\documentclass{article} \usepackage{amsmath, amsthm, amssymb} \usepackage{hyperref} \title{Set Theory and Foundations Summary} \author{} \date{} \newtheorem{theorem}{Theorem}[section] \newtheorem{definition}[theorem]{Definition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \begin{document} \maketitle \section{Russell's Paradox} Let \[ S = \{T: T \text{ is a set and } T \notin T\}. \] Is \( S \in S \)? \section{Constructing Sets} \begin{itemize} \item \textbf{Unions:} If \( S = \{T_i\}_{i \in I} \), then \[ \bigcup_{i \in I} T_i = \{x : \exists i \in I \text{ such that } x \in T_i\} \] is a set. \item \textbf{Subsets with Conditions:} If \( S \) is a set and \( \varphi(x) \) is a condition on elements, then \[ \{x \in S : \varphi(x)\} \] is a set. \item \textbf{Power Set:} If \( S \) is a set, then \[ \mathcal{P}(S) = \{T : T \subseteq S\} \] is a set. \end{itemize} \section{Cartesian Product} If \( A \) and \( B \) are sets, then \[ A \times B = \{(a,b): a \in A, b \in B\}. \] More generally, if \( \{S_i\}_{i \in I} \) is a collection of sets, we can form the product \[ \prod_{i \in I} S_i. \] An element is a tuple \( (s_i)_{i \in I} \) such that \( s_i \in S_i \). Formally, \[ \prod_{i \in I} S_i = \{f : I \to \bigcup_{i \in I} S_i : f(i) \in S_i \text{ for all } i \in I\}. \] \section{Axiom of Choice (AC)} \begin{proposition} A Cartesian product of non-empty sets is non-empty. \end{proposition} \section{Functions} A function \( f : A \to B \) assigns each element of \( A \) exactly one element of \( B \). Formally, \[ f \subseteq A \times B \text{ is a function } \Leftrightarrow \forall x \in A, \exists! y \in B \text{ such that } (x, y) \in f. \] \subsection*{Types of Functions} \begin{itemize} \item \textbf{Injective:} \( \forall x_1, x_2 \in A, f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \). \item \textbf{Surjective:} \( \forall y \in B, \exists x \in A \text{ such that } f(x) = y \). \item \textbf{Bijective:} \( f \) is both injective and surjective. \end{itemize} \begin{definition} Two sets \( A \) and \( B \) have the same cardinality if there exists a bijection \( f : A \to B \). We write \( A \sim B \). \end{definition} \begin{theorem}[Cantor's Theorem] For any set \( S \), the power set \( \mathcal{P}(S) \) has strictly greater cardinality than \( S \): \( S \not\sim \mathcal{P}(S) \). \end{theorem} \section{Cardinality} \subsection*{Properties} \begin{itemize} \item \( A \sim A \) (reflexive) \item \( A \sim B \Rightarrow B \sim A \) (symmetric) \item \( A \sim B \text{ and } B \sim C \Rightarrow A \sim C \) (transitive) \end{itemize} \subsection*{Notations} \begin{itemize} \item \( A \leq B \): there exists an injective map \( f: A \to B \) \item \( A = B \): \( A \sim B \) \item \( A < B \): \( A \leq B \) and \( A \not\sim B \) \end{itemize} \section{Schröder-Bernstein Theorem} \begin{theorem}[Schröder-Bernstein] If there are injective maps \( f : A \to B \) and \( g : B \to A \), then there exists a bijection \( h : A \to B \). \end{theorem} \section{Finite and Infinite Sets} \begin{definition} A set \( S \) is finite if \( |S| = \{1, 2, \dots, n\} \) for some \( n \in \mathbb{N} \). Otherwise it is infinite. \end{definition} \begin{definition} A set \( S \) is Dedekind-infinite if there exists a bijection from \( S \) to a proper subset of itself. Otherwise, it is Dedekind-finite. \end{definition} \section{Countability} \begin{definition} A set \( S \) is \textbf{countable} if \( S \leq \mathbb{N} \). If countable and infinite, we say it is \textbf{countably infinite}. Otherwise, it is \textbf{uncountable}. \end{definition} \begin{theorem} Let \( I \) be a countable set, and let \( \{S_i\}_{i \in I} \) be a countable collection of countable sets. Then \[ \bigcup_{i \in I} S_i \] is countable. \end{theorem} \end{document}