The University of New South Wales School of Mathematics and Statistics

MATH3161 & MATH5165 – Optimization, Term 1, 2025^1

OPTIMIZATION – COURSE SUMMARY

TOPIC 1 – MODEL FORMULATION

Standard Formulation:

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c_i(x) = 0, \ i = 1, \dots, m_E,$
 $c_i(x) \le 0, \ i = m_E + 1, \dots, m_E$

Conversions:

- Maximize to minimize: $\max f(x) = -\min(-f(x))$
- Constraint right-hand-side: $c_i(x) = b_i \iff c_i(x) b_i = 0$
- Greater-than-or-equal-to inequalities: $c_i(x) \ge 0 \iff -c_i(x) \le 0$
- Strict inequality: $c_i(x) < 0 \iff c_i(x) + \varepsilon \le 0$, for some $\varepsilon > 0$

TOPIC 2 – MATHEMATICAL BACKGROUND

- Existence of Global Extrema: Let Ω be a compact set and f be continuous on Ω . Then the global extrema of f over Ω exist.
- Gradient: Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. The gradient $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ of f at x is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

¹Prof Jeya Jeyakumar, School of Mathematics and Statistics, UNSW Sydney.

• Hessian: Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable. The Hessian $\nabla^2 f : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ of f at x is

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

- Let $A \in \mathbb{R}^{n \times n}$ be any real square matrix (not necessarily symmetric). Then A is:
 - positive definite $\Leftrightarrow x^{\top}Ax > 0$ for all $x \in \mathbb{R}^n, x \neq 0$.
 - positive semi-definite $\Leftrightarrow x^{\top}Ax \ge 0$ for all $x \in \mathbb{R}^n$.
 - negative definite $\Leftrightarrow x^{\top}Ax < 0$ for all $x \in \mathbb{R}^n, x \neq 0$.
 - negative semi-definite $\Leftrightarrow x^{\top}Ax \leq 0$ for all $x \in \mathbb{R}^n$.
 - indefinite \Leftrightarrow there exist $x, y \in \mathbb{R}^n$ such that $x^\top A x < 0$ and $y^\top A y > 0$.
- A real square matrix $A \in \mathbb{R}^{n \times n}$ is positive definite (resp. positive semi-definite, negative definite, negative semi-definite, indefinite) *iff* its symmetric part $\frac{A + A^{\top}}{2}$ is positive definite (resp. positive semi-definite, negative definite, negative semi-definite, indefinite).
- Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then:
 - -A has n real eigenvalues.
 - There exists an orthogonal matrix $Q(Q^{\top}Q = I)$ such that $A = QDQ^{\top}$ where $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$ and $Q = [v_1 \cdots v_n]$ with v_i an eigenvector of A corresponding to eigenvalue λ_i .
 - $\det(A) = \prod_{i=1}^{n} \lambda_i \text{ and } \operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} A_{ii}.$
 - A is positive definite $\Leftrightarrow \lambda_i > 0$ for all $i = 1, \dots, n$.
 - A is positive semi-definite $\Leftrightarrow \lambda_i \ge 0$ for all $i = 1, \ldots, n$.
 - A is indefinite \Leftrightarrow there exist i, j with $\lambda_i > 0$ and $\lambda_j < 0$.

TOPIC 3 – CONVEXITY OF SETS AND FUNCTIONS

• Convex set: A set $\Omega \subseteq \mathbb{R}^n$ is convex $\Leftrightarrow \theta x + (1 - \theta)y \in \Omega$ for all $\theta \in [0, 1]$ and for all $x, y \in \Omega$.

• Convex function: Let $\Omega \subseteq \mathbb{R}^n$ be a convex set. The function $f : \Omega \to \mathbb{R}$ is convex *iff*

 $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) \quad \forall \theta \in [0,1], \ \forall x, y \in \Omega.$

- Convex inequality: Let $c : \mathbb{R}^n \to \mathbb{R}$ be a convex function. Then $\Omega = \{x \in \mathbb{R}^n : c(x) \leq 0\}$ is a convex set.
- Let $\Omega \subset \mathbb{R}^n$ be convex and $f \in C^2(\Omega)$. Then
 - $-\nabla^2 f(x)$ is positive semi-definite $\forall x \in \Omega \Rightarrow f$ is convex on Ω .
 - $-\nabla^2 f(x)$ is positive definite $\forall x \in \Omega \Rightarrow f$ is strictly convex on Ω .
 - $-\Omega$ is open and $\nabla^2 f(x)$ is positive semi-definite $\forall x \in \Omega \Leftrightarrow f$ is convex on Ω .
- Epigraph: For $f: \Omega \to \mathbb{R}$, epi $f = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : x \in \Omega, f(x) \le r\}$.
- Epigraph of a convex function: f is convex on a convex $\Omega \Leftrightarrow \operatorname{epi} f$ is convex in $\mathbb{R}^n \times \mathbb{R}$.

