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1. Mathematical Background
Definition 1.1 Mathspeak

Axiom 1.1.1

A foundational statement accepted without proof. All other results
are built ontop.

Proposition 1.1.2

A proved statement that is less central than a theorem, but still of
interest.

Lemma 1.1.3

A helper’‘ proposition proved to assist in establishing a more
important result.

Corollary 1.1.4

A statement following from a theorem or proposition, requiring
little to no extra proof.

Definition 1.1.5

A precise specification of an object, concept or notation.

Theorem 1.1.6

A non-trivial mathematical statement proved on the basis of
axioms, definitions and earlier results.

Remark 1.1.7

An explanatory or clarifying note that is not part of the formal
logical chain but gives insight / context.

Claim / Conjecture 1.1.8

A statement asserted that requires a proof.
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1. Mathematical Background

Definition 1.2 Vector Norm

A vector norm on ℝ𝑛 is a function ‖ · ‖ from ℝ𝑛 to ℝ such that:

1. ‖ 𝐱‖ ≥ 0, ∀ 𝐱 ∈ ℝ𝑛 and ‖ 𝐱‖ = 0 ⟺ 𝐱 = 𝟎
2. ‖ 𝐱 + 𝐲‖ ≤ ‖ 𝐱‖ + ‖ 𝐲‖ ∀ 𝐱, 𝐲 ∈ ℝ𝑛 (Triangle Inequality)
3. ‖ 𝛼 𝐱‖ = |𝛼| ‖ 𝐱‖ ∀𝛼 ∈ ℝ, 𝐱 ∈ ℝ𝑛

Definition 1.3 Continuous Derivatives

The notation

𝑓 ∈ 𝐶𝑘(ℝ𝑛) (1)

means that the function 𝑓 : ℝ𝑛 → ℝ possesses continuous derivatives up
to order 𝑘 on ℝ𝑛.

Example

1. 𝑓 ∈ 𝐶1(ℝ𝑛) implies each 𝜕𝑓
𝜕𝑥𝑖

 exists, and ∇𝑓(𝑥) is continuous on
ℝ𝑛

2. 𝑓 ∈ 𝐶2(ℝ𝑛) implies each 𝜕𝑓2

𝜕𝑥𝑖𝑦𝑖
 exists, and ∇2𝑓(𝑥) forms a

continuous Hessian matrix.

Theorem 1.4 Cauchy Shwarz-Inequality

| 𝐱𝑇 𝐲| ≤ ‖ 𝐱‖2 ‖ 𝐲‖2 (2)

Definition 1.5 Closed and Bounded Sets

A set Ω ⊂ ℝ𝑛 is closed if it contains all the limits of convergent sequences
of points in Ω.

A set Ω ⊂ ℝ𝑛 is bounded if ∃𝐾 ∈ ℝ+ for which Ω ⊂ 𝐵[0, 𝐾], where
𝐵[0, 𝐾] = {𝐱 ∈ ℝ𝑛 : ‖ 𝐱‖ ≤ 𝐾} is the ball with centre 0.
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1. Mathematical Background

Definition 1.6 Standard Vector Function Forms

If 𝑓0 ∈ ℝ, 𝐠 ∈ ℝ𝑛, 𝐺 ∈ 𝑅{𝑛×𝑛}:
1. Linear: 𝑓(𝐱) = 𝐠𝑇 𝐱
2. Affine: 𝑓(𝐱) = 𝐠𝑇 𝐱 +𝑓0
3. Quadratic: 𝑓(𝐱) = 1

2 𝐱𝑇 𝐺 𝐱 + 𝐠𝑇 𝐱 +𝑓0

Definition 1.7 Symmetric

Let 𝐴 ∈ ℝ𝑛×𝑛 be a symmetric matrix. Then:
1. 𝐴 has 𝑛 real eigenvalues.
2. There exists an orthogonal matrix 𝑄 

𝑄⊤𝑄=𝐼

 such that 𝐴 = 𝑄𝐷𝑄⊤ where
𝐷 = diag(𝜆1, …, 𝜆𝑛) and 𝑄 = [𝑣1 … 𝑣𝑛] with 𝑣𝑖 an eigenvector of 𝐴
corresponding to eigenvalue 𝜆𝑖.

