MATH3611 / MATH5705

Chapter 2: Metric spaces

Recall the definition of a limit: $\lim_{x\to a} f(x) = b$ means that "for any number $\epsilon>0$, there is a number $\delta(\epsilon)$ such that $|f(x)-b|<\epsilon$ whenever $|x-a|<\delta$."

A *metric space* is a pair (X, d), where X is a (non-empty) set and $d: X \times X \to [0, \infty)$ is a function, such that the following conditions hold for all $x, y, z \in X$:

- d(x,y) = 0 iff x = y
- d(x,y) = d(y,x)
- $d(x,y) + d(y,z) \ge d(x,z)$ (triangle inequality)

Example: $X = \mathbb{R}$; d(x, y) = |x - y|.

Example: $X = \mathbb{R}^n$; $d_p((x_1, ..., x_n), (y_1, ..., y_n)) = \left(\sum_{k=1}^n |x_k - y_k|^p\right)^{\frac{1}{p}}$, where $p \ge 1$ is a fixed number.

(**Question:** How easy is it to prove the triangle inequality for p = 1 or p = 2? What about in general?)

Example: $X = \mathbb{R}^n$;

 $d_{\infty}((x_1,...,x_n),(y_1,...,y_n)) = \max\{|x_1-y_1|,...,|x_n-y_n|\}.$

Example: X is any (non-empty) set, and $d(x, y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$ (discrete metric).

Example: Let Γ be a finite connected graph, and let X be its set of vertices. Define d(x, y) to be the length of the shortest path between x and y.

Example: Let Γ be a finite connected graph, and assign a positive number to each edge. Let X be the set of vertices, and define d(x, y) to be the minimal weighted length of paths between x and y.

Example: Let X be the set of squares on an $n \times n$ chessboard, where n is a positive integer. Let d(x, y) be the minimum number of "knight moves" to get from the square x to the square y. Does this give a well-defined metric?

Example: Let $X=c_{00}$, the set of infinite sequences with only finitely many non-zero coordinates. Define metrics d_p , $p\geq 1$ and d_∞ in a similar way as for \mathbb{R}^n .

Example: Let X = C[0,1], the set of continuous real-valued functions on the interval [0,1]. For fixed $p \ge 1$, define

$$d_p(f,g) = \left(\int_0^1 |f(x) - g(x)|^p dx\right)^{\frac{1}{p}}.$$

Similarly, define

$$d_{\infty}(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Example: Let X be the unit sphere in \mathbb{R}^3 , and define d(x,y) to be the arclength of the shortest path along the sphere between x and y. (Is the shortest path unique?)

Example: Let (X, d) be any metric space, and let Y be any (non-empty) subset of X. Then $d_{Y \times Y}$ is a metric on Y (subset metric).

(non)Example: X = R[0,1], the set of Riemann integrable functions on [0,1], with d_1 .

(non)Example: $X = \mathbb{R}^2$ with " $d_{\frac{1}{2}}$ ".

(non)Example: The set of all international airports with "flying time metric" or "flight price metric".

(non)Example: $X = \mathbb{R}^{[0,1]}$ (the set of real-valued functions on [0,1]), with " d_{∞} ".

A sequence in a set X is a function from \mathbb{N} (or \mathbb{Z}_+) to X. (Notation: $\{x_n\}_{n=0}^{\infty}$).

Recall: a sequence $\{x_n\}_{n=0}^{\infty} \subset \mathbb{R}$ converges to a limit $x \in \mathbb{R}$ if for every $\epsilon > 0$, there is a $K(\epsilon) \in \mathbb{N}$ such that $|x_n - x| < \epsilon$ whenever $n > K(\epsilon)$.

Theorem

A sequence in a metric space can have at most one limit.

Recall: a function $f: \mathbb{R} \to \mathbb{R}$ is continuous if for every $x \in \mathbb{R}$ and every $\epsilon > 0$, there is a $\delta(x, \epsilon) > 0$ such that $|f(y) - f(x)| < \epsilon$ whenever $|y - x| < \delta(x, \epsilon)$.

Exercise

For metric spaces X and Y, a function $f: X \to Y$ is said to be sequentially continuous if for every convergent sequence $\{x_n\}_{n=0}^{\infty} \subseteq X$ with limit x, the sequences $\{f(x_n)\}_{n=0}^{\infty}$ converges to f(x) (in Y). Show that sequential continuity is equivalent to the definition of continuity above.

