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OPTIMIZATION – COURSE SUMMARY

TOPIC 1 – MODEL FORMULATION
Standard Formulation:

min
x∈Rn

f(x)

s.t. ci(x) = 0, i = 1, . . . ,mE,

ci(x) ≤ 0, i = mE + 1, . . . ,m.

Conversions:

• Maximize to minimize: max f(x) = −min
(
−f(x)

)
• Constraint right-hand-side: ci(x) = bi ⇔ ci(x)− bi = 0

• Greater-than-or-equal-to inequalities: ci(x) ≥ 0 ⇔ −ci(x) ≤ 0

• Strict inequality: ci(x) < 0 ⇔ ci(x) + ε ≤ 0, for some ε > 0

TOPIC 2 – MATHEMATICAL BACKGROUND
• Existence of Global Extrema: Let Ω be a compact set and f be continuous on Ω.

Then the global extrema of f over Ω exist.

• Gradient: Let f : Rn → R be continuously differentiable. The gradient ∇f : Rn →
Rn of f at x is

∇f(x) =


∂f(x)

∂x1...
∂f(x)

∂xn

 .
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• Hessian: Let f : Rn → R be twice continuously differentiable. The Hessian ∇2f :
Rn → Rn×n of f at x is

∇2f(x) =



∂2f(x)

∂x2
1

∂2f(x)

∂x1∂x2

· · · ∂2f(x)

∂x1∂xn

∂2f(x)

∂x2∂x1

∂2f(x)

∂x2
2

· · · ∂2f(x)

∂x2∂xn
... ... . . . ...

∂2f(x)

∂xn∂x1

∂2f(x)

∂xn∂x2

· · · ∂2f(x)

∂x2
n


.

• Let A ∈ Rn×n be any real square matrix (not necessarily symmetric). Then A is:

– positive definite ⇔ x>Ax > 0 for all x ∈ Rn, x 6= 0.
– positive semi-definite ⇔ x>Ax ≥ 0 for all x ∈ Rn.
– negative definite ⇔ x>Ax < 0 for all x ∈ Rn, x 6= 0.
– negative semi-definite ⇔ x>Ax ≤ 0 for all x ∈ Rn.
– indefinite ⇔ there exist x, y ∈ Rn such that x>Ax < 0 and y>Ay > 0.

• A real square matrix A ∈ Rn×n is positive definite (resp. positive semi-definite, nega-

tive definite, negative semi-definite, indefinite) iff its symmetric part A+ A>

2
is pos-

itive definite (resp. positive semi-definite, negative definite, negative semi-definite,
indefinite).

• Let A ∈ Rn×n be a symmetric matrix. Then:

– A has n real eigenvalues.
– There exists an orthogonal matrix Q (Q>Q = I) such that A = QDQ> where D =

diag(λ1, . . . , λn) and Q = [v1 · · · vn] with vi an eigenvector of A corresponding
to eigenvalue λi.

– det(A) =
∏n

i=1 λi and tr(A) =
∑n

i=1 λi =
∑n

i=1 Aii.
– A is positive definite ⇔ λi > 0 for all i = 1, . . . , n.
– A is positive semi-definite ⇔ λi ≥ 0 for all i = 1, . . . , n.
– A is indefinite ⇔ there exist i, j with λi > 0 and λj < 0.

TOPIC 3 – CONVEXITY OF SETS AND FUNCTIONS
• Convex set: A set Ω ⊆ Rn is convex ⇔ θx+ (1− θ)y ∈ Ω for all θ ∈ [0, 1] and for all

x, y ∈ Ω.
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• Convex function: Let Ω ⊆ Rn be a convex set. The function f : Ω → R is convex
iff

f
(
θx+ (1− θ)y

)
≤ θf(x) + (1− θ)f(y) ∀ θ ∈ [0, 1], ∀x, y ∈ Ω.

• Convex inequality: Let c : Rn → R be a convex function. Then Ω = {x ∈ Rn :
c(x) ≤ 0} is a convex set.

• Let Ω ⊂ Rn be convex and f ∈ C2(Ω). Then

– ∇2f(x) is positive semi-definite ∀x ∈ Ω ⇒ f is convex on Ω.
– ∇2f(x) is positive definite ∀x ∈ Ω ⇒ f is strictly convex on Ω.
– Ω is open and ∇2f(x) is positive semi-definite ∀x ∈ Ω ⇔ f is convex on Ω.

• Epigraph: For f : Ω → R, epi f = {(x, r) ∈ Rn × R : x ∈ Ω, f(x) ≤ r}.

• Epigraph of a convex function: f is convex on a convex Ω ⇔ epi f is convex in
Rn × R.

TOPIC 4 – UNCONSTRAINED OPTIMIZATION
• Problem form: min

x∈Ω
f(x) with Ω = Rn.

• First-order necessary condition: If x∗ is a local minimizer and f ∈ C1(Rn) then
∇f(x∗) = 0.

