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Recall the definition of a limit: lim
x→a

f (x) = b means that “for any number

ε > 0, there is a number δ(ε) such that |f (x)− b| < ε whenever
|x − a| < δ.”
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Definition

A metric space is a pair (X , d), where X is a (non-empty) set and
d : X × X → [0,∞) is a function, such that the following conditions hold
for all x , y , z ∈ X :

1 d(x , y) = 0 iff x = y

2 d(x , y) = d(y , x)

3 d(x , y) + d(y , z) ≥ d(x , z) (triangle inequality)
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Example: X = R; d(x , y) = |x − y |.
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Example: X = Rn; dp((x1, ..., xn), (y1, ..., yn)) =

(
n∑

k=1

|xk − yk |p
) 1

p

,

where p ≥ 1 is a fixed number.

(Question: How easy is it to prove the triangle inequality for p = 1 or
p = 2? What about in general?)
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Example: X = Rn;
d∞((x1, ..., xn), (y1, ..., yn)) = max{|x1 − y1|, ..., |xn − yn|}.
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Example: X is any (non-empty) set, and d(x , y) =

{
0 x = y

1 x 6= y

(discrete metric).
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Example: Let Γ be a finite connected graph, and let X be its set of
vertices. Define d(x , y) to be the length of the shortest path between x
and y .
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Example: Let Γ be a finite connected graph, and assign a positive number
to each edge. Let X be the set of vertices, and define d(x , y) to be the
minimal weighted length of paths between x and y .
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Example: Let X be the set of squares on an n × n chessboard, where n is
a positive integer. Let d(x , y) be the minimum number of “knight moves”
to get from the square x to the square y . Does this give a well-defined
metric?
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Example: Let X = c00, the set of infinite sequences with only finitely
many non-zero coordinates. Define metrics dp, p ≥ 1 and d∞ in a similar
way as for Rn.
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Example: Let X = C [0, 1], the set of continuous real-valued functions on
the interval [0, 1]. For fixed p ≥ 1, define

dp(f , g) =

 1∫
0

|f (x)− g(x)|pdx


1
p

.

Similarly, define
d∞(f , g) = sup

x∈[0,1]
|f (x)− g(x)|.
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Example: Let X be the unit sphere in R3, and define d(x , y) to be the
arclength of the shortest path along the sphere between x and y . (Is the
shortest path unique?)
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Example: Let (X , d) be any metric space, and let Y be any (non-empty)
subset of X . Then dY×Y is a metric on Y (subset metric).
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(non)Example: X = R[0, 1], the set of Riemann integrable functions on
[0, 1], with d1 .
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(non)Example: X = R2 with “d 1
2
” .
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(non)Example: The set of all international airports with “flying time
metric” or “flight price metric” .
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(non)Example: X = R[0,1] (the set of real-valued functions on [0, 1]),
with “d∞” .
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Definition

A sequence in a set X is a function from N (or Z+) to X . (Notation:
{xn}∞n=0).
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Recall: a sequence {xn}∞n=0 ⊂ R converges to a limit x ∈ R if for every
ε > 0, there is a K (ε) ∈ N such that |xn − x | < ε whenever n > K (ε).
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Theorem

A sequence in a metric space can have at most one limit.
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Recall: a function f : R→ R is continuous if for every x ∈ R and every
ε > 0, there is a δ(x , ε) > 0 such that |f (y)− f (x)| < ε whenever
|y − x | < δ(x , ε).
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Exercise

For metric spaces X and Y , a function f : X → Y is said to be
sequentially continuous if for every convergent sequence {xn}∞n=0 ⊆ X with
limit x , the sequences {f (xn)}∞n=0 converges to f (x) (in Y ). Show that
sequential continuity is equivalent to the definition of continuity above.
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Definition

For a point x in a metric space (X , d) and a number ε > 0, define the
(open) ε-ball

B(x , ε) = {y ∈ X : d(y , x) < ε}.
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Let X = R2. Consider the two metrics d1 and d2.

1 What do ε-balls look like in d1 and d2?

2 Does the sequence (1/n, 1/n2) converge to (0, 0) in d1? What about
in d2?

3 More generally, is there a difference between convergence in d1 and
d2?
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Interior and boundary
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Definition

Let (X , d) be a metric space, and consider Y ⊆ X . Define the interior

Int(Y ) = {y ∈ Y : ∃ε > 0 such that B(y , ε) ⊆ Y }.