For a point x in a metric space (X, d) and a number $\epsilon > 0$, define the (open) ϵ -ball

$$B(x,\epsilon) = \{ y \in X : d(y,x) < \epsilon \}.$$

Let $X = \mathbb{R}^2$. Consider the two metrics d_1 and d_2 .

- **1** What do ϵ -balls look like in d_1 and d_2 ?
- ② Does the sequence $(1/n, 1/n^2)$ converge to (0,0) in d_1 ? What about in d_2 ?
- **3** More generally, is there a difference between convergence in d_1 and d_2 ?

Interior and boundary

Let (X, d) be a metric space, and consider $Y \subseteq X$. Define the *interior*

$$Int(Y) = \{ y \in Y : \exists \epsilon > 0 \text{ such that } B(y, \epsilon) \subseteq Y \}.$$

Define the **boundary**

$$Bd(Y) = X \setminus (Int(Y) \cup Int(Y^c)).$$

Exercise: Show that $x \in Bd(Y)$ iff $\forall \epsilon > 0$, the sets $B(x, \epsilon) \cap Y$ and $B(x, \epsilon) \cap Y^c$ are both nonempty

A subset Y in (X, d) is open if Y = Int(Y).

A subset Y in (X, d) is closed if Y^c is open.

Lemma

Let (X, d) be a metric space, and let $Y \subseteq X$. Then Int(Int(Y)) = Int(Y),

Corollary: For a subset Y of a metric space (X, d), the set Int(Y) is open.

The *closure* of Y is $Cl(Y) = Int(Y) \sqcup Bd(Y)$.

Example: What are the closures in Y in X for:

- **2** $X = \mathbb{R}, Y = [0, 1)$
- $X = \mathbb{R} \setminus \{0\}, \quad Y = (-\infty, 0)$

(with the standard metric on \mathbb{R} and its subsets)?

We say Y is *dense* if Cl(Y) = X.

Exercise

What are the interior, boundary, and closure for:

- ① $\mathbb{R} \subset \mathbb{R}^2$ (where R is the x-axis, with the standard Euclidean metric on \mathbb{R}^2)
- $Q \subset \mathbb{R}$ (with the standard metric on \mathbb{R})
- **3** (Challenging:) $c_{00} \subset \ell^{\infty}$

Definition

Let (X, d) be a metric space. An *open neighborhood* of a point $x \in X$ is an open set $V \subseteq X$ such that $x \in V$. A *neighborhood* of x is a set $U \subseteq X$ such that there is an open neighborhood V of x with $Y \subseteq U$.

Exercise: Show that a sequence $\{x_n\}_{n=0}^{\infty}$ converges to x if for every (open) neighborhood V of x, there is a $K(V) \in \mathbb{N}$ such that $x_n \in V$ whenever n > K(V).

Definition

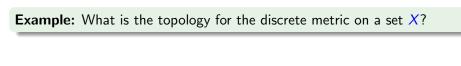
The set of open sets in a metric space X is called the *topology* of X. We will denote the topology by $\mathcal{O}(X)$.

Theorem

Let (X, d) be a metric space. The topology has the following properties.

- ② If $\{V_i\}_{i\in I}\subseteq \mathcal{O}(X)$, then $\bigcup_{i\in I}V_i\in \mathcal{O}(X)$. ("a union of open sets is open")
- **3** If $V_1, V_2 \in \mathcal{O}(X)$, then $V_1 \cap V_2 \in \mathcal{O}(X)$. ("a **finite** intersection of open sets is open")

Example: Give an example of an infinite collection of open sets in \mathbb{R} whose intersection is not open



Exercise

Let (X, d) be a metric space, and let $\mathcal{C}(X)$ be the set of closed sets in X. Show that:

- ② If $\{V_i\}_{i\in I} \in \mathcal{C}(X)$, then $\bigcap_{i\in I} V_i \in \mathcal{C}(X)$. ("an intersection of closed sets is closed")
- **3** If $V_1, V_2 \in \mathcal{C}(X)$, then $V_1 \cup V_2 \in \mathcal{C}(X)$. ("a **finite** union of closed sets is closed")

Warning: Is [0,1] open? Is [0,1] closed?