• Unconstrained stationary point: x∗ with ∇f(x∗) = 0. Such points may be mini-
mizers, maximizers or saddle points.

• Second-order necessary conditions: If f ∈ C2(Rn) then

– Local minimizer ⇒ ∇f(x∗) = 0 and ∇2f(x∗) positive semi-definite.
– Local maximizer ⇒ ∇f(x∗) = 0 and ∇2f(x∗) negative semi-definite.

• Second-order sufficient conditions: If ∇f(x∗) = 0 then

– ∇2f(x∗) positive definite ⇒ x∗ is a strict local minimizer.
– ∇2f(x∗) negative definite ⇒ x∗ is a strict local maximizer.
– ∇2f(x∗) indefinite ⇒ x∗ is a saddle point.

• Sufficiency under convexity/concavity: For f ∈ C2(Rn):

– f convex ⇒ any stationary point is a global minimizer.
– f strictly convex ⇒ stationary point is the unique global minimizer.
– f concave ⇒ any stationary point is a global maximizer.
– f strictly concave ⇒ stationary point is the unique global maximizer.
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TOPIC 5 – EQUALITY CONSTRAINTS
Standard form:

min
x∈Rn

{
f(x) : ci(x) = 0, i = 1, . . . ,m

}
. (PE)

Lagrangian: For x ∈ Rn, λ ∈ Rm,

L(x, λ) := f(x) +
m∑
i=1

λici(x).

• Regular point: A feasible point x is regular ⇔ the gradients ∇ci(x), i = 1, . . . ,m,
are linearly independent.

• First-order necessary optimality conditions: If x∗ is a local minimizer and a
regular point of (PE), then ∃λ∗ ∈ Rm such that

∇xL(x
∗, λ∗) = 0, ∇λL(x

∗, λ∗) = 0.

• Constrained stationary point: Any x∗ for which ∃λ∗ satisfying the above equalities.

• Second-order sufficient conditions: Let (x∗, λ∗) be a constrained stationary point.
Define

A(x∗) =
[
∇c1(x

∗) · · · ∇cm(x
∗)
]
, Z∗ ∈ Rn×(n−t∗), t∗ = rankA(x∗), (Z∗)>A(x∗) = 0.

The reduced Hessian of L is W ∗
Z = (Z∗)>∇2

xxL(x
∗, λ∗)Z∗. If W ∗

Z is positive definite,
then x∗ is a strict local minimizer.

TOPIC 6 – INEQUALITY CONSTRAINTS
Standard form (with equalities and inequalities):

min
x∈Rn

{
f(x) : ci(x) = 0, i ∈ E, ci(x) ≤ 0, i ∈ I

}
. (NLP)

• Active set at x∗: A(x∗) = {i ∈ E ∪ I : ci(x
∗) = 0}.

• Regular point: Feasible x∗ such that {∇ci(x
∗) : i ∈ A(x∗)} are linearly independent.

• Constrained stationary point: Feasible x∗ for which ∃λ∗
i (i ∈ A(x∗)) with ∇f(x∗)+∑

i∈A(x∗)

λ∗
i∇ci(x

∗) = 0.

• Karush–Kuhn–Tucker (KKT) necessary conditions: If x∗ is a local minimizer
and a regular point, then ∃λ∗

i (i ∈ A(x∗)) such that

∇f(x∗) +
∑

i∈A(x∗)

λ∗
i∇ci(x

∗) = 0,

with ci(x
∗) = 0 (i ∈ E), ci(x∗) ≤ 0 (i ∈ I), λ∗

i ≥ 0 (i ∈ I), and λ∗
i = 0 for i /∈ A(x∗).
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• Second-order sufficient conditions for strict local minimum: Let t∗ = |A(x∗)|,
A∗ = [∇ci(x

∗) | i ∈ A(x∗)]. If t∗ < n and A∗ has full rank, let Z∗ ∈ Rn×(n−t∗) with
(Z∗)>A∗ = 0. Define

W ∗ = ∇2f(x∗) +
∑

i∈A(x∗)

λ∗
i∇2ci(x

∗), W ∗
Z = (Z∗)>W ∗Z∗.

If λ∗
i > 0 ∀i ∈ I ∩A(x∗) and W ∗

Z is positive definite, then x∗ is a strict local minimizer.

• Convex problem: (NLP) is a convex optimization problem if f is convex on the
feasible set, ci is affine ∀i ∈ E, and ci is convex ∀i ∈ I.

• KKT sufficient conditions for global minimum: If (NLP) is convex and x∗

satisfies the KKT conditions with λ∗
i ≥ 0 for all i ∈ I ∩ A(x∗), then x∗ is a global

minimizer.

• Dual problem (Wolfe dual):

max
y∈Rn, λ∈Rm

{
f(y) +

m∑
i=1

λici(y) : ∇f(y) +
m∑
i=1

λi∇ci(y) = 0, λi ≥ 0 (i ∈ I)

}
. (D)

TOPIC 7 – NUMERICAL METHODS

• Rates of convergence of iterative methods. If xk → x∗ and ‖xk+1 − x∗‖
‖xk − x∗‖α

→ β as

k → ∞, the method has α-th order convergence. Key cases: α = 1 (linear), α = 1
with β = 0 (superlinear), α = 2 (quadratic).