Define the boundary

Bd(Y ) = X\(Int(Y ) ∪ Int(Y c)).
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Exercise: Show that x ∈ Bd(Y ) iff ∀ε > 0, the sets B(x , ε) ∩ Y and
B(x , ε) ∩ Y c are both nonempty
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Definition

A subset Y in (X , d) is open if Y = Int(Y ).
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Definition

A subset Y in (X , d) is closed if Y c is open.
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Lemma

Let (X , d) be a metric space, and let Y ⊆ X . Then Int(Int(Y )) = Int(Y ),
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Corollary: For a subset Y of a metric space (X , d), the set Int(Y ) is
open.
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Definition

The closure of Y is Cl(Y ) = Int(Y ) t Bd(Y ).
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Example: What are the closures in Y in X for:

1 X = Y = R
2 X = R, Y = [0, 1)

3 X = R\{0}, Y = (−∞, 0)

(with the standard metric on R and its subsets)?
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Definition

We say Y is dense if Cl(Y ) = X .
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Exercise

What are the interior, boundary, and closure for:

1 R ⊂ R2 (where R is the x-axis, with the standard Euclidean metric on
R2)

2 Q ⊂ R (with the standard metric on R)

3 (Challenging:) c00 ⊂ `∞
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Definition

Let (X , d) be a metric space. An open neighborhood of a point x ∈ X is
an open set V ⊆ X such that x ∈ V . A neighborhood of x is a set U ⊆ X
such that there is an open neighborhood V of x with V ⊆ U.
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Exercise: Show that a sequence {xn}∞n=0 converges to x if for every
(open) neighborhood V of x , there is a K (V ) ∈ N such that xn ∈ V
whenever n > K (V ).
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Definition

The set of open sets in a metric space X is called the topology of X . We
will denote the topology by O(X ).
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Theorem

Let (X , d) be a metric space. The topology has the following properties.

1 ∅,X ∈ O(X )

2 If {Vi}i∈I ⊆ O(X ), then
⋃
i∈I

Vi ∈ O(X ).

(“a union of open sets is open”)

3 If V1,V2 ∈ O(X ), then V1 ∩ V2 ∈ O(X ).
(“a finite intersection of open sets is open”)

MATH3611 / MATH5705 40 / 1



Example: Give an example of an infinite collection of open sets in R
whose intersection is not open

.
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Example: What is the topology for the discrete metric on a set X?
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Exercise

Let (X , d) be a metric space, and let C(X ) be the set of closed sets in X .
Show that:

1 ∅,X ∈ C(X )

2 If {Vi}i∈I ∈ C(X ), then
⋂
i∈I

Vi ∈ C(X ).

(“an intersection of closed sets is closed”)

3 If V1,V2 ∈ C(X ), then V1 ∪ V2 ∈ C(X ).
(“a finite union of closed sets is closed”)
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Warning: Is [0, 1] open? Is [0, 1] closed?
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Exercise: Let X be a metric space, and let Y ⊆ X . Then

Int(Y ) =
⋃

V∈O(X )&V⊆Y

V and cl(Y ) =
⋂

W∈C(X )&Y⊆W

W .
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Exercise: Let X be a metric space, and let Y ⊆ X . Show that Y is closed
iff the limit of every convergent sequence {yn}∞n=1 ⊆ Y is in Y .
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Recall: f : X → Y is continuous if

∀x ∈ X , ε > 0,∃δ(x , ε) s.t. dX (y , x) < δ(x , ε) =⇒ dY (f (y), f (x)) < ε.

Let’s rephrase this in terms of pre-images.
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Definition

Let (X , dX ) and (Y , dY ) be metric spaces. A function f : X → Y is
continuous if

For every V ∈ O(Y ), we have f −1(V ) ∈ O(X ).

(In words: “the pre-image of every open set is open.”)
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Exercise: Show that for a function f between metric are (X , dX ) and
(Y , dY ), the two definitions of continuity are equivalent:

1 For every x ∈ X and ε > 0, the pre-image of the ε-ball around f (x) in
Y contains a δ-ball around x in X .

2 The pre-image under f of every open set in Y is open in X .
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Topological concepts
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Exercise

Show that the metrics d2 and d∞ on R2 give the same topology (in other
words, show that Y ⊂ R2 is open with the respect to the metric d2 iff Y is
open with respect to d∞).