Exercise: Let X be a metric space, and let $Y \subseteq X$. Then

$$\operatorname{Int}(Y) = \bigcup_{V \in \mathcal{O}(X) \& V \subseteq Y} V \quad \text{and} \quad \operatorname{cl}(Y) = \bigcap_{W \in \mathcal{C}(X) \& Y \subseteq W} W.$$

Exercise: Let X be a metric space, and let $Y \subseteq X$. Show that Y is closed iff the limit of every convergent sequence $\{y_n\}_{n=1}^{\infty} \subseteq Y$ is in Y.

Recall: $f: X \to Y$ is *continuous* if

$$\forall x \in X, \epsilon > 0, \exists \delta(x, \epsilon) \text{ s.t. } d_X(y, x) < \delta(x, \epsilon) \implies d_Y(f(y), f(x)) < \epsilon.$$

Let's rephrase this in terms of *pre-images*.

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is *continuous* if

For every
$$V \in \mathcal{O}(Y)$$
, we have $f^{-1}(V) \in \mathcal{O}(X)$.

(In words: "the pre-image of every open set is open.")

Exercise: Show that for a function f between metric are (X, d_X) and (Y, d_Y) , the two definitions of continuity are equivalent:

- For every $x \in X$ and $\epsilon > 0$, the pre-image of the ϵ -ball around f(x) in Y contains a δ -ball around x in X.
- 2 The pre-image under f of every open set in Y is open in X.

Topological concepts

Exercise

Show that the metrics d_2 and d_{∞} on \mathbb{R}^2 give the same topology (in other words, show that $Y \subset \mathbb{R}^2$ is open with the respect to the metric d_2 iff Y is open with respect to d_{∞}).

What about d_1 ? What about the discrete metric?

Theorem

Let $(X, d_X), (Y, d_Y), (Z, d_Z)$ be metric spaces, and suppose $f: X \to Y$ and $g: Y: \to Z$ are continuous functions. Then the composition $g \circ f: X \to Z$ is continuous.

Example: The function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

is not continuous.

Lemma

Let (X, d) be a metric space, and let $\emptyset \neq Y \subseteq X$. The following are equivalent:

- For every $x \in X$, there is an R(x) > 0 such that $Y \subseteq B(x, R)$
- 2 There exists $y \in Y$ and R such that $Y \subseteq B(y, R)$
- **3** There is an R > 0 such that for any $y_1, y_2 \in Y$, we have $d(y_1, y_2) < R$

Definition

A subset of a metric space $Y \subseteq X$ satisfying these equivalent conditions is called *bounded*. (If Y = X we say the metric space is bounded).

Example: Let X = C[0,1], and consider the sequence of functions $\{f_n\}_{n=1,2,...}$.

$$f_n(x) = \begin{cases} n - n^2 x & 0 \le x \le \frac{1}{n} \\ 0 & \frac{1}{n} < x \le 1 \end{cases}.$$

Is this sequence bounded?

Completeness

Definition

A sequence $\{x_n\}_{n=0}^{\infty}$ in a metric space (X,d) is a *Cauchy sequence* if for every $\epsilon > 0$, there is a $K(\epsilon)$ such that $d(x_m, x_n) < \epsilon$ whenever $m, n > K(\epsilon)$.

Example: Consider the sequence in \mathbb{R} defined by

$$x_n = \sum_{k=1}^n \frac{1}{k}.$$

Is this a Cauchy sequence?

Exercise: Every Cauchy sequence is bounded.

Exercise: Every convergent sequence is a Cauchy sequence.

Example: Let X = (0,1) with the usual metric. Consider the sequence $x_n = \frac{1}{n}$. Is this sequence a Cauchy sequence? Does it converge?

Example: Let X = C[0,1] with the metric d_1 . Consider the sequence of piecewise linear functions

$$f_n(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} - \frac{1}{n} \\ \frac{1}{2} - \frac{1}{n} + \frac{n}{2}x & \frac{1}{2} - \frac{1}{n} < x < \frac{1}{2} + \frac{1}{n} , & n \ge 2. \\ 1 & \frac{1}{2} + \frac{1}{n} \le x \le 1 \end{cases}$$

Is this a Cauchy sequence? Does it converge?

Definition

A metric space (X, d) is called complete if every Cauchy sequence in X converges to a point in X.

Example: (0,1) and \mathbb{Q} , with the metrics inherited from \mathbb{R} , are not complete.

Example: C[0,1] with the metric d_1 is not complete.

Example: A discrete metric space is complete.

Example: \mathbb{R} (with the usual metric) is complete.

Example: (\mathbb{R}^2, d_2) is complete.