• Line search methods. Given s(k) at x(k), set x(k+1) = x(k) + α(k)s(k) where α(k)

minimizes or approximately minimizes `k(α) = f(x(k) + αs(k)).

• Descent direction: (g(k))>s(k) < 0.

• Exact line search condition: `′k(α) = g(x(k) + αs(k))>s(k) = 0.

• If s(k) is a descent direction, a line search yields α(k) > 0 with f (k+1) < f (k).

• Global convergence: convergence to a stationary point from any x(1).

• Quadratic termination: method finds minimizer of a strictly convex quadratic in finite
known iterations.
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Steepest Descent Method
• Search direction: s(k) = −g(k).

• Descent direction: Yes.

• Global convergence: Yes.

• Quadratic termination: No.

• Rate: Linear with exact line searches. If f is strictly convex quadratic, then for each
k,

‖x(k+1) − x∗‖ ≤
(
κ− 1

κ+ 1

)k

‖x(1) − x∗‖,

where κ is the condition number of ∇2f .

Basic Newton’s Method
• Search direction: solve G(k)δ(k) = −g(k) where G(k) is the Hessian.

• Descent direction: Yes, if G(k) positive definite.

• Global convergence: No (Hessian may be singular).

• Quadratic termination: Yes (one iteration for strictly convex quadratics).

• Rate: Quadratic if G∗ positive definite.

• Usage: When Hessian can be evaluated and is positive definite.

Conjugate Gradient Method
• Search direction: s(k) = −g(k) + β(k)s(k−1).

• Descent direction: Yes.

• Quadratic termination: Yes with exact line searches.

• Usage: Large n; stores only vectors, avoids solving linear systems.
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TOPIC 8 – PENALTY FUNCTION METHODS
Standard formulation: Same as (NLP).
Penalty problem:

min
x∈Rn

(
f(x) + µP (x)

)
, (Pµ)

with

P (x) =

mE∑
i=1

[ci(x)]
2 +

m∑
i=mE+1

[ci(x)]
2
+, [ci(x)]+ = max{ci(x), 0}.

• If c : Rn → R is convex, then max{c(x), 0}2 is convex.

• ∂

∂xj

(
max{c(x), 0}2

)
= 2 max{c(x), 0} ∂c

∂xj

.

• Convergence Theorem: For each µ > 0 let xµ minimize (Pµ) and set θ(µ) =
f(xµ) + µP (xµ). Suppose {xµ} lies in a closed bounded set. Then

min
x

{f(x) : ci(x) = 0, i ∈ E, ci(x) ≤ 0, i ∈ I} = lim
µ→∞

θ(µ).

Moreover, any cluster point x∗ of {xµ} solves the original problem, and µP (xµ) → 0
as µ → ∞.

TOPIC 9 – OPTIMAL CONTROL
A typical autonomous optimal control problem with fixed target is

(C) min
u(t)∈U

∫ t1

t0

f0
(
x(t), u(t)

)
dt subject to x′(t) = f

(
x(t), u(t)

)
, x(t0) = x0, x(t1) = x1.

Hamiltonian:

H(x, ẑ, u) = ẑ> ˙̂x =
n∑

i=0

zi(t)fi
(
x(t), u(t)

)
,

where ẑ(t) = [z0(t), . . . , zn(t)]
>, x̂(t) = [x0(t), . . . , xn(t)]

>, x0(t) = f0(x(t), u(t)), x0(t0) = 0.
Co-state equations: ˙̂z = −∂H

∂x̂
.

Pontryagin Maximum Principle (autonomous, fixed targets). Suppose (x∗, u∗) is
optimal for (C). Then

• z0 = −1 (normal case), so

H
(
x, ẑ, u

)
= −f0

(
x, u

)
+

n∑
i=1

zi(t)fi
(
x, u

)
.
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• Co-state equations admit a solution ẑ∗.

• u∗ maximizes H(x∗, ẑ∗, u) over u ∈ U .

• x∗ satisfies state equation with x∗(t0) = x0, x∗(t1) = x1.

• The Hamiltonian is constant along the optimal path and equals 0 if t1 is free:

H(x∗, ẑ∗, u∗) =

{
constant, t1 fixed,
0, t1 free.

Partially free targets: If target is intersection of k surfaces gi(x1) = 0, i = 1, . . . , k, then
transversality condition is z1 =

∑k
i=1 ci∇gi(x1) for some constants ci.

Completely free target: If x(t1) is unrestricted, then z(t1) = 0.

Non-autonomous problems. For state x′ = f(x, u, t) and cost J =
∫ t1
t0

f0(x, u, t) dt,
introduce extra state xn+1 with x′

n+1 = 1, xn+1(t0) = t0, xn+1(t1) = t1.

8


