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Section 1
Origins of set theory
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Set theory and the foundations of mathematics

Georg Cantor, founder of set theory
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Question: Can a set be a member of itself?

Intuitively, a set is any “collection of things”. For a member x of a set S ,
we use the notation

x ∈ S .

However, a naive understanding of sets as arbitrary collections quickly
leads us into paradoxes. We might ask whether sets can be members of
themselves: can we have

S ∈ S?

It seems the answer should be yes: if we consider the “set of all sets”,
then by assumption this is a set, so in particular it is a member of itself.
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Russell’s paradox: Let S be the set of all sets which are not members of
themselves:

S = {T : T is a set andT /∈ T}.

Is S a member of itself?

Bertrand Russell

Question:
Is S actually a member of itself?

If yes,
then S ∈ S . So S does not satisfy
the defining condition for membership
in S , and therefore S /∈ S .

If no, then S /∈ S . So S does satisfy
the defining condition for membership
in S , and therefore S ∈ S .

So either way we get a contradiction.
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Axiomatic set theory

Ernst Zermelo and Abraham Frankel

The standard axiomatization of set theory is called Zermelo-Frankel (ZF)
set theory.
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Russell’s paradox shows that a naive definition of sets can lead to
problems. In particular, it does not make sense to talk about the “set of
all sets” or similarly large sets.
Instead, a more rigorous approach is given by axiomatic set theory. To
study axiomatic set theory properly would take an entire course, so instead
we will just briefly mention some main points which are important for this
course in analysis.
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Section 2
Zermelo-Frankel set theory and the Axiom of Choice
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The standard axiomatization of set theory is called Zermelo-Frankel (ZF)
set theory.

Ernst Zermelo and Abraham Frankel

We will not study ZF in detail, but the axioms assume/imply the existence
of some basic sets (the empty set and an infinite set), and also give some
ways of constructing new sets from old, including:
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Constructing sets: union, subset, power set

Taking unions: If S = {Ti}i∈I is a set of sets, then the union⋃
i∈I

Ti = {x : ∃i ∈ I such that x ∈ Ti}

(the set whose members are elements which belong to at least one of
the Ti ) is a set.

Subsets with a specified condition: If S is a set and ϕ is a “condition”
on elements, then

{x ∈ S : ϕ(x)}
(the subset of S consisting of those elements in S for which the
condition ϕ holds) is a set.

Power set: If S is a set, then the power set

{T : T ⊆ S}

(the set of all subsets of S) is a set.

Using the ZF axioms one can define numbers, develop arithmetic, and
describe lots of other mathematical notions.
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Cartesian product

The ZF axioms allow one to construct Cartesian products of indexed sets.
If A and B are two sets, then the Cartesian product A× B is the set of all
pairs, or “2-tuples”, (a, b) such that a ∈ A and b ∈ B. More generally, if
{Si}i∈I is any indexed collection of sets, we can form the Cartesian product∏

i∈I
Si .

The elements of the Cartesian product are “I -tuples” {si}i∈I such that
each si ∈ Si . For example, if the index set I is the set of natural numbers,
and each of the Si is the set of real numbers, then the Cartesian product is
the set of sequences of real numbers.
Formally, an I -tuple is a function from I to

⋃
i∈I

Si such that

f (i) ∈ Si , ∀i ∈ I and
∏
i∈I

Si = {f : I →
⋃
i∈I

Si : f (i) ∈ Si , ∀i ∈ I}.
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Example: If the index set I is the set of natural numbers N, and each of
the Si is the set of real numbers, what is the Cartesian product

∏
i∈I

Si .?
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Axiom of Choice (AC)

A Cartesian product of non-empty sets is non-empty.

Unfortunately, while the ZF axioms allow the construction of arbitrary
Cartesian products, they don’t guarantee that this product is non-empty,
even if all of the original sets are non-empty. In the example above, where
we take a Cartesian product of infinitely many copies of the real numbers,
indexed by the natural numbers, we can see directly that this Cartesian
product is non-empty. This is because we can explicitly specify an element,
for example the constant sequence

(0, 0, 0, ...).

But in analysis, we often make arguments that involve choosing infinite
sequences from arbitrary unknown (nonempty) sets. Such arguments are
not allowed in ZF set theory.
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Challenge: Describe a rule to select a number from an arbitrary
non-empty set of real numbers.