3. det(𝐴) = ∏𝑛
𝑖=1 𝜆𝑖 and tr(𝐴) = ∑𝑛

𝑖=1 𝜆𝑖 = ∑𝑛
𝑖=1 𝐴𝑖𝑖.

4. 𝐴 is positive definite ⟺ 𝜆𝑖 > 0 for all 𝑖 = 1, …, 𝑛.
5. 𝐴 is positive semi-definite ⟺ 𝜆𝑖 ≥ 0 for all 𝑖 = 1, …, 𝑛.
6. 𝐴 is indefinite ⟺ there exist 𝑖, 𝑗 with 𝜆𝑖 > 0 and 𝜆𝑗 < 0.

Definition 1.8 Leading Principal Minors / Sylvester's Criterion

A symmetric matrix 𝐴 is positive definite if and only if all leading
principal minors of A are positive. The 𝑖th principal minor Δ𝑖 of A is the
determinant of the leading 𝑖 × 𝑖 submatrix of A.

If Δ𝑖, 𝑖 = 1, 2, …, 𝑛 has the sign of (−1)𝑖, 𝑖 = 1, 2, …, 𝑛, that is, the values
of Δ𝑖 are alternatively negative and positive, then 𝐴 is negative definite.

Note that PSD only applies if you check all principal minors, of which
there are 2𝑛 − 1, as opposed to just checking 𝑛 submatrices here.
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2. Convexity
Definition 2.1 Convex

A set Ω ⊆ ℝ𝑛 is convex ⟺ 𝜃 𝐱 +(1 − 𝜃) 𝐲 ∈ Ω for all 𝜃 ∈ [0, 1] and for
all 𝐱, 𝐲 ∈ Ω.

Note

there is no such thing as a concave set

Proposition 2.2 Intersection of Convex Sets

Let Ω1, …, Ω𝑛 ⊆ ℝ𝑛 be convex, then their intersections
Ω = Ω1 ∩ … ∩ Ω𝑛 is convex.
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2. Convexity

Definition 2.3 Extreme Points

Let Ω ⊆ ℝ𝑛 be a convex set �̄� ∈ Ω is an extreme point of
Ω ⟺ 𝐱, 𝐲 ∈ Ω, 𝜃 ∈ [0, 1] and �̄� = 𝜃 𝐱 +(1 − 𝜃)𝑦 ⟹ 𝐱, 𝐲 ∈ ℝ, or 𝐱 = 𝐲.

In other words, a point is in an extreme point if it cannot be on a line
segment in Ω.

Definition 2.4 Convex Combination

The convex combination of 𝐱(1), …, 𝐱(𝑚) ∈ ℝ𝑚 is

𝐱 = ∑
𝑚

𝑖=1
𝛼𝑖 𝐱(𝑖),  where ∑

𝑚

𝑖=0
𝛼𝑖 = 1  and 𝛼𝑖 ≥ 0, 𝑖 = 1, …, 𝑚 (3)

Definition 2.5 Convex Hull

The convex hull conv(Ω) of a set Ω is the set of all convex combinations
of points in Ω.
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2. Convexity

Theorem 2.6 Separating Hyperplane

Let Ω ⊆ ℝ𝑛 be a non-empty closed convex set and let 𝑧 ∉ Ω. There exists
a hyperplane 𝐻 = {𝐮 ∈ ℝ𝑛 : 𝐚𝑇 𝐮 = 𝛽} such that 𝐚𝑇 𝐳 < 𝛽 and
𝐚𝑇 𝐱 ≥ 𝛽 for all 𝑥 ∈ Ω.

Definition 2.7 Convex / Concave Functions

A function 𝑓 : Ω → ℝ (with Ω convex) is
• convex if 𝑓(𝜃 𝐱 +(1 − 𝜃) 𝐲) ≤ 𝜃𝑓(𝐱) + (1 − 𝜃)𝑓(𝐲);
• strictly convex if strict inequality holds whenever 𝐱 ≠ 𝐲;
• concave if −𝑓  is convex.
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2. Convexity

Proposition 2.8 Continous Differentiability of Convex Fn

Let Ω be a convex set and let 𝑓 : Ω → ℝ be continuously differentiable on
Ω. Then 𝑓  is convex over Ω ⟺, ∀𝑥, 𝑦 ∈ Ω,

