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OPTIMIZATION - COURSE SUMMARY

TOPIC 1 - MODEL FORMULATION

Standard Formulation:

min - f(z)
st. c(z)=0,i=1,...,mg,

0
ci(x) <0, i=mg+1,...,m.
Conversions:
« Maximize to minimize: max f(z) = —min(— f(z))
 Constraint right-hand-side: ¢;(z) =b; < ¢(x) —b; =0
o Greater-than-or-equal-to inequalities: ¢;(x) >0 < —¢;(z) <0

o Strict inequality: ¢;(z) <0 < ¢(x) +¢e <0, for some ¢ >0

TOPIC 2 - MATHEMATICAL BACKGROUND

« Existence of Global Extrema: Let ) be a compact set and f be continuous on €.
Then the global extrema of f over () exist.

o Gradient: Let f : R® — R be continuously differentiable. The gradient Vf : R" —
R™ of f at x is
Of(x)

8.1'1

Vf(r) = :
of(x)
ox,
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o Hessian: Let f : R® — R be twice continuously differentiable. The Hessian V2f :
R™ — R™™ of f at x is

(D f(x) Pfla)  Pf()

02 0x105 0x10x,,
i PRI )
V2f(z) = | 0x201, o3 0x901,,

Pl Pfa) )
| 02,071 01,017 0x2

o Let A € R™™ be any real square matrix (not necessarily symmetric). Then A is:

— positive definite < " Az > 0 for all z € R", x # 0.

— positive semi-definite < x Ax > 0 for all z € R".

— negative definite < " Az < 0 for all z € R™, z # 0.

— negative semi-definite < v Ax < 0 for all z € R".

— indefinite < there exist z,y € R" such that 2" Az < 0 and y ' Ay > 0.

o A real square matrix A € R™ " is positive definite (resp. positive semi-definite, nega-
T

tive definite, negative semi-definite, indefinite) iff its symmetric part is pos-

itive definite (resp. positive semi-definite, negative definite, negative semi-definite,
indefinite).

o Let A € R™" be a symmetric matrix. Then:

— A has n real eigenvalues.

— There exists an orthogonal matrix Q (Q'Q = I) such that A = QDQ" where D =
diag(A1, ..., Ay) and @ = [v1 -+ v,] with v; an eigenvector of A corresponding
to eigenvalue \;.

det(A) = [T, A and tr(A) = >0 N => 0, Aie
A is positive definite < \; > 0 forallt=1,...,n.

A is positive semi-definite < \; > 0 forallt=1,...,n.

A is indefinite < there exist 7, j with A\; > 0 and A; < 0.

TOPIC 3 - CONVEXITY OF SETS AND FUNCTIONS

« Convex set: A set Q C R" is convex < Oz + (1 —0)y € Q for all 6 € [0, 1] and for all
x,y € S



o Convex function: Let {2 C R" be a convex set. The function f : {2 — R is convex
iff
F(6x+(1—0)y) <Of(x)+(1—0)f(y) VOE0,1], Va,y e Q.

« Convex inequality: Let ¢ : R” — R be a convex function. Then Q = {x € R" :
c(z) <0} is a convex set.

o Let Q C R be convex and f € C?*(2). Then

— V2f(x) is positive semi-definite Vx € = f is convex on ).

— V2 f(z) is positive definite Vo € Q = [ is strictly convex on Q.

— Qs open and V2f(x) is positive semi-definite Vz € 2 & f is convex on €.
o Epigraph: For f: Q - R epif ={(z,7r) e R*"xR:2€Q, f(x) <r}.

o Epigraph of a convex function: f is convex on a convex () < epi f is convex in
R™ x R.

TOPIC 4 - UNCONSTRAINED OPTIMIZATION

« Problem form: misgl f(z) with Q = R™.
TEe

« First-order necessary condition: If z* is a local minimizer and f € C*'(R") then

Vf(z*)=0.

» Unconstrained stationary point: z* with V f(z*) = 0. Such points may be mini-
mizers, maximizers or saddle points.

« Second-order necessary conditions: If f € C*(R") then

— Local minimizer = V f(z*) = 0 and V*f(x*) positive semi-definite.

— Local maximizer = V f(2*) = 0 and V*f(z*) negative semi-definite.
« Second-order sufficient conditions: If V f(z*) = 0 then

— V2f(z*) positive definite = x* is a strict local minimizer.
— V2f(x*) negative definite = z* is a strict local maximizer.
— V2f(x*) indefinite = z* is a saddle point.

 Sufficiency under convexity/concavity: For f € C*(R"):
— [ convex = any stationary point is a global minimizer.
— [ strictly convex = stationary point is the unique global minimizer.

— f concave = any stationary point is a global maximizer.

— f strictly concave = stationary point is the unique global maximizer.



TOPIC 5 - EQUALITY CONSTRAINTS

Standard form:
min{ f(z) : ¢;(z) =0, i=1,...,m}. (PE)

L(z,\) == f(x) + Z Aici(x)
i=1
+ Regular point: A feasible point = is reqular < the gradients Ve;(z), i = 1,...,m,

are linearly independent.

o First-order necessary optimality conditions: If x* is a local minimizer and a
regular point of (PE), then 3\* € R™ such that

V.L(z*, \*) =0, ViL(z*, \*) =0.
« Constrained stationary point: Any z* for which 3 \* satisfying the above equalities.

» Second-order sufficient conditions: Let (z*, \*) be a constrained stationary point.
Define

Alx®) = [Va(z*) - Veu(2)],  Z° e RO ¢ =rank A(z7), (Z%)TA(z") = 0.

The reduced Hessian of L is W} = (Z*)TV2 L(z*,\*)Z*. If W} is positive definite,
then z* is a strict local minimizer.