TOPIC 4 – UNCONSTRAINED OPTIMIZATION

- Problem form: $\min_{x \in \Omega} f(x)$ with $\Omega = \mathbb{R}^n$.
- First-order necessary condition: If x^* is a local minimizer and $f \in C^1(\mathbb{R}^n)$ then $\nabla f(x^*) = 0$.
- Unconstrained stationary point: x^* with $\nabla f(x^*) = 0$. Such points may be minimizers, maximizers or saddle points.
- Second-order necessary conditions: If $f \in C^2(\mathbb{R}^n)$ then
 - Local minimizer $\Rightarrow \nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ positive semi-definite.
 - Local maximizer $\Rightarrow \nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ negative semi-definite.
- Second-order sufficient conditions: If $\nabla f(x^*) = 0$ then
 - $-\nabla^2 f(x^*)$ positive definite $\Rightarrow x^*$ is a *strict* local minimizer.
 - $-\nabla^2 f(x^*)$ negative definite $\Rightarrow x^*$ is a *strict* local maximizer.
 - $-\nabla^2 f(x^*)$ indefinite $\Rightarrow x^*$ is a saddle point.
- Sufficiency under convexity/concavity: For $f \in C^2(\mathbb{R}^n)$:
 - -f convex \Rightarrow any stationary point is a global minimizer.
 - -f strictly convex \Rightarrow stationary point is the unique global minimizer.
 - -f concave \Rightarrow any stationary point is a global maximizer.
 - -f strictly concave \Rightarrow stationary point is the unique global maximizer.

TOPIC 5 – EQUALITY CONSTRAINTS

Standard form:

$$\min_{x \in \mathbb{R}^n} \{ f(x) : c_i(x) = 0, \ i = 1, \dots, m \}.$$
 (PE)

Lagrangian: For $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}^m$,

$$L(x,\lambda) := f(x) + \sum_{i=1}^{m} \lambda_i c_i(x).$$

- **Regular point:** A feasible point x is regular \Leftrightarrow the gradients $\nabla c_i(x)$, $i = 1, \ldots, m$, are linearly independent.
- First-order necessary optimality conditions: If x^* is a local minimizer and a regular point of (PE), then $\exists \lambda^* \in \mathbb{R}^m$ such that

$$\nabla_x L(x^*, \lambda^*) = 0, \qquad \nabla_\lambda L(x^*, \lambda^*) = 0.$$

- Constrained stationary point: Any x^* for which $\exists \lambda^*$ satisfying the above equalities.
- Second-order sufficient conditions: Let (x^*, λ^*) be a constrained stationary point. Define

$$A(x^*) = \begin{bmatrix} \nabla c_1(x^*) & \cdots & \nabla c_m(x^*) \end{bmatrix}, \qquad Z^* \in \mathbb{R}^{n \times (n-t^*)}, \ t^* = \operatorname{rank} A(x^*), \ (Z^*)^\top A(x^*) = 0$$

The reduced Hessian of L is $W_Z^* = (Z^*)^\top \nabla_{xx}^2 L(x^*, \lambda^*) Z^*$. If W_Z^* is positive definite, then x^* is a strict local minimizer.