𝑓(𝑦) − 𝑓(𝑥) ≥ (𝑦 − 𝑥)⊤∇𝑓(𝑥)

= ∇𝑓(𝑥)⊤(𝑦 − 𝑥)
(4)

9



3. Unconstrained Optimisation
Definition 3.1 Standard Form

minimise
𝐱 ∈Ω

𝑓(𝐱) (5)

Remark

max 𝑓(𝐱) = − min{−𝑓(𝐱)} (6)

Definition 3.2 Hessian

𝑓 : ℝ𝑛 → ℝ be twice continuously differentiable. The Hessian
∇2𝑓 : ℝ𝑛 → ℝ𝑛×𝑛 of 𝑓  at 𝑥 is

∇2𝑓(𝑥) =

[
[
[
[
[
[
[ 𝜕2𝑓(𝑥)

𝜕𝑥2
1

𝜕2𝑓(𝑥)
𝜕𝑥2𝜕𝑥1

⋮
𝜕2𝑓(𝑥)
𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓(𝑥)
𝜕𝑥1𝜕𝑥2
𝜕2𝑓(𝑥)

𝜕𝑥2
2

⋮
𝜕2𝑓(𝑥)
𝜕𝑥𝑛𝜕𝑥2

…

…
⋱
…

𝜕2𝑓(𝑥)
𝜕𝑥1𝜕𝑥𝑛
𝜕2𝑓(𝑥)
𝜕𝑥2𝜕𝑥𝑛

⋮
𝜕2𝑓(𝑥)
𝜕𝑥2

𝑛 ]
]
]
]
]
]
]

(7)

Theorem 3.3 First order necessary conditions

If 𝑥∗ is a local minimizer and 𝑓 ∈ 𝐶1(ℝ𝑛) then ∇𝑓(𝑥∗) = 0.

Definition 3.4 (Unconstrained) Stationary point

𝑥∗ is an unconstrained stationary point ⟺ ∇𝑓(𝑥∗) = 0

Example

local min, local max, saddle point.

Definition 3.5 Saddle point

A stationary point 𝐱∗ ∈ ℝ𝑛 is a saddle point of 𝑓  if for any 𝛿 > 0 there
exist 𝐱, 𝐲 with ‖ 𝐱 − 𝐱∗‖ < 𝛿, ‖ 𝐲 − 𝐱∗‖ < 𝛿 such that:

𝑓(𝐱) < 𝑓(𝐱∗)  and 𝑓(𝐲) > 𝑓(𝐱∗) (8)
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3. Unconstrained Optimisation

Proposition 3.6 Second order necessary conditions

If 𝑓 ∈ 𝐶2(ℝ𝑛) then
1. Local minimiser ⟹ ∇𝑓(𝐱∗) = 0 and ∇2𝑓(𝐱∗) positive semi-definite.
2. Local maximiser ⟹ ∇𝑓(𝐱∗) = 0 and ∇2𝑓(𝐱∗) negative semi-definite.

Corollary 3.7 Local maximiser

�̄� is a local maximiser ⟹ ∇𝑓(�̄�) = 𝟎 and ∇2𝑓(�̄�) negative semi-
definite.

Theorem 3.8 Second order sufficient conditions

If ∇𝑓(𝐱∗) = 0 then
1. ∇2𝑓(𝐱∗) positive definite ⟹ 𝐱∗ is a strict local minimiser.
2. ∇2𝑓(𝐱∗) negative definite ⟹ 𝐱∗ is a strict local maximiser.
3. ∇2𝑓(𝐱∗) indefinite ⟹ 𝐱∗ is a saddle point.

4. ∇2𝑓(𝐱∗) positive semi-definite ⟹ 𝐱∗ is either a local minimiser or a
saddle point!

5. ∇2𝑓(𝐱∗) negative semi-definite ⟹ 𝐱∗ is either a local maximiser or a
saddle point! Be careful with these.