The solution is to add another axiom to ZF, called the Axiom of Choice
(AC), which asserts that a Cartesian product of non-empty sets is always
non-empty (and thus one can “choose” an element of this Cartesian
product).

MATH3611 / MATH5705 14 / 48



ZFC

The Axiom of Choice has many equivalent formulations (many of which
sound very different from the statement described above). It was
eventually shown (in the 1960s) that AC is logically independent of ZF set
theory. This means that it can neither be proven nor disproven from the
other axioms.

Kurt Godel and Paul Cohen
proved the logical independence
of the Axiom of Choice from ZF

Historically,
the use of AC was controversial, and
there was some effort towards formulating
parts of mathematics without appealing
to AC. However, AC is now generally
accepted and used in mathematics. Set
theory based on the ZF axioms together
with the Axiom of Choice is known as
ZFC. In this course we will always assume
AC, and generally not comment on its use
(except maybe in parts of this chapter).
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Section 3
Functions
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Once we have sets, we can consider functions between sets.

If A and B are sets, a function f : A → B is a “rule” which associates
to each element of A exactly one element of B .

Formally, we can think of a function as a set of ordered pairs (x , y), where
each x is an “input” and y is the corresponding “output”. From this point
of view, functions from A to B can be defined as subsets of the Cartesian
product A× B:

f ⊆ A×B is a function if and only if ∀x ∈ A, ∃!y ∈ B such that (x , y) ∈ f .

In this course we will usually not be so formal.
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Injective, surjective, and bijective functions

A function f : A → B is called:

injectve (or “1− 1”) - every element of B is assigned to at most one
element of A. Formally:

∀x1, x2 ∈ A, f (x1) = f (x2) =⇒ x1 = x2.

(Sometimes written f : A ↪→ B.)

surjective (or “onto”) - every element of B is assigned to at least one
element of A. Formally:

∀y ∈ B, ∃x ∈ A such that f (x) = y .

(Sometimes written f : A ↠ B.)

bijective - every element of B is assigned to exactly one element of A
(=injective+surjective). Formally:

∀y ∈ B, ∃!x ∈ A such thatt f (x) = y .
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Section 4
Comparison of sets
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Question: Suppose you have two piles of coins. How can you tell which
pile has more coins?

Some ideas:

You can try to eyeball the piles and see which pile looks bigger, but
this might be tricky if the coins are of many different sizes.

If you’re a sophisticated mathematician, you can simply count the
number of coins in each pile, and check which number is larger.

However, this is roundabout and unnecessary - answering the question of
which pile has more coins doesn’t require the use of numbers. A
straightforward approach is simply to match coins from the two piles
against each other, one at a time. Whichever pile runs out first has fewer
coins; or if they run out at the same time, then they have the same
number of coins.
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Definition

We say that two sets A and B have the same cardinality if there is a
bijection f : A → B; we then write A ∼ B.

Note: Such a bijection is not unique (if the sets have more than one
element)!

Example: The set of integers Z has the same cardinality as the set
of even integers 2Z.

Example: The empty set ∅ does not have the same cardinality as
the set {0}. More generally, the sets {0, 1, 2, ...,m} and
{0, 1, 2, ..., n}, with m ̸= n, do not have the same cardinality
(“pigeonhole principle”).
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Example: The set N has the same cardinality as the set N× N.

Proof: Think of N× N as a grid:

(0, 0) (0, 1) (0, 2) (0, 3) ...
(1, 0) (1, 1) (1, 2) (1, 3) ...
(2, 0) (2, 1) (2, 2) (2, 3) ...
(3, 0) (3, 1) (3, 2) (3, 3) ...
... ... ... ... ...

and consider the following labelling (follow the diagonals):

(0, 0)0 (0, 1)2 (0, 2)5 (0, 3)9 ...
(1, 0)1 (1, 1)4 (1, 2)8 (1, 3)? ...
(2, 0)3 (2, 1)7 (2, 2)? (2, 3)? ...
(3, 0)6 (3, 1)? (3, 2)? (3, 3)? ...
... ... ... ... ...

Convince yourself this procedure determines a bijection between N and
N× N. Exercise: Write down an explicit formula for the bijection.

MATH3611 / MATH5705 22 / 48



Theorem (Cantor’s Theorem)

Let S be any set, and let P(S) be its power set. Then S ̸∼ P(S).