TOPIC 6 – INEQUALITY CONSTRAINTS

Standard form (with equalities and inequalities):

$$\min_{x \in \mathbb{R}^n} \{ f(x) : c_i(x) = 0, \ i \in E, \ c_i(x) \le 0, \ i \in I \}.$$
(NLP)

- Active set at $x^*: A(x^*) = \{i \in E \cup I : c_i(x^*) = 0\}.$
- **Regular point:** Feasible x^* such that $\{\nabla c_i(x^*) : i \in A(x^*)\}$ are linearly independent.
- Constrained stationary point: Feasible x^* for which $\exists \lambda_i^* \ (i \in A(x^*))$ with $\nabla f(x^*) + \sum_{i \in A(x^*)} \lambda_i^* \nabla c_i(x^*) = 0.$
- Karush–Kuhn–Tucker (KKT) necessary conditions: If x^* is a local minimizer and a regular point, then $\exists \lambda_i^* \ (i \in A(x^*))$ such that

$$\nabla f(x^*) + \sum_{i \in A(x^*)} \lambda_i^* \nabla c_i(x^*) = 0,$$

with $c_i(x^*) = 0$ $(i \in E)$, $c_i(x^*) \le 0$ $(i \in I)$, $\lambda_i^* \ge 0$ $(i \in I)$, and $\lambda_i^* = 0$ for $i \notin A(x^*)$.

• Second-order sufficient conditions for strict local minimum: Let $t^* = |A(x^*)|$, $A^* = [\nabla c_i(x^*) \mid i \in A(x^*)]$. If $t^* < n$ and A^* has full rank, let $Z^* \in \mathbb{R}^{n \times (n-t^*)}$ with $(Z^*)^\top A^* = 0$. Define

$$W^* = \nabla^2 f(x^*) + \sum_{i \in A(x^*)} \lambda_i^* \nabla^2 c_i(x^*), \qquad W_Z^* = (Z^*)^\top W^* Z^*.$$

If $\lambda_i^* > 0 \ \forall i \in I \cap A(x^*)$ and W_Z^* is positive definite, then x^* is a strict local minimizer.

- Convex problem: (NLP) is a *convex optimization* problem if f is convex on the feasible set, c_i is affine $\forall i \in E$, and c_i is convex $\forall i \in I$.
- KKT sufficient conditions for global minimum: If (NLP) is convex and x^* satisfies the KKT conditions with $\lambda_i^* \geq 0$ for all $i \in I \cap A(x^*)$, then x^* is a global minimizer.
- Dual problem (Wolfe dual):

$$\max_{y \in \mathbb{R}^n, \lambda \in \mathbb{R}^m} \left\{ f(y) + \sum_{i=1}^m \lambda_i c_i(y) : \nabla f(y) + \sum_{i=1}^m \lambda_i \nabla c_i(y) = 0, \ \lambda_i \ge 0 \ (i \in I) \right\}.$$
(D)

TOPIC 7 – NUMERICAL METHODS

- Rates of convergence of iterative methods. If $x_k \to x^*$ and $\frac{\|x_{k+1} x^*\|}{\|x_k x^*\|^{\alpha}} \to \beta$ as $k \to \infty$, the method has α -th order convergence. Key cases: $\alpha = 1$ (linear), $\alpha = 1$ with $\beta = 0$ (superlinear), $\alpha = 2$ (quadratic).
- Line search methods. Given $s^{(k)}$ at $x^{(k)}$, set $x^{(k+1)} = x^{(k)} + \alpha^{(k)}s^{(k)}$ where $\alpha^{(k)}$ minimizes or approximately minimizes $\ell_k(\alpha) = f(x^{(k)} + \alpha s^{(k)})$.
- Descent direction: $(g^{(k)})^{\top}s^{(k)} < 0.$
- Exact line search condition: $\ell'_k(\alpha) = g(x^{(k)} + \alpha s^{(k)})^\top s^{(k)} = 0.$
- If $s^{(k)}$ is a descent direction, a line search yields $\alpha^{(k)} > 0$ with $f^{(k+1)} < f^{(k)}$.
- Global convergence: convergence to a stationary point from any $x^{(1)}$.
- *Quadratic termination*: method finds minimizer of a strictly convex quadratic in finite known iterations.

Steepest Descent Method

- Search direction: $s^{(k)} = -g^{(k)}$.
- Descent direction: Yes.
- Global convergence: Yes.
- Quadratic termination: No.
- Rate: Linear with exact line searches. If f is strictly convex quadratic, then for each k,

$$\|x^{(k+1)} - x^*\| \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^k \|x^{(1)} - x^*\|,$$

where κ is the condition number of $\nabla^2 f$.

Basic Newton's Method

- Search direction: solve $G^{(k)}\delta^{(k)} = -g^{(k)}$ where $G^{(k)}$ is the Hessian.
- Descent direction: Yes, if $G^{(k)}$ positive definite.
- Global convergence: No (Hessian may be singular).
- Quadratic termination: Yes (one iteration for strictly convex quadratics).
- Rate: Quadratic if G^* positive definite.
- Usage: When Hessian can be evaluated and is positive definite.