Corollary 3.9 Global Optimas

From the sufficiency of stationarity as above, and under the
convexity / concavity of 𝑓 ∈ 𝐶2(ℝ𝑛):
1. 𝑓  convex ⟹ any stationary point is a global minimiser.
2. 𝑓  strictly convex ⟹ stationary point is the unique global

minimiser.
3. 𝑓  concave ⟹ any stationary point is a global maximiser.
4. 𝑓  strictly concave ⟹ stationary point is the unique global

maximiser.
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4. Equality Constraints
Definition 4.1 Standard Form

minimise
𝐱 ∈Ω

𝑓(𝐱)

subject to 𝐜𝑖(𝐱) = 0
 (EP)  

EP = equality
problem

Definition 4.2 Lagrangian

For 𝐱 ∈ ℝ𝑛, 𝛌 ∈ ℝ𝑚,

𝓛(𝐱, 𝛌) ≔ 𝑓(𝐱) + ∑
𝑚

𝑖=1
𝜆𝑖𝑐𝑖(𝐱) (10)

Note

𝜆𝑖 are termed Lagrange Multipliers

Definition 4.3 Regular Point

A feasible point �̄� is regular ⟺ the gradients ∇𝑐𝑖(�̄�), 𝑖 = 1, …, 𝑚, are
linearly independent. 

feasible means the
constraint is

satisfied at �̄� Definition 4.4 Matrix of Constraint Gradients

𝐴(𝐱) = [∇ 𝐜𝑖(𝐱) … ∇ 𝐜𝑚(𝐱)] (11)

Definition 4.5 Jacobian

𝐽(𝐱) = 𝐴(𝐱)𝑇

=
[
[
[∇ 𝐜1 (𝐱)𝑇

⋮
∇ 𝐜𝑚 (𝐱)𝑇

]
]
] (12)
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4. Equality Constraints

Proposition 4.6 First order necessary optimality conditions

If 𝐱∗ is a local minimiser and a regular point of (EP) 4.1, then ∃ 𝛌∗ ∈ ℝ𝑚

such that

∇𝑥ℒ(𝐱∗, 𝛌∗) = 𝟎, ∇𝜆ℒ(𝐱∗, 𝛌∗) = 𝟎 (13)

Corollary 4.7 Constrained Stationary Point

Any 𝐱∗ for which ∃ 𝛌∗ satisfying the first order conditions 13.

Proposition 4.8 Second order sufficient conditions

Let 𝐱∗ be a constrained stationary point of (EP) 4.1 so there exist
Lagrange multipliers 𝛌𝐱 such that

∇𝐱ℒ(𝐱∗, 𝛌∗) = ∇𝑓(𝐱∗) + 𝐴(𝐱∗) 𝛌∗ = 𝟎
∇𝛌ℒ(𝐱∗, 𝛌∗) = 𝐜(𝐱∗) = 𝟎

(14)

If 𝑊 ∗
𝑍  is positive definite ⟹ 𝐱∗ is a strict local minimiser.

Here,

𝐴(𝐱∗) = [∇𝑐1(𝐱∗) … 𝑐𝑚(𝐱∗)] (15)

𝑊 ∗
𝑍 ≔ (𝑍∗)⊤∇2

𝐱ℒ(𝐱∗, 𝛌∗)𝑍∗ (16)

𝑍∗ ∈ ℝ𝑛×(𝑛−𝑡∗), 𝑡∗ = rank(𝐴(𝐱∗)) (17)

(𝑍∗)⊤𝐴(𝐱∗) = 𝟎 (18)

Remark

where 𝑊 ∗
𝑍  is the reduced Hessian of the Lagrangian, and that in turn

can be thought of as the projection of the Lagrangian’s Hessian onto
the tangent space of the constraints at the point 𝐱∗
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5. Inequality Constraints
Definition 5.1 Standard Form

minimise
𝐱 ∈Ω

𝑓(𝐱)

subject to 𝐜𝑖(𝐱) = 0, 𝑖 = 1, …, 𝑚𝐸

𝐜𝑖(𝐱) ≤ 0, 𝑖 = 𝑚𝐸 + 1, …, 𝑚

 (NLP)  
NLP = non-
linear problem

Definition 5.2 Convex Problem

The problem (NLP) 5.1 is a standard form convex optimisation problem if
the objective function 𝑓  is convex on the feasible set, 𝐜𝑖 is affine for each
𝑖 ∈ ℰ, and 𝐜𝑖 is convex for each 𝑖 ∈ ℐ.