Similarly, (\mathbb{R}^n, d_p) is complete for any $p \in [1, \infty]$.

Theorem

Let (X, d) be a complete metric space, and let $Y \subseteq X$. Then Y is complete (with the subset metric) iff Y is closed.

Theorem

The metric space $(C[0,1], d_{\infty})$ is complete.

Outline of proof: Given a Cauchy sequence $\{f_n\}_{n=0}^{\infty}$ in $(C[0,1], d_{\infty})$, we want to show that this sequence converges to some function f.

There are three steps:

- **●** Show that for each specific $x \in [0,1]$, the sequence $\{f_n(x)\}_{n=0}^{\infty}$ is a Cauchy sequence in \mathbb{R} (and therefore converges to a number by completeness of \mathbb{R} .)
- ② Define f(x) to be the limit of $\{f_n(x)\}_{n=0}^{\infty}$ for each x. Show that f(x) is continuous (and therefore belongs to C[0,1]).
- 3 Show that $\{f_n\}_{n=0}^{\infty}$ converges to f(x) in the d_{∞} metric.

Step 1: Let $\{f_n\}_{n=0}^{\infty}$ be a Cauchy sequence in $(C[0,1], d_{\infty})$. We want to show that for each specific $x \in [0,1]$, the sequence $\{f_n(x)\}_{n=0}^{\infty}$ is a Cauchy sequence in \mathbb{R} .

Step 2: We now want to show that the pointwise limit f(x) is a continuous function.

Need to show: given $x \in [0,1]$, $\epsilon > 0$, there is a $\delta(x,\epsilon)$ such that

$$|f(y) - f(x)| < \epsilon$$
 whenever $|y - x| < \delta$.

Step 3: We've now seen that the pointwise limit f is continuous, and the last step is to show that the sequence $\{f_n\}_{n=0}^{\infty}$ converges to f in $(C[0,1],d_{\infty})$.

Exercise: Show that if I and J are closed and bounded intervals, then C(I,J) (the set of continuous functions from I to J) is complete with the d_{∞} metric.

Completion

Question: The metric space (0,1) is not complete, but [0,1] is. How can we describe the fact that (0,1) is "missing points" **without** mentioning any external points like 0 or 1?

Two Cauchy sequences $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ in a metric space (X,d) are said to be *equivalent* if the sequence $\{d(a_n,b_n)\}_{n=1}^{\infty}$ converges to 0 (in \mathbb{R}).

Exercise: Two Cauchy sequences in a complete metric space are equivalent iff they have the same limit.

Exercise: Describe the equivalence classes of Cauchy sequences in (0,1).

Let (X, d) be a metric space. Let \bar{X} be the set of *equivalence classes of Cauchy sequences* in X. We write $[\{a_n\}]$ for the equivalence class of the sequence $\{a_n\}$.

Define $\bar{d}: \bar{X} \times \bar{X} \to [0, \infty)$ as follows:

$$\bar{d}([\{a_n\}],[\{b_n\}])=\lim_{n\to\infty}d(a_n,b_n)$$

(Note that this definition assumes that the limit exists, and does not depend on which representatives of the equivalence classes are taken!)

Theorem

Let (X, d) be a metric space.

- The completion (\bar{X}, \bar{d}) (as defined above) is a complete metric space.
- ② Consider the function $i: X \to \bar{X}$ which sends $x \in X$ to the equivalence class of the constant sequence $\{x\}$. Then i is an isometry (i.e. $\bar{d}(i(x), i(y)) = d(x, y), \ \forall x, y \in X$), and i(X) is dense in \bar{X} .
- **③** The completion is unique in the following sense. Suppose Y is another complete metric space and $j: X \to Y$ is an isometry such that j(X) is dense in Y. Then there is a bijective isometry $f: Y \to \bar{X}$ such that $f \circ j = i$.

Completeness of $\ensuremath{\mathbb{R}}$

We have seen that C[0,1] is complete with the metric d_{∞} , but is not complete with the metric d_1 .

Can we describe the completion of $(C[0,1], d_1)$ concretely?

