\name{gibbser2} \alias{gibbser2} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Gibbs Sampler %% ~~function to do ... ~~ } \description{ Gibbs Sampler; see page 677 of HMC. %% ~~ A concise (1-5 lines) description of what the function does. ~~ } \usage{ gibbser2(alpha, m, n) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{alpha}{ %% ~~Describe \code{alpha} here~~ } \item{m}{ %% ~~Describe \code{m} here~~ } \item{n}{ %% ~~Describe \code{n} here~~ } } \details{ %% ~~ If necessary, more details than the description above ~~ } \value{ %% ~Describe the value returned %% If it is a LIST, use %% \item{comp1 }{Description of 'comp1'} %% \item{comp2 }{Description of 'comp2'} %% ... } \references{ Hogg, R.V., McKean, J.W. and Craig, A.T. (2018), \emph{Introduction to Mathematical Statistics, 8th Ed.}, Pearson: Boston. %% ~put references to the literature/web site here ~ } \author{ Joe McKean %% ~~who you are~~ } \note{ %% ~~further notes~~ } %% ~Make other sections like Warning with \section{Warning }{....} ~ \seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ } \examples{ ##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function (alpha, m, n) { x0 = 1 yc = rep(0, m + n) xc = c(x0, rep(0, m - 1 + n)) for (i in 2:(m + n)) { yc[i] = rgamma(1, alpha + xc[i - 1], 2) xc[i] = rpois(1, yc[i]) } y1 = yc[1:m] y2 = yc[(m + 1):(m + n)] x1 = xc[1:m] x2 = xc[(m + 1):(m + n)] list(y1 = y1, y2 = y2, x1 = x1, x2 = x2) } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ ~kwd1 } \keyword{ ~kwd2 }% __ONLY ONE__ keyword per line