Definition 5.3 Active Set

The set of active constraints at a feasible point 𝐱 is

𝒜(𝐱) = {𝑖 ∈ 1, …, 𝑚 : 𝐜𝑖(𝐱) = 0} (20)

Note

this concept of “active” constraints only applies to inequality
constraints

Definition 5.4 Regular Point

Feasible 𝐱∗ such that {∇𝑐𝑖(𝐱∗) : 𝑖 ∈ 𝒜(𝐱∗)} are linearly independent.

Proposition 5.5 Constrained Stationary Point

Feasible 𝐱∗ for which ∃ 𝛌∗
𝐢  for 𝑖 ∈ 𝒜(𝐱∗) with

∇𝑓(𝐱∗) + ∑
𝑖∈𝒜(𝐱∗)

𝜆∗
𝑖∇𝑐𝑖(𝐱∗) = 𝟎 (21)
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5. Inequality Constraints

Theorem 5.6 Karush Kuhn Tucker (KKT) necessary optimality
conditions

If 𝐱∗ is a local minimiser and a regular point, then ∃𝜆∗
𝑖  (𝑖 ∈ 𝒜(𝐱∗)) such

that

∇𝑓(𝐱∗) + ∑
𝑖∈𝒜(𝐱∗)

𝜆∗
𝑖∇𝑐𝑖(𝐱∗) = 𝟎, (22)

with 𝑐𝑖(𝐱∗) = 0 (𝑖 ∈ ℰ), 𝑐𝑖(𝐱∗) ≤ 0 (𝑖 ∈ ℐ), 𝜆∗
𝑖 ≥ 0 (𝑖 ∈ ℐ), and 𝜆∗

𝑖 = 0
for 𝑖 ∉ 𝒜(𝐱∗).

Note

KKT generalises Lagrange Multipliers 10 from just equality
constraints, to both equality and inequality constraints.
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5. Inequality Constraints

Theorem 5.7 Second-order sufficient conditions for strict local
minimum

Let

𝑡∗ = | 𝒜(𝐱∗) | (23)

𝒜∗ = [∇𝑐𝑖(𝐱∗) | 𝑖 ∈ 𝒜(𝐱∗)] (24)

If 𝑡∗ < 𝑛 and 𝒜∗ has full rank, let

𝑍∗ ∈ ℝ𝑛×(𝑛−𝑡∗) (25)

with

(𝑍∗)⊤𝒜∗ = 0 (26)

Define

𝑊 ∗ = ∇2𝑓(𝐱∗) + ∑
𝑖∈𝒜(𝐱∗)

𝜆∗
𝑖∇2𝑐𝑖(𝐱∗) (27)

𝑊 ∗
𝑍 = (𝑍∗)⊤𝑊 ∗𝑍∗ (28)

If

𝜆∗
𝑖 > 0, ∀𝑖 ∈ ℐ ∩ 𝒜(𝐱∗)  and 𝑊 ∗

𝑍 ⪰ 0 (29)

then 𝐱∗ is a strict local minimiser.

Theorem 5.8 KKT sufficient conditions for global minimum

If (NLP) 5.1 is convex and 𝐱∗ satisfies the KKT 5.6 conditions with 𝜆∗
𝑖 ≥ 0

for all 𝑖 ∈ ℐ ∩ 𝒜(𝐱∗), then 𝐱∗ is a global minimiser.
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5. Inequality Constraints

Definition 5.9 Wolfe Dual Problem

max
𝑦∈ℝ𝑛 𝜆∈ℝ𝑚

𝑓(𝑦) + ∑
𝑚

𝑖=1
𝜆𝑖𝑐𝑖(𝐲)

s.t. ∇𝑓(𝐲) + ∑
𝑚

𝑖=1
𝜆𝑖∇𝑐𝑖(𝐲) = 0

𝜆𝑖 > 0(𝑖 ∈ ℐ)

 (CD)  
CD =
constrained dual

Proposition 5.10 Weak Duality

If 𝐱 is primal feasible and (𝐲, 𝜆) is dual feasible, then:

𝑓(𝐱) ≥ 𝑓(𝐲) + ∑
𝑚

𝑖=1
𝜆𝑖𝑐𝑖(𝐲) (31)

Theorem 5.11 Strong Duality

Under suitable constraint qualifications (e.g., Slater’s condition),
there exist primal-dual feasible points 𝐱∗ and (𝐲∗, 𝜆∗) such that:

𝑓(𝐱∗) = 𝑓(𝐲∗) + ∑
𝑚

𝑖=1
𝜆∗

𝑖𝑐𝑖(𝐲∗) (32)
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6. Numerical Methods (unconstrained)
Definition 6.1 Rates of convergence of iterative methods

If 𝐱𝐤 ⇒ 𝐱∗ and ‖ 𝐱𝐤+𝟏 − 𝐱∗‖
‖ 𝐱𝐤 − 𝐱∗‖𝛼 ⇒ 𝛽 as 𝑘 ⇒ ∞, the method has 𝛼-th order

convergence. Key cases:
1. 𝛼 = 1 (linear),
2. 𝛼 = 1 with 𝛽 = 0 (superlinear),
3. 𝛼 = 2 (quadratic).

Algorithm 6.2 Line Search Methods

Given 𝐬(𝑘) at 𝐱(𝑘), set 𝐱(𝑘+1) = 𝐱(𝑘) +𝛼(𝑘) 𝐬(𝑘) where 𝛼(𝑘) minimises or
approximately minimises ℓ𝑘(𝛼) = 𝑓(𝐱(𝑘) +𝛼 𝐬(𝑘)).

1. Descent direction: (𝐠(𝑘))⊤ 𝐬(𝑘) < 0.
2. Exact line search condition:

ℓ𝑘′(𝛼) = 𝐠(𝐱(𝐤)) + 𝛂 𝐬(𝐤)
⏟⏟⏟⏟⏟⏟⏟

𝐱𝐤+𝟏

⊤ 𝐬(𝑘) = 0 (33)

3. If 𝐬(𝑘) is a descent direction, a line search yields 𝛼(𝑘) > 0 with
𝑓 (𝑘+1) < 𝑓 (𝑘).

4. Global convergence: convergence to a stationary point from any 𝐱(1).
5. Quadratic termination: method finds minimiser of a strictly convex

quadratic in finite known iterations.

Algorithm 6.3 Steepest Descent Method

1. Search direction: 𝐬(𝑘) = − 𝐠(𝑘).
2. Descent direction: Yes.
3. Global convergence: Yes.
4. Quadratic termination: No.
5. Rate: Linear with exact line searches. If 𝑓  is strictly convex quadratic,

then for each 𝑘,

‖ 𝐱𝑘+1 − 𝐱∗‖ ≤ (𝜅 − 1
𝜅 + 1

)
𝑘

‖ 𝐱(1) − 𝐱∗‖ (34)

where 𝜅 is the condition number of ∇2𝑓 .
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6. Numerical Methods (unconstrained)

Algorithm 6.4 Newton's Method

1. Search direction: solve 𝐺(𝑘)𝛿(𝑘) = − 𝐠(𝑘) where 𝐺(𝑘) is the Hessian.
2. Descent direction: Yes, if 𝐺(𝑘) positive definite. 

this fact becomes
useful in proof

3. Global convergence: No (Hessian may be singular).
4. Quadratic termination: Yes (one iteration for strictly convex

quadratics).
5. Rate: Quadratic if 𝐺∗ positive definite.
6. Usage: When Hessian can be evaluated and is positive definite.

Algorithm 6.5 Conjugate Gradient Method

1. Search direction: 𝐬(𝑘) = − 𝐠(𝑘) +𝛽(𝑘) 𝐬(𝑘−1).
2. Descent direction: Yes.
3. Quadratic termination: Yes with exact line searches.
4. Usage: Large 𝑛; stores only vectors, avoids solving linear systems.
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7. Penalty Methods
Definition 7.1 Penalty function

min
{𝑥∈ℝ𝑛}

(𝑓(𝐱) + 𝜇𝑃(𝐱)) (𝑃𝜇)

where

𝑃(𝐱) = ∑
𝑚𝐸

𝑖=1
[𝑐𝑖(𝐱)]

2
+ ∑

𝑚

𝑖=𝑚𝐸+1
[𝑐𝑖(𝐱)]

2

+
(36)

and

[𝑐𝑖(𝐱)]+
= max({𝑐𝑖(𝐱), 0}) (37)

