LINEAR TRANSFORMATIONS

This week we will learn about:

- Understanding linear transformations geometrically,
- The standard matrix of a linear transformation, and
- Composition of linear transformations.

Extra reading and watching:

- Section 1.4 in the textbook
- Lecture videos 13, 14, 15, and 16 on YouTube
- Linear map at Wikipedia

Extra textbook problems:

- \star 1.4.1, 1.4.4, 1.4.5(a,b,e,f)
- $\star \star 1.4.2, 1.4.3, 1.4.6, 1.4.7(a,b), 1.4.8, 1.4.14-1.4.16$
- $\star\star\star$ 1.4.18, 1.4.22, 1.4.23
 - **2** 1.4.19, 1.4.20

Linear Transformations

The final main ingredient of linear algebra, after vectors and matrices, are linear transformations: functions that act on vectors and that do not "mess up" vector addition and scalar multiplication:

Definition 4.1 — Linear Transformations

A **linear transformation** is a function $T: \mathbb{R}^n \to \mathbb{R}^m$ that satisfies the following two properties:

- a) $T(\mathbf{v} + \mathbf{w}) = T(\mathbf{v}) + T(\mathbf{w})$ for all vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, and
- **b)** $T(c\mathbf{v}) = cT(\mathbf{v})$ for all vectors $\mathbf{v} \in \mathbb{R}^n$ and all scalars $c \in \mathbb{R}$.

me	Before looking at specific examples of trically about what they do to \mathbb{R}^n :	of linear	transformations,	let's	think	geo-

Another way of thinking about this: linear transformations are exactly the functions that preserve linear combinations:

Example. Which of the following functions are linear transformations?					

Recall that every vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ can be written in the form
By using the fact that linear transformations preserve linear combinations, we see that
But this is exactly what we said before: if $\mathbf{v} \in \mathbb{R}^2$ extends a distance of v_1 in the direction of \mathbf{e}_1 and a distance of v_2 in the direction of \mathbf{e}_2 , then $T(\mathbf{v})$ extends the same amounts in the directions of $T(\mathbf{e}_1)$ and $T(\mathbf{e}_2)$, respectively. This also tells us one of the most important facts to know about linear transformations:
Example. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation for which $T(\mathbf{e}_1) = (1,1)$
and $T(\mathbf{e}_2) = (-1, 1)$. Compute $T(2, 3)$ and then find a general formula for $T(v_1, v_2)$

One of the earlier examples showed that if $A \in \mathcal{M}_{m,n}$ is a matrix, then the function $T : \mathbb{R}^m \to \mathbb{R}^n$ defined by $T(\mathbf{v}) = A\mathbf{v}$ is a linear transformation. Amazingly, the converse is also true: *every* linear transformation can be written as matrix multiplication.

Theorem 4.1 — Standard Matrix of a Linear Transformation

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if and only if there exists a matrix $[T] \in \mathcal{M}_{m,n}$ such that

$$T(\mathbf{v}) = [T]\mathbf{v}$$
 for all $\mathbf{v} \in \mathbb{R}^n$.

Furthermore, the unique matrix [T] with this property is called the **standard** matrix of T, and it is

Proof. We already proved the "if" direction, so we just need to prove the "only if" direction. That is, we want to prove that if T is a linear transformation, then $T(\mathbf{v}) = [T]\mathbf{v}$, where the matrix [T] is as defined in the theorem.

Example. Find the standard matrix of the following linear transformations:						

A Catalog of Linear Transformations

To get more comfortable with the relationship between linear transformations and matrices, let's find the standard matrices of a few linear transformations that come up fairly frequently.

Example. The zero and identity transformations.					
Example.	Diagonal transformations/matrices.				
Example.	Projection onto the x -axis.				

Example. Projection onto a line, $P_{\mathbf{u}} : \mathbb{R}^n \to \mathbb{R}^n$.					
Example. Find the standard matrix of the linear transformation that projects \mathbb{R}^3 onto the line in the direction of the vector					

Example.	Rotation	counter-clo	ockwise aro	und the or	rigin by 90°	$^{\circ}$ $(\pi/2 \text{ rad})$	dians).
Example. of θ .	Rotation	$R^{\theta}: \mathbb{R}^2 \to$	\mathbb{R}^2 counter	-clockwise	around the	e origin by	y an angle

clockwise?	What vector is obtained if we rotate $\mathbf{v} = (1,3)$ by $\pi/4$ radians counter-

Composing Linear Transformations

If $T: \mathbb{R}^n \to \mathbb{R}^m$ and $S: \mathbb{R}^m \to \mathbb{R}^p$ are linear transformations, then we can consider the function defined by first applying T to a vector, and then applying S. This function is called the **composition** of T and S, and is denoted by $S \circ T$.

Formally, the composition $S \circ T$ is defined by $(S \circ T)(\mathbf{v}) = S(T(\mathbf{v}))$ for all vectors $\mathbf{v} \in \mathbb{R}^n$. It turns out that $S \circ T$ is a linear transformation whenever S and T are linear transformations themselves, as shown by the next theorem.

Theorem 4.2 — Composition of Linear Transformations

Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ and $S: \mathbb{R}^m \to \mathbb{R}^p$ are linear transformations with standard matrices $[T] \in \mathcal{M}_{m,n}$ and $[S] \in \mathcal{M}_{p,m}$, respectively. Then $S \circ T: \mathbb{R}^n \to \mathbb{R}^p$ is a linear transformation, and its standard matrix is $[S \circ T] = [S][T]$.

	1.
<i>Proof.</i> Let $\mathbf{v} \in \mathbb{R}^n$ and compute $(S \circ T)(\mathbf{v})$:	
The previous theorem shows us that matrix multiplication tells us how composition of linear transformations behaves. In fact, this is exactly why marmultiplication is defined the way it is.	
Example. What vector is obtained if we rotate $\mathbf{v} = (4, 2)$ 45° counter-clockwaround the origin and then project it onto the line $y = 2x$?	vise

Example. \mathbb{R}^2 onto the	Find the stan	$\frac{1}{3}$ and then	of the linear	$\frac{1}{2}$ transformation	T that projects on by a factor of
	e mile $y = (4/3)$ e y -direction b			x-direction	on by a factor of
2 4114 111 111	c g direction i	oy a factor of	0.		
Example.	Derive the an	gle-sum form	ulas for sin a	nd cos.	
-					