TOPIC 6 — INEQUALITY CONSTRAINTS

Standard form (with equalities and inequalities):

min{f(z): ¢;(z) =0, i € E, ¢;(x) <0, i € I}. (NLP)

xeRn
o Active set at z*: A(z*) ={ie€ FUI:¢(z*) =0}.
« Regular point: Feasible 2* such that {V¢;(z*) : i € A(x*)} are linearly independent.

» Constrained stationary point: Feasible z* for which I\ (i € A(z*)) with V f(z*)+

Z AiVei(z*) = 0.

1€A(z*)

« Karush-Kuhn—Tucker (KKT) necessary conditions: If z* is a local minimizer
and a regular point, then I\; (i € A(z*)) such that

Vi) + Y AVe(at) =0,

1€A(z*)

with ¢;(z*) =0 (i € E), ¢;(z*) <0 (1€ I), A\ >0 (i € I), and X\; =0 for i ¢ A(z").
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« Second-order sufficient conditions for strict local minimum: Let t* = |A(x*)|,
A* = [Vei(x*) | i € A(z¥)]. If t* < n and A* has full rank, let Z* € R™(™*) with
(Z*)T A* = 0. Define

Wr=V2fa )+ > NV, Wp=(Z°) Wz
1€A(z*)
IfAF > 0Vie INA(z*) and W} is positive definite, then z* is a strict local minimizer.

« Convex problem: (NLP) is a conver optimization problem if f is convex on the
feasible set, ¢; is affine Vi € E, and ¢; is convex Vi € I.

« KKT sufficient conditions for global minimum: If (NLP) is convex and z*
satisfies the KKT conditions with A\ > 0 for all i € I N A(z*), then z* is a global
minimizer.

e Dual problem (Wolfe dual):

yER™, AeR™

TOPIC 7 —- NUMERICAL METHODS

with 5 = 0 (superlinear), a = 2 (quadratic).

« Line search methods. Given s at z(®) set zFt) = 2®) 4 ok 5*) where aF
minimizes or approximately minimizes ¢;(a) = f(z®) 4+ as®)).

« Descent direction: (¢*))7s®) < 0.

« Exact line search condition: ¢ (a) = g(z® + as®)Tsk) = 0.

o If 5% is a descent direction, a line search yields a® > 0 with f*+D < £,
«+ Global convergence: convergence to a stationary point from any x").

e Quadratic termination: method finds minimizer of a strictly convex quadratic in finite
known iterations.



Steepest Descent Method

k) k)

« Search direction: s*) = —¢!
e Descent direction: Yes.
e Global convergence: Yes.

e Quadratic termination: No.

o Rate: Linear with exact line searches. If f is strictly convex quadratic, then for each
k,

1\
e — et < (=7 ) lle® =],
K

where & is the condition number of V2f.

Basic Newton’s Method

« Search direction: solve G¥§*) = —g*) where G*) is the Hessian.

« Descent direction: Yes, if G*) positive definite.

» Global convergence: No (Hessian may be singular).

« Quadratic termination: Yes (one iteration for strictly convex quadratics).
o Rate: Quadratic if G* positive definite.

o Usage: When Hessian can be evaluated and is positive definite.

Conjugate Gradient Method
o Search direction: s*) = —g*) 4 gk g(k=1),
o Descent direction: Yes.
e Quadratic termination: Yes with exact line searches.

o Usage: Large n; stores only vectors, avoids solving linear systems.



TOPIC 8 - PENALTY FUNCTION METHODS

Standard formulation: Same as (NLP).
Penalty problem:

min (f(z) + pP(x)), ()
with e .
P(r) = Z[ci(x)]Q + Y fe@), fe(@))s = max{c(z),0}.

o If ¢: R® — R is convex, then max{c(z),0}? is convex.

2
({9{[‘]"

- (max{e(). 0F) = 2 ma{e(a). 0}

+ Convergence Theorem: For each ¢ > 0 let z, minimize (P,) and set 6(u) =
f(z,) + nP(z,). Suppose {z,} lies in a closed bounded set. Then

mzin{f(x) cci(r) =0,1 € E, ¢;(x) <0,7€ I} = lim O(u).

U—>00

Moreover, any cluster point z* of {z,} solves the original problem, and pP(z,) — 0
as ji — 00.

TOPIC 9 - OPTIMAL CONTROL

A typical autonomous optimal control problem with fixed target is

(C) min /1 fo(z(t),u(t)) dt  subject to a'(t) = f(z(t), u(t)), z(to) = zo, x(t1) = 1.

u(t)GU tO

Hamiltonian:

where 2(t) = [20(t), ..., 2,()] T, 2(t) = [2o(t), ..., 2 (D)]T, 2o(t) = folx(t),u(t)), To(te) = 0.
0OH

Co-state equations: 2 = —

0T
Pontryagin Maximum Principle (autonomous, fixed targets). Suppose (z*,u*) is
optimal for (C). Then

e 29 = —1 (normal case), so



» Co-state equations admit a solution 2*.
o u* maximizes H(x*,2*,u) over u € U.
« o* satisfies state equation with x*(ty) = xg, 2*(t1) = 1.

e The Hamiltonian is constant along the optimal path and equals 0 if ¢ is free:

constant, t; fixed,
0, ty free.

Partially free targets: If target is intersection of k surfaces g;(x1) = 0,4 =1,...,k, then
transversality condition is 2z, = Zle ¢;Vgi(x1) for some constants c;.
Completely free target: If x(t;) is unrestricted, then z(¢;) = 0.

Non-autonomous problems. For state 2’ = f(z,u,t) and cost J = ftzl folz,u,t)dt,
introduce extra state ,41 with #,; = 1, 2p41(to) = to, Tny1(t1) = ti.