Example: Let S be any set, and let P(S) be its power set. Then
S ̸∼ P(S).

Proof: The argument is similar to Russell’s Paradox. Suppose, on the
contrary, that there is a bijection f : S → P(S). Consider the set

T = {x ∈ S : x /∈ f (x)}.

Since f is surjective, we have T = f (y) for some y .
Question: Is y ∈ T?
If yes, then by definition of T , we have y /∈ f (y) = T , which is a
contradiction. If no, then we have y /∈ T = f (y), so by definition of T we
have y ∈ T , which is again a contradiction.
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For any sets A, B, and C , we have:

A ∼ A (reflexive)

A ∼ B =⇒ B ∼ A (symmetric)

A ∼ B & B ∼ C =⇒ A ∼ C (transitive)

A relation satisfying these three conditions is called an equivalence
relation. An equivalence relation on a set partitions the set into disjoint
equivalence classes. We might then intuitively think of a “cardinal
number” as an equivalence class of sets with the same cardinality. For
example, we might think of the cardinal number “1” as the equivalence
class of all sets with exactly one element. (Note that this does not make
precise sense since there is no “set of all sets” to apply the equivalence
relation to.) In any case, we write |A| = |B| if A ∼ B, and refer to |A| as
the “cardinality” of A.
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We use the following notation:

1 |A| = |B| if A ∼ B

2 |A| ≤ |B| if there is an injective function f : A → B.

3 |A| < |B| if |A| ≤ |B| and |A| ≠ |B|.
We refer to |A| as the “cardinality” of A.
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Note: In the course notes, the definition of |A| ≤ |B| is that there is a
surjective function f : B → A. Convince yourself that (assuming AC) these
definitions are equivalent when A is non-empty.
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For any sets A, B, and C , we have:

|A| ≤ |A| (reflexive)

|A| ≤ |B| & |B| ≤ |A| =⇒ |A| = |B| (anti-symmetric)

|A| ≤ |B| & |B| ≤ |C | =⇒ |A| ≤ |C | (transitive)
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Theorem (Schroeder-Bernstein)

Let A and B be sets, and suppose that there exist injective functions
f : A → B and g : B → A. Then there exists a bijective function
h : A → B.

Ernst Schroeder and Felix Bernstein
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Exercise

Show that [0, 1] and [0, 1) have the same cardinality.
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Exercise

Give another proof that N and N× N have the same cardinality, using the
Schroeder-Bernstein Theorem.
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Section 5
Finiteness
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We use the positive integer n to denote the cardinality of the set {1, ..., n},
and 0 for the cardinality of the empty set.

Definition

A set S is finite |S | = {1, ..., n}, for some n ∈ N. Otherwise S is infinite.
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Exercise: Show that S is infinite if and only if |S | ≥ |N|.

Proof: We can see from the definition of finiteness that if S is finite, then
|S | < |N|.
So suppose S is infinite. Since S is infinite, S is non-empty. Choose
x0 ∈ A. Then S\{x0} is non-empty (since otherwise S = {x0} would be
finite). Next, choose x1 ∈ S\{x0}. Continuing this way, we can find a
sequence of distinct points in S indexed by N, i.e. an injection of N into
S . (This last step is subtle, and requires AC!)
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A more conceptual definition is the notion of Dedekind-finiteness.

Definition

A set S is Dedekind-infinite if there is a bijection from S to a proper
subset of itself. Otherwise S is Dedekind-finite.
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Example: The set N is Dedekind-infinite.

It is intuitively clear that any finite set is Dedekind-finite (since the set
{1, ..., n} cannot be put in bijection with a proper subset).
Conversely, since any infinite set S satisfies |S | ≥ |N|, we see that any
infinite set is Dedekind-infinite (why?). So the two notions are equivalent
(assuming AC).

MATH3611 / MATH5705 35 / 48



Exercise: Finiteness and Dedekind finiteness are equivalent (assuming AC)
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Section 6
Countability

MATH3611 / MATH5705 37 / 48



Comparison with N
We have seen that a S is infinite if and only if |S | ≥ |N|. So given a set S ,
there are three possibilities:

|S | < |N| (i.e. S is finite)

|S | = |N|
|S | > |N|
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Definition

We say that a set S is countable if |S | ≤ |N|. Otherwise S is uncountable.
If S is countable and infinite we say that S is countably infinite.
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Example: The set Q is countable.