What about d1? What about the discrete metric?
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Theorem

Let (X , dX ), (Y , dY ), (Z , dZ ) be metric spaces, and suppose f : X → Y
and g : Y :→ Z are continuous functions. Then the composition
g ◦ f : X → Z is continuous.
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Example: The function f : R→ R defined by

f (x) =

{
0 x < 0

1 x ≥ 0

is not continuous.
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Lemma

Let (X , d) be a metric space, and let ∅ 6= Y ⊆ X . The following are
equivalent:

1 For every x ∈ X , there is an R(x) > 0 such that Y ⊆ B(x ,R)

2 There exists y ∈ Y and R such that Y ⊆ B(y ,R)

3 There is an R > 0 such that for any y1, y2 ∈ Y , we have
d(y1, y2) < R
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Definition

A subset of a metric space Y ⊆ X satisfying these equivalent conditions is
called bounded. (If Y = X we say the metric space is bounded).
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Example: Let X = C [0, 1], and consider the sequence of functions
{fn}n=1,2,... .

fn(x) =

{
n − n2x 0 ≤ x ≤ 1

n

0 1
n < x ≤ 1

.

Is this sequence bounded?
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Completeness
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Definition

A sequence {xn}∞n=0 in a metric space (X , d) is a Cauchy sequence if for
every ε > 0, there is a K (ε) such that d(xm, xn) < ε whenever
m, n > K (ε).
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Example: Consider the sequence in R defined by

xn =
n∑

k=1

1

k
.

Is this a Cauchy sequence?
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Exercise: Every Cauchy sequence is bounded.
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Exercise: Every convergent sequence is a Cauchy sequence.
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Example: Let X = (0, 1) with the usual metric. Consider the sequence
xn = 1

n . Is this sequence a Cauchy sequence? Does it converge?
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Example: Let X = C [0, 1] with the metric d1. Consider the sequence of
piecewise linear functions

fn(x) =


0 0 ≤ x ≤ 1

2 −
1
n

1
2 −

1
n + n

2x
1
2 −

1
n < x < 1

2 + 1
n

1 1
2 + 1

n ≤ x ≤ 1

, n ≥ 2.

Is this a Cauchy sequence? Does it converge?
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Definition

A metric space (X , d) is called complete if every Cauchy sequence in X
converges to a point in X .
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Example: (0, 1) and Q, with the metrics inherited from R, are not
complete.
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Example: C [0, 1] with the metric d1 is not complete.
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Example: A discrete metric space is complete.
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Example: R (with the usual metric) is complete.
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Example: (R2, d2) is complete.

Similarly, (Rn, dp) is complete for any n and any p ∈ [1,∞].
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Theorem

Let (X , d) be a complete metric space, and let Y ⊆ X . Then Y is
complete (with the subset metric) iff Y is closed.
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Theorem

The metric space (C [0, 1], d∞) is complete.
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Outline of proof: Given a Cauchy sequence {fn}∞n=0 in (C [0, 1], d∞), we
want to show that this sequence converges to some function f .

There are three steps:

1 Show that for each specific x ∈ [0, 1], the sequence {fn(x)}∞n=0 is a
Cauchy sequence in R (and therefore converges to a number by
completeness of R.)

2 Define f (x) to be the limit of {fn(x)}∞n=0 for each x . Show that f (x)
is continuous (and therefore belongs to C [0, 1]).

3 Show that {fn}∞n=0 converges to f (x) in the d∞ metric.
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Step 1: Let {fn}∞n=0 be a Cauchy sequence in (C [0, 1], d∞). We want to
show that for each specific x ∈ [0, 1], the sequence {fn(x)}∞n=0 is a Cauchy
sequence in R.
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Step 2: We now want to show that the pointwise limit f (x) is a
continuous function.

Need to show: given x ∈ [0, 1], ε > 0, there is a δ(x , ε) such that

|f (y)− f (x)| < ε whenever |y − x | < δ.
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Step 3: We’ve now seen that the pointwise limit f is continuous, and the
last step is to show that the sequence {fn}∞n=0 converges to f in
(C [0, 1], d∞).
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Exercise: Show that if I and J are closed and bounded intervals, then
C (I , J) (the set of continuous functions from I to J) is complete with the
d∞ metric.
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Completion

Question: The metric space (0, 1) is not complete, but [0, 1] is. How can
we describe the fact that (0, 1) is “missing points” without mentioning
any external points like 0 or 1?
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Definition

Two Cauchy sequences {an}∞n=1 and {bn}∞n=1 in a metric space (X , d) are
said to be equivalent if the sequence {d(an, bn)}∞n=1 converges to 0 (in R).
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Exercise: Two Cauchy sequences in a complete metric space are
equivalent iff they have the same limit.
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Exercise: Describe the equivalence classes of Cauchy sequences in (0, 1).
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Definition

Let (X , d) be a metric space. Let X̄ be the set of equivalence classes of
Cauchy sequences in X . We write [{an}] for the equivalence class of the
sequence {an}.
Define d̄ : X̄ × X̄ → [0,∞) as follows:

d̄([{an}], [{bn}]) = lim
n→∞

d(an, bn)

(Note that this definition assumes that the limit exists, and does not
depend on which representatives of the equivalence classes are taken!)
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Theorem

Let (X , d) be a metric space.