Remark

1. 𝑐 : ℝ𝑛 → ℝ is a convex function ⟹ max {𝐜(𝐱), 0}2 is a convex
function

2. 𝜕
𝜕𝑥𝑖

[max{𝐜(𝐱), 0}]2 = 2 max{𝐜(𝐱), 0} 𝜕
𝜕𝑥𝑖

Theorem 7.2 Convergence Theorem

For each 𝜇 > 0 let 𝐱𝜇 minimise (𝑃𝜇) 7.1 and set
𝜃(𝜇) = 𝑓(𝐱𝜇) + 𝜇𝑃(𝐱𝜇). Suppose {𝐱𝜇} lies in a closed bounded set.
Then

min
𝑥

{𝑓(𝐱) : 𝑐𝑖(𝐱) = 0, 𝑖 ∈ ℰ, 𝑐𝑖(𝐱) ≤ 0, 𝑖 ∈ ℐ} = lim
𝜇→∞

𝜃(𝜇). (38)

Moreover, any cluster point 𝐱∗ of {𝐱𝜇} solves the original problem, and
𝜇𝑃(𝐱𝜇) → 0 as 𝜇 → ∞.
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8. Optimal Control Theory
Definition 8.1 Standard Form

min
𝐮(𝑡)∈𝑈

∫
𝑡1

𝑡0

𝑓0(𝐱(𝑡), 𝐮(𝑡)) d𝑡

subject to �̇�(𝑡) = 𝐟(𝐱(𝑡), 𝐮(𝑡))
𝐱(𝑡0) = 𝐱0

𝐱(𝑡1) = 𝐱1 .

 (C)  
C = control
problem

Definition 8.2 Hamiltonian

𝐻(𝐱, �̂�, 𝐮) = �̂�⊤ ̇�̂� = ∑
𝑛

𝑖=0
𝑧𝑖(𝑡)𝑓𝑖(𝐱(𝑡), 𝐮(𝑡)), (40)

where

�̂�(𝑡) = (𝑧0(𝑡) … 𝑧𝑛(𝑡))⊤ (41)

and

�̂�(𝑡) = 𝑥0(𝑡), …, 𝑥𝑛(𝑡)]⊤ (42)

and

𝑥0(𝑡) = 𝑓0(𝐱(𝑡), 𝐮(𝑡)),
𝑥0(𝑡0) = 0

(43)

Definition 8.3 Co-state Equations

̇𝑧 = −𝜕𝐻
𝜕𝑥

(44)
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8. Optimal Control Theory

Pontryagin Maximum Principle 8.4 Autonomous, fixed targets

Suppose (𝐱∗, 𝐮∗) is optimal for (C) 8.1. Then
1. 𝑧0 = −1 normal case), so

𝐻(𝐱, �̂�, 𝐮) = −𝑓0(𝐱(𝑡), 𝐮(𝑡)) + ∑
𝑛

𝑖=1
𝑧𝑖(𝑡)𝑓𝑖(𝐱(𝑡), 𝐮(𝑡)). (45)

2. Co-state equations admit a solution �̂�∗.
3. 𝐮∗ maximises 𝐻(𝐱∗, �̂�∗, 𝐮) over 𝑢 ∈ 𝒰.
4. 𝐱∗ satisfies state equation with 𝐱∗(𝑡0) = 𝑥0, 𝐱∗(𝑡1) = 𝑥1.
5. The Hamiltonian is constant along the optimal path and equals 0 if 𝑡1

is free.

Note

Even if the problems are not autonomous or fixed, we can still
convert them into autonomous, fixed target problems:

Partially free targets: If target is intersection of 𝑘 surfaces
𝐠𝐢(𝑥1) = 0, 𝑖 = 1, …, 𝑘, then the transversality condition is

𝑧1 = ∑
𝑘

𝑖=1
𝑐𝑖∇𝑔𝑖(𝐱1) (46)

for some constants 𝑐𝑖, where 𝐳(𝑡1) = 𝐳1.

Completely free target: If 𝑥(𝑡1) is unrestricted, then 𝑧(𝑡1) = 0.

Non-autonomous problems: For state �̇� = 𝐟(𝐱, 𝐮, 𝐭) and cost

𝐽 = ∫
𝑡1

𝑡0

𝑓0(𝐱, 𝐮, 𝑡) d𝑡 (47)

introduce extra state 𝑥𝑛+1 with

̇𝑥𝑛+1 = 1
𝑥𝑛+1(𝑡0) = 𝑡0
𝑥𝑛+1(𝑡1) = 𝑡1

(48)
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