A + B = B + A). We state these properties
as a theorem:

Theorem 3.1 — Properties of Matrix Operations
Let A, B, C ∈Mm,n and let c, d ∈ R be scalars. Then

a) A + B = B + A (commutativity)

b) (A + B) + C = A + (B + C) (associativity)

c) c(A + B) = cA + cB (distributivity)

d) (c + d)A = cA + dA (distributivity)

e) c(dA) = (cd)A

Proof. We will only prove part (c) of the theorem. The remaining parts of the
theorem can be proved similarly: just use the definition of matrix addition and use
the fact that all of these properties hold for addition of real numbers.

This completes the proof. �

Matrix Multiplication
What about matrix multiplication? Recall that multiplication was a bit tricky with
vectors: we only saw the dot product, which “multiplied” two vectors to give us a
number. Matrix multiplication is a bit different than this, and looks quite messy
and ugly at first glance. So hold onto your hats...
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Definition 3.3 — Matrix Multiplication
If A is an m× n matrix and B is an n× p matrix, then their product AB is
the m× p matrix whose (i, j)-entry is:

[AB]i,j def= ai,1b1,j + ai,2b2,j + · · ·+ ai,nbn,j.

In other words, the product AB is the matrix whose entries are all of the possible
dot products of the rows of A with the columns of B.

We emphasize that the matrix product AB only makes sense if A has the same
number of columns as B has rows. For example, it does not make sense to multiply
a 2× 3 matrix by another 2× 3 matrix, but it does make sense to multiply a 2× 3
matrix by a 3× 7 matrix.

Example. Compute the product of two matrices.
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When performing matrix multiplication, double-check that the sizes of your
matrices actually make sense. In particular, the inner dimensions of the matrices
must be equal, and the outer dimensions of the matrices will be the dimensions of
the matrix product:

As always, we have defined a new operation (matrix multiplication), so we want
to know what properties it satisfies.

Theorem 3.2 — Properties of Matrix Multiplication
Let A, B, and C be matrices (with sizes such that all of the multiplications
below make sense) and let c ∈ R be a scalar. Then

a) (AB)C = A(BC) (associativity)

b) A(B + C) = AB + AC (left distributivity)

c) (A + B)C = AC + BC (right distributivity)

d) c(AB) = (cA)B = A(cB)

Proof. We will only prove part (b) of the theorem. The remaining parts of the
theorem can be proved similarly: just use the definition of matrix multiplication.

�
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Notice that we did not say anything about commutativity (i.e., we did not claim
that AB = BA). Why not?

Example. Commutativity of matrix multiplication?

Example. FOILing matrices.

One particularly important square matrix is the one that consists entirely of 0
entries, except with 1s on its diagonal. This is called the identity matrix, and it
is denoted by I (or sometimes In if we want to emphasize it is n× n).

Similarly, the zero matrix is the one with all entries equal to 0. We denote it
by O (or Om,n if we care that it is m× n).
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Example. The identity matrix and zero matrix.

The previous example suggests the following general result, which is indeed true:

Theorem 3.3 — Multiplication by Identity or Zero
If A ∈Mm,n then AIn = A = ImA and AOn = Om,n = OmA.

We won’t prove the above theorem, but hopefully it seems believable enough.

Example. Diagonal matrices.

In general, the product of two diagonal matrices is just the entry-wise product
of the two matrices:
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The Transpose of a Matrix
We now introduce an operation on matrices that changes the shape of a matrix,
but not its contents. Specifically, it swaps the role of the rows and columns of a
matrix:

Definition 3.4 — The Transpose
Suppose A ∈Mm,n is an m× n matrix. Then its transpose, which we denote
by AT , is the n×m matrix whose (i, j)-entry is aj,i.

Intuitively, the transpose of a matrix is obtained by mirroring it across its main
diagonal.

Example. Let’s compute a transpose or two.

Let’s now think about some basic properties that the transpose satisfies:

Theorem 3.4 — Properties of the Transpose
Let A and B be matrices (with sizes such that the operations below make sense)
and let c ∈ R be a scalar. Then

a) (AT )T = A

b) (A + B)T = AT + BT

c) (AB)T = BT AT

d) (cA)T = cAT
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Proof. Parts (a), (b), and (d) of the theorem are intuitive enough, so we will only
prove part (c):

�

As a bit of a side note: would you have initially guessed that (AB)T = AT BT?
Situations like this are why we prove things rather than just guessing based on
what “looks believable”.

Example. Let’s compute some more transposes.
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Example. Transpose of the product of many matrices.

The transpose has the useful property that it converts a column vector into the
corresponding row vector, and vice-versa. Furthermore, if v, w ∈ Rn are column
vectors, then we can use our usual matrix multiplication rule to see that

vT w =

In other words, we can use matrix multiplication to recover the dot product.

Matrix Powers
Matrix multiplication also lets us define powers of square matrices. For an integer
k ≥ 1, we define

and we also define A0 = I (analogously to how we define a0 = 1 whenever a is
a non-zero real number). The next theorem follows almost immediately from this
definition:

Theorem 3.5 — Properties of Matrix Powers
If A is square and k and r are nonnegative integers, then

• AkAr = Ak+r, and

• (Ak)r = Akr.
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Example. Compute some matrix powers.

Later in the course, we will see how to define things like and .

Block Matrices
Oftentimes, there are clear “patterns” in the entries of a large matrix, and it might
be useful to break that matrix down into smaller chunks based on some partition
of its rows and columns. For example:

A =



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 2 1 −1
0 0 0 0 −2 3


and B =



1 2 0 0
2 1 0 0
−1 1 0 0
0 0 1 2
0 0 2 1
0 0 −1 1





Linear Algebra – Week 3 14

When A and B are written in this way, as matrices whose elements are them-
selves matrices, they are called block matrices. Viewing matrices in this way
often simplifies calculations and reveals structure, especially when the matrix has
a lot of zeroes.

Remarkably, multiplication of block matrices works exactly as it does for regular
matrices:

And indeed, this is the exact same answer we would have gotten if we computed
AB the “long way”.
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We have to be careful when performing block matrix multiplication: it is only
valid if we choose the sizes of the blocks so that each and every matrix multiplication
being performed makes sense.

Example. Suppose

Which of the following block matrix multiplications make sense?

A B
B A

2

A B
O I3



A A
O A
I2 O



A B
O I3

 A A
O A



A B
O I3

 B O
I3 I3


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Partitioning matrices in different ways can lead to new insights about how
matrix multiplication works.

Theorem 3.6 — Matrix–Vector Multiplication
Suppose A ∈ Mm,n has columns a1, a2, . . . , an and v ∈ Rn is a column vector.
Then

Av = v1a1 + v2a2 + · · ·+ vnan.

Proof. We simply perform block matrix multiplication:

�

We of course can compute Av directly from the definition, but it’s nice to have
multiple ways to think about things.

Theorem 3.7 — Matrix Multiplication is Column-Wise
Suppose A ∈Mm,n and B ∈Mn,p are matrices. If bj is the j-th column of B,
then

AB =
[

Ab1 | Ab2 | · · · | Abp

]
.

Proof. Again, we perform block matrix multiplication:

�
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