Conjugate Gradient Method

- Search direction: $s^{(k)} = -g^{(k)} + \beta^{(k)}s^{(k-1)}$.
- Descent direction: Yes.
- Quadratic termination: Yes with exact line searches.
- Usage: Large n; stores only vectors, avoids solving linear systems.

TOPIC 8 – PENALTY FUNCTION METHODS

Standard formulation: Same as (NLP). Penalty problem:

$$\min_{x \in \mathbb{R}^n} (f(x) + \mu P(x)), \qquad (P_\mu)$$

with

$$P(x) = \sum_{i=1}^{m_E} [c_i(x)]^2 + \sum_{i=m_E+1}^{m} [c_i(x)]^2_+, \qquad [c_i(x)]_+ = \max\{c_i(x), 0\}$$

- If $c : \mathbb{R}^n \to \mathbb{R}$ is convex, then $\max\{c(x), 0\}^2$ is convex.
- $\frac{\partial}{\partial x_j} \left(\max\{c(x), 0\}^2 \right) = 2 \max\{c(x), 0\} \frac{\partial c}{\partial x_j}.$
- Convergence Theorem: For each $\mu > 0$ let x_{μ} minimize (P_{μ}) and set $\theta(\mu) = f(x_{\mu}) + \mu P(x_{\mu})$. Suppose $\{x_{\mu}\}$ lies in a closed bounded set. Then

$$\min_{x} \{ f(x) : c_i(x) = 0, \ i \in E, \ c_i(x) \le 0, \ i \in I \} = \lim_{\mu \to \infty} \theta(\mu).$$

Moreover, any cluster point x^* of $\{x_{\mu}\}$ solves the original problem, and $\mu P(x_{\mu}) \to 0$ as $\mu \to \infty$.

TOPIC 9 – OPTIMAL CONTROL

A typical *autonomous* optimal control problem with fixed target is

(C)
$$\min_{u(t)\in U} \int_{t_0}^{t_1} f_0(x(t), u(t)) dt$$
 subject to $x'(t) = f(x(t), u(t)), x(t_0) = x_0, x(t_1) = x_1.$

Hamiltonian:

$$H(x, \hat{z}, u) = \hat{z}^{\top} \dot{\hat{x}} = \sum_{i=0}^{n} z_i(t) f_i(x(t), u(t)),$$

where $\hat{z}(t) = [z_0(t), \dots, z_n(t)]^\top$, $\hat{x}(t) = [x_0(t), \dots, x_n(t)]^\top$, $x_0(t) = f_0(x(t), u(t))$, $x_0(t_0) = 0$. **Co-state equations:** $\dot{\hat{z}} = -\frac{\partial H}{\partial \hat{x}}$.

Pontryagin Maximum Principle (autonomous, fixed targets). Suppose (x^*, u^*) is optimal for (C). Then

• $z_0 = -1$ (normal case), so

$$H(x, \hat{z}, u) = -f_0(x, u) + \sum_{i=1}^n z_i(t) f_i(x, u).$$

- Co-state equations admit a solution \hat{z}^* .
- u^* maximizes $H(x^*, \hat{z}^*, u)$ over $u \in U$.
- x^* satisfies state equation with $x^*(t_0) = x_0, x^*(t_1) = x_1$.
- The Hamiltonian is constant along the optimal path and equals 0 if t_1 is free:

$$H(x^*, \hat{z}^*, u^*) = \begin{cases} \text{constant}, & t_1 \text{ fixed}, \\ 0, & t_1 \text{ free}. \end{cases}$$

Partially free targets: If target is intersection of k surfaces $g_i(x_1) = 0$, i = 1, ..., k, then transversality condition is $z_1 = \sum_{i=1}^k c_i \nabla g_i(x_1)$ for some constants c_i . **Completely free target:** If $x(t_1)$ is unrestricted, then $z(t_1) = 0$.

Non-autonomous problems. For state x' = f(x, u, t) and cost $J = \int_{t_0}^{t_1} f_0(x, u, t) dt$, introduce extra state x_{n+1} with $x'_{n+1} = 1$, $x_{n+1}(t_0) = t_0$, $x_{n+1}(t_1) = t_1$.