Let V be a vector space (over $k = \mathbb{R}$ or $k = \mathbb{C}$). A *norm* on V is a function

$$\|\cdot\|:V\to[0,\infty),\quad \mathbf{x}\mapsto\|\mathbf{x}\|\,$$

satisfying the following conditions for all $\mathbf{x}, \mathbf{y} \in V$ and $\lambda \in k$

- $\| \mathbf{x} \| = 0 \implies \mathbf{x} = \mathbf{0}$
- $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|.$

Theorem

Let $(V, \|\cdot\|)$ be a normed vector space. Then $(V, d_{\|\cdot\|})$ is a metric space, where $d_{\|\cdot\|}$ is defined by

$$d_{\|\cdot\|}(\mathbf{x},\mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|, \ \forall \mathbf{x}, \mathbf{y} \in V.$$

A complete normed space is called a *Banach* space.

Example: Consider c_{00} , the vector space of real sequences $\{x_n\}_{n=1}^{\infty}$, such that $x_n = 0$ for all but *finitely* many n. This is a vector space with *pointwise* operations. Fix $p \in [1, \infty)$, and for $\mathbf{x} = \{x_n\}_{n=1}^{\infty} \in c_{00}$ define

$$\|\mathbf{x}\|_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}.$$

Then this is a norm (by Minkowski's inequality), which gives the metric

$$d_p(\mathbf{x},\mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_p = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{\frac{1}{p}}.$$

For $p \in [1, \infty)$, let

$$\ell^p = \{\{x_n\}_{n=1}^{\infty} \subset \mathbb{R} : \sum_{n=1}^{\infty} |x_n|^p < \infty\},$$

which is a vector space with pointwise operations. Define the norm

$$\|\{x_n\}_{n=1}^{\infty}\|_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}.$$

Theorem

The normed vector space $(\ell^p, \|\cdot\|_p)$ is a Banach space.

Outline of proof: Given a Cauchy sequence (of sequences!) in ℓ^p

- Show that for each coordinate $k \in \mathbb{N}$, we get a Cauchy sequence of numbers.
- 2 Show that the pointwise limit is a sequence in ℓ^p
- 3 Show that the sequence (of sequences) converges to the pointwise limit in d_p .

Exercise: Show that $(c_{00},\|\cdot\|_p)$ is dense in $(\ell^p,\|\cdot\|_p)$.

Similarly, we can define the Banach space

$$\ell^{\infty} = \{\{x_n\}_{n=1}^{\infty} \subset \mathbb{R} : \sup_{n} |x_n| < \infty\}$$

with

$$\|\{x_n\}_{n=1}^{\infty}\|_{\infty} = \sup_{n} |x_n|.$$

Exercise: Describe the completion of $(c_{00}, \|\cdot\|_{\infty})$.

Example: For C[0,1], we can define the norm

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|,$$

which gives the metric d_{∞} . So $(C[0,1], \|\cdot\|_{\infty})$ is a Banach space.

Example: Again for C[0,1], and $p \in [1,\infty)$ define the metric

$$||f||_p = \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}},$$

which gives the metric d_p . Is $(C[0,1], \|\cdot\|_p)$ a Banach space?

An inner product space is a vector space V (over $k = \mathbb{R}$ or $k = \mathbb{C}$), together with a function

$$\langle \cdot, \cdot \rangle : V \times V \to k, \quad (\mathbf{x}, \mathbf{y}) \mapsto \langle \mathbf{x}, \mathbf{y} \rangle,$$

such that for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $\lambda \in k$, we have

Exercise: Show that if $(V, \langle \cdot, \cdot \rangle)$ is an inner product space, then the function

$$\|\mathbf{x}\|_{\langle\cdot,\cdot
angle}=\langle\mathbf{x},\mathbf{x}
angle^{rac{1}{2}}$$

gives a norm (and hence a metric) on V. (**Hint:** Use the Cauchy-Schwartz inequality.)

A complete inner product space is called a *Hilbert space*.

Example:

$$\langle (x_1,...,x_n), (y_1,...,y_n) \rangle = \sum_{k=1}^n x_k \overline{y_k}.$$

Example: ℓ^2 (over \mathbb{R}) is a real Hilbert space with the inner product

$$\langle \{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \rangle = \sum_{n=1}^{\infty} x_n y_n.$$

Exercise: What about ℓ^1 with a similar inner product? What about ℓ^3 ?

A *contraction* on a metric space (X, d) is a function $f: X \to X$ such that there is a number c < 1 for which

$$d(f(x), f(y)) \le c \cdot d(x, y), \ \forall x, y \in X.$$

Exercise: Let $X = \mathbb{C}$ (standard metric), and consider

$$f(z)=\frac{z^2+3}{5}.$$

For which R > 0 is f a contraction on the closed disk around the origin of radius R?