1 The completion (X̄ , d̄) (as defined above) is a complete metric space.

2 Consider the function i : X → X̄ which sends x ∈ X to the
equivalence class of the constant sequence {x}. Then i is an isometry
(i.e. d̄(i(x), i(y)) = d(x , y), ∀x , y ∈ X ), and i(X ) is dense in X̄ .

3 The completion is unique in the following sense. Suppose Y is
another complete metric space and j : X → Y is an isometry such
that j(X ) is dense in Y . Then there is a bijective isometry f : Y → X̄
such that f ◦ j = i .
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Completeness of R
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We have seen that C [0, 1] is complete with the metric d∞, but is not
complete with the metric d1.

Can we describe the completion of (C [0, 1], d1) concretely?
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Definition

Let V be a vector space (over k = R or k = C). A norm on V is a
function

‖·‖ : V → [0,∞), x 7→ ‖x‖ ,

satisfying the following conditions for all x, y ∈ V and λ ∈ k

1 ‖x‖ = 0 =⇒ x = 0

2 ‖λx‖ = |λ| · ‖x‖
3 ‖x + y‖ ≤ ‖x‖+ ‖y‖.

MATH3611 / MATH5705 85 / 1



Theorem

Let (V , ‖·‖) be a normed vector space. Then (V , d‖·‖) is a metric space,
where d‖·‖ is defined by

d‖·‖(x, y) = ‖x− y‖ , ∀x, y ∈ V .
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Definition

A complete normed space is called a Banach space.
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Example: Consider c00, the vector space of real sequences {xn}∞n=1, such
that xn = 0 for all but finitely many n. This is a vector space with
pointwise operations. Fix p ∈ [1,∞), and for x = {xn}∞n=1 ∈ c00 define

‖x‖p =

( ∞∑
n=1

|xn|p
) 1

p

.

Then this is a norm (by Minkowski’s inequality), which gives the metric

dp(x, y) = ‖x− y‖p =

( ∞∑
n=1

|xn − yn|p
) 1

p

.
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Definition

For p ∈ [1,∞), let

`p = {{xn}∞n=1 ⊂ R :
∞∑
n=1

|xn|p <∞},

which is a vector space with pointwise operations. Define the norm

‖{xn}∞n=1‖p =

( ∞∑
n=1

|xn|p
) 1

p

.
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Theorem

The normed vector space (`p, ‖·‖p) is a Banach space.
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Outline of proof: Given a Cauchy sequence (of sequences!) in `p

1 Show that for each coordinate k ∈ N, we get a Cauchy sequence of
numbers.

2 Show that the pointwise limit is a sequence in `p

3 Show that the sequence (of sequences) converges to the pointwise
limit in dp.
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Exercise: Show that (c00, ‖·‖p) is dense in (`p, ‖·‖p).
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Similarly, we can define the Banach space

`∞ = {{xn}∞n=1 ⊂ R : sup
n
|xn| <∞}

with
‖{xn}∞n=1‖∞ = sup

n
|xn|.
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Exercise: Describe the completion of (c00, ‖·‖∞).
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Example: For C [0, 1], we can define the norm

‖f ‖∞ = sup
x∈[0,1]

|f (x)|,

which gives the metric d∞. So (C [0, 1], ‖·‖∞) is a Banach space.
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Example: Again for C [0, 1], and p ∈ [1,∞) define the metric

‖f ‖p =

 1∫
0

|f (x)|pdx


1
p

,

which gives the metric dp. Is (C [0, 1], ‖·‖p) a Banach space?
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Definition

An inner product space is a vector space V (over k = R or k = C),
together with a function

〈·, ·〉 : V × V → k , (x, y) 7→ 〈x, y〉,

such that for any x, y, z ∈ V and λ ∈ k , we have

1 〈x, x〉 > 0 for x 6= 0

2 〈x, y〉 = 〈y, x〉
3 〈x + λy, z〉 = 〈x, z〉+ λ〈y, z〉
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Exercise: Show that if (V , 〈·, ·〉) is an inner product space, then the
function

‖x‖〈·,·〉 = 〈x, x〉
1
2

gives a norm (and hence a metric) on V . (Hint: Use the Cauchy-Schwartz
inequality.)
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Definition

A complete inner product space is called a Hilbert space.
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Example:

1 Rn is a real Hilbert space with the dot product.

2 Cn is a complex Hilbert space with the inner product

〈(x1, ..., xn), (y1, ..., yn)〉 =
n∑

k=1

xkyk .
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Example: `2 (over R) is a real Hilbert space with the inner product

〈{xn}∞n=1, {yn}∞n=1〉 =
∞∑
n=1

xnyn.