Proof: Express each rational number as
a

b
with a, b ∈ Z, and send to

(a, b) ∈ Z× Z. This is an injection, and so we have

|Q| ≤ |Z× Z| = |N× N| = |N|

(where we have used the fact that |Z| = |N|).
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Example: The set P(N) is uncountable.

Proof: We saw earlier that for any set S , we have |S | ≠ |P(S)|. On the
other hand, we can inject S into P(S) (by x 7→ {x}). So |P(S)| > |S |,
and therefore in particular |P(N)| > |N|. Therefore P(N) is uncountable.
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The set P(N) can be identified with the set of infinite bitstrings
(sequences of 0s and 1s)
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Example: The set [0, 1] is uncountable.

Proof 1: First, note that we can identify elements of P(N) with infinite
bitstrings (sequences of 0s and 1s) as follows. Let S be an element of
P(N), i.e. a subset of N.Then we assign to S the bitstring x0x1x2..., where

xn =

{
1 n ∈ S

0 otherwise
.

For example,
{0, 3, 5, 6, 8, ...} 7→ 100101101....

Now assign to each bitstring the decimal number 0.x0x1. This gives an
injection from P(N) to [0, 1], so |P(N)| ≤ |[0, 1]|. Since P(N) is
uncountable, so is [0, 1].
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Proof 2: (Cantor’s diagonal argument). Suppose, on the contrary, that
[0, 1] is countable (so |[0, 1]| ≤ |N|). Let f : [0, 1] → N be a surjection.
We can think of f as giving an infinite list (indexed by N) which contains
all of the numbers in [0, 1]. Let’s try writing this list in decimal form.
To simplify notation, let fn = f (n). Then we can write each fn as a
decimal expansion:

f0 = 0.f00f01f02f03...
f1 = 0.f10f11f12f13...
f2 = 0.f20f21f22f23...
f3 = 0.f30f31f32f33...

,

where the numbers fij represent the decimal coefficients of the fi . Let

xk =

{
1 fkk ̸= 1

2 fkk = 1
.

Now consider the number given by the decimal expansion

x = 0.x0x1x2x3....

Then x ∈ [0, 1] but x ̸= fn for any n (why?), which contradicts our
assumption that f is surjective.

MATH3611 / MATH5705 44 / 48



The following is a useful way to show that certain kinds of sets are
countable.

Theorem

Let I be a countable set, and let {Si}i∈I be a set of countable sets indexed
by I . Then the union

⋃
i∈I

Si is countable.

Proof: Assume the hypothesis. Since I is countable, there is an injection
f : I → N. Since each Si is countable, we can choose an injection
fi : Si → N for each i ∈ I .We will now define an injection
g :

⋃
i∈I

Si → N× N. For each element x ∈
⋃
i∈I

Si , choose an i ∈ I such that

x ∈ Si (why is this possible?). Then let g(x) = (f (i), fi (x)). Convince
yourself that g is an in fact an injection from

⋃
i∈I

Si into N× N! Since

N× N is countable, so is
⋃
i∈I

Si . (Note that we have used AC). In words:

A countable union of countable sets is countable.
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Exercise: The set S of finite subsets of N is countable.
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Section 7
Other properties of cardinality
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Comparability of cardinalities

Given two sets A and B, is it always true that either |A| ≤ |B| or
|B| ≤ |A|?

As we have seen, the ≤ relation is reflexive, anti-symmetric, and transitive.
Do we also have comparability? Given two sets A and B, is it necessarily
true that at least one of |A| ≤ |B| or |B| ≤ |A| holds? The answer turns
out to be yes, assuming AC. So ≤ actually satisfies the properties of a
total order (though again, there isn’t actually a “set of all cardinalities” to
which this total order applies). One other interesting question is whether
there is any cardinality strictly in between N and P(N). The Continuum
Hypothesis (CH) states that there is not:

If |N| ≤ |A| ≤ |P(N)| then either |A| = |N| or |A| = |P(N)|

The General Continuum Hypothesis (GHC) states that this holds for any
infinite set S :

If |S | ≤ |A| ≤ |P(S)| and S is infinite, then either |A| = |S |or |A| = |P(S)|
Both CH and GHC are independent of ZFC.MATH3611 / MATH5705 48 / 48
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