Example: Let $X = [1, \infty)$ (usual metric), and consider

$$f: X \to X, \quad f(x) = x + \frac{1}{x}.$$

Is *f* a contraction?

Lemma: Let (X, d) be a metric space, and let $f: X \to X$ be a contraction. Then for any $x \in X$, the recursively defined sequence

$$x_0 = x, \quad x_{n+1} = f(x_n)$$

is a Cauchy sequence.

Theorem (Contraction Mapping theorem)

Let (X, d) be a **complete** metric space, and let $f : X \to X$ be a contraction. Then f has a unique fixed point x = f(x).

Moreover, for any $x_0 \in X$, the recursively defined sequence $x_{n+1} = f(x_n)$ converges to the fixed point x.

Exercise: Show that Newton's method for $f(x) = x^2 - 2$ starting at $x_0 = 1$ gives a sequence converging to $\sqrt{2}$.

Picard-Lindelöf Theorem

Question: Consider the differential equation

$$y' = \cos(xy)$$
.

Does this have a solution?

Basic idea: Rewrite the differential equation as a *fixed-point problem* for an *integral operator* .

General setup: We consider the initial value problem

$$y'(x) = g(x, y), \quad y(a) = b,$$

where g is a continuous function on a neighborhood of (a,b) of the form $I \times J$, where $I = [a - \delta, a + \delta]$ and $J = [b - \epsilon, b + \epsilon]$.

Fixed point version: Define the integral operator

$$T: C(I,J) \rightarrow C(I)$$

$$T(y)(x) = b + \int_a^x g(t, y(t)) dt.$$

Question: Is T a contraction on X = C(I, J)?

Need to check:

- $T(X) \subseteq X, \text{ and }$
- T satisfies the contraction property.

Condition 1: $T(X) \subseteq X$. This means that the range of T(y) must be contained in J for any $y \in C(I, J)$.

Condition 2: \mathcal{T} satisfies the contraction property. This means that there is a c < 1 such that

$$d_{\infty}(T(y_1), T(y_2)) \leq c \cdot d_{\infty}(y_1, y_2), \ \forall y_1, y_2 \in C(I, J).$$

Summary of the 2 sufficient conditions:

- $\bullet \quad \sup_{(x,y)\in I\times J}|g(x,y)|\leq \epsilon$

Question: Do these conditions hold?

Definition

Let $X \subseteq \mathbb{R}$. A function $f: X \to \mathbb{R}$ is called *Lipschitz continuous* if there is a K > 0 such that

$$|f(x)-f(y)| \le K|x-y|, \ \forall x,y \in X.$$

The number K is then called a *Lipschitz constant* for f.

Exercise: Suppose f is continuous on a closed interval [a, b], differentiable on (a, b), and f' is bounded on (a, b). Then f is Lipschitz continuous on [a, b].

Exercise: Give an example of a continuous function on a closed interval which is not Lipschitz continuous.

Definition

If $X \subseteq \mathbb{R}^2$, then $f: X \to \mathbb{R}$ is Lipschitz continuous in the second variable if there is a K > 0 such that

$$|f(x, y_1) - f(x, y_2)| \le K \cdot |y_1 - y_2|, \ \forall (x, y_1), (x, y_2) \in X.$$

We can now simplify the two sufficient conditions above as follows: For the function g on the rectangle $I \times J$, let M be an upper bound, and let K be a y-Lipschitz constant. Then

- $\textbf{ 0} \ \ \mathsf{Condition} \ (1) \ \mathsf{above} \ \mathsf{holds} \ \mathsf{if} \ \delta < \tfrac{\epsilon}{M}$
- ② Condition (2) above holds if $\delta < \frac{\epsilon}{K}$

Theorem (Picard-Lindelöf Theorem)

Let g be a continuous function on a neighborhood of $(a,b) \in \mathbb{R}^2$ which is Lipschitz continuous in the second variable. Then there is an interval around a on which the differential equation

$$y' = g(x, y), \quad y(a) = b$$

has a unique solution.

Example: Consider the initial value problem

$$y'=\cos(xy), \quad y(0)=0.$$

Does this have a unique solution on a neighborhood of 0?

Example: Consider the initial value problem

$$y'=y^{\frac{1}{3}}, \quad y(0)=0.$$

Does this have a unique solution on a neighborhood of 0?