MATH3611 / MATH5705 101 / 1



Exercise: What about `1 with a similar inner product? What about `3?
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Definition

A contraction on a metric space (X , d) is a function f : X → X such that
there is a number c < 1 for which

d(f (x), f (y)) ≤ c · d(x , y), ∀x , y ∈ X .
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Exercise: Let X = C (standard metric), and consider

f (z) =
z2 + 3

5
.

For which R > 0 is f a contraction on the closed disk around the origin of
radius R?
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Example: Let X = [1,∞) (usual metric), and consider

f : X → X , f (x) = x +
1

x
.

Is f a contraction?
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Lemma: Let (X , d) be a metric space, and let f : X → X be a
contraction. Then for any x ∈ X , the recursively defined sequence

x0 = x , xn+1 = f (xn)

is a Cauchy sequence.
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Theorem (Contraction Mapping theorem)

Let (X , d) be a complete metric space, and let f : X → X be a
contraction. Then f has a unique fixed point x = f (x).

Moreover, for any x0 ∈ X , the recursively defined sequence xn+1 = f (xn)
converges to the fixed point x .
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Exercise: Show that Newton’s method for f (x) = x2 − 2 starting at
x0 = 1 gives a sequence converging to

√
2.
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Picard-Lindelöf Theorem

Question: Consider the differential equation

y ′ = cos(xy).

Does this have a solution?
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Basic idea: Rewrite the differential equation as a fixed-point problem for
an integral operator .
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General setup: We consider the initial value problem

y ′(x) = g(x , y), y(a) = b,

where g is a continuous function on a neighborhood of (a, b) of the form
I × J, where I = [a− δ, a + δ] and J = [b − ε, b + ε].
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Fixed point version: Define the integral operator

T : C (I , J)→ C (I )

T (y)(x) = b +

∫ x

a
g(t, y(t)) dt.
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Question: Is T a contraction on X = C (I , J)?
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Need to check:

1 T (X ) ⊆ X , and

2 T satisfies the contraction property.
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Condition 1: T (X ) ⊆ X . This means that the range of T (y) must be
contained in J for any y ∈ C (I , J).
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Condition 2: T satisfies the contraction property. This means that
there is a c < 1 such that

d∞(T (y1),T (y2)) ≤ c · d∞(y1, y2), ∀y1, y2 ∈ C (I , J).
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Summary of the 2 sufficient conditions:

1 δ · sup
(x ,y)∈I×J

|g(x , y)| ≤ ε

2 δ · sup
x∈I
|g(x , y1(x))− g(x , y2(x))| < c · sup

x∈I
|y1(x)− y2(x)|

Question: Do these conditions hold?
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Definition

Let X ⊆ R. A function f : X → R is called Lipschitz continuous if there is
a K > 0 such that

|f (x)− f (y)| ≤ K |x − y |, ∀x , y ∈ X .

The number K is then called a Lipschitz constant for f .
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Exercise: Suppose f is continuous on a closed interval [a, b], differentiable
on (a, b), and f ′ is bounded on (a, b). Then f is Lipschitz continuous on
[a, b].
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Exercise: Give an example of a continuous function on a closed interval
which is not Lipschitz continuous.
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Definition

If X ⊆ R2, then f : X → R is Lipschitz continuous in the second variable
if there is a K > 0 such that

|f (x , y1)− f (x , y2)| ≤ K · |y1 − y2|, ∀(x , y1), (x , y2) ∈ X .
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We can now simplify the two sufficient conditions above as follows: For
the function g on the rectangle I × J, let M be an upper bound, and let K
be a y -Lipschitz constant. Then

1 Condition (1) above holds if δ < ε
M

2 Condition (2) above holds if δ < ε
K
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Theorem (Picard-Lindelöf Theorem)

Let g be a continuous function on a neighborhood of (a, b) ∈ R2 which is
Lipschitz continuous in the second variable. Then there is an interval
around a on which the differential equation

y ′ = g(x , y), y(a) = b

has a unique solution.
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Example: Consider the initial value problem

y ′ = cos(xy), y(0) = 0.

Does this have a unique solution on a neighborhood of 0?
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Example: Consider the initial value problem

y ′ = y
1
3 , y(0) = 0.

Does this have a unique solution on a neighborhood of 0?
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