MATH3611 / MATH5705

Chapter 4: Topological spaces

Convergence and topology

Recall that if (X, d) is a metric space, then the collection $\mathcal{O}(X)$ has the following properties.

A topological space is a set X together with a set of subsets $\tau = \mathcal{O}(X) \subseteq \mathcal{P}(X)$ satisfying:

Example: Let (X, d) be a metric space. Then we have already seen the metric topology τ_d .

Example: Let X be any set. The *coarse topology* is $\tau = \{\emptyset, X\}$.

Example: Let X be any set. The *discrete topology* is $\tau = \mathcal{P}(X)$.

Exercise: Let X be a set. Show that the discrete topology on X is the metric topology of the discrete metric on X.

Example: Let X be any set. The *cofinite topology* is

$$\tau = \{ Y \subseteq X : Y^C \text{ is finite } \} \cup \{\emptyset\}.$$

Example: Let X be any set. The *cocountable topology* is

$$\tau = \{ Y \subseteq X : Y^C \text{ is countable } \} \cup \{\emptyset\}.$$

Let (X, τ) be a topological space, and let $Y \subseteq X$. The *subspace topology* (also called *relative topology*) is $\tau|_{Y} = \{V \cap Y : V \in \tau\}$.

Exercise: If (X, d) is a metric space and $Y \subseteq X$, then the subspace topology on Y coming from the metric topology on X is the same as the topology of the subset metric on Y. (Formally: $\tau_d|_{Y} = \tau_{d|_{Y \times Y}}$.)

Let (X, τ) be a topological space. A subset $Y \subseteq X$ is closed if Y^{C} is open.

As with metric spaces, denote the closed sets by $\mathcal{C}(X)$). Then we have:

- **2** If $\{V_i\}_{i\in I}\subseteq \mathcal{C}(X)$, then $\bigcap_{i\in I}V_i\in \mathcal{C}(X)$.

Let (X, τ) be a topological space.

- Let $x \in X$ be a point. An *open neighborhood* of x is a set $V \in \tau$ such that $x \in V$. A *neighborhood* of x is any set containing an open neighborhood of x. We will denote the collection of neighborhoods of x by $\mathsf{Nbhd}(x)$.
- 2 Let $Y \subseteq X$ be a subset. The *interior* of Y is

$$Int(Y) = \{ y \in Y : \exists V_y \in Nbhd(y) \text{ such that } V_y \subseteq Y \}.$$

Exercise: Show that

$$\mathsf{Int}(Y) = \bigcup_{\{V \in \tau : V \subseteq Y\}} V.$$

Corollary

Let (X,τ) be a topological space. For any subset $Y\subseteq X$, the interior Int(Y) is an open set.

Let (X, τ) be a topological space, and let $Y \subseteq X$.

• The boundary is

$$\mathsf{Bd}(Y) = X \setminus (\mathsf{Int}(Y) \sqcup \mathsf{Int}(Y^{\mathcal{C}})).$$

2 The closure is

$$\mathsf{cl}(Y) = \mathsf{Int}(Y) \cup \mathsf{Bd}(Y).$$

Exercise: We have
$$cl(Y) = \bigcap_{\{V \in C(X): V \supseteq Y\}} V$$
.

Let (X, τ) be a topological space. A sequence $\{x_n\}_{n=1}^{\infty} \subseteq X$ converges to $x \in X$ if for every $V \in \text{Nbhd}(x)$, there is a $K(V) \in \mathbb{N}$ such that $x_n \in V$ when n > K.

Let (X, τ_X) and (Y, τ_Y) be topological spaces. A function $f: X \to Y$ is continuous if for every $V \in \tau_Y$, we have $f^{-1}(V) \in \tau_X$.

Theorem

Let (X, τ_X) , (Y, τ_Y) , and (Z, τ_Z) be topological spaces. If $f: X \to Y$ and $g: Y \to Z$ are continuous functions, then $(g \circ f): X \to Z$ is also continuous.

Example: Let X be a set with the coarse topology. Which sequences converge to which points?

Example: Let $X = \mathbb{N}$ with the cofinite topology. Which sequences converge to which points?

Example: Let $X = \mathbb{R}$ with the cocountable topology. Which sequences converge to which points?

A topological space X has the *Hausdorff property* if for every pair of distinct points $x, y \in X$, there are neighborhoods $V(x, y) \in \text{Nbhd}(x)$ and $U(x, y) \in \text{Nbhd}(y)$ such that $V(x, y) \cap U(x, y) = \emptyset$.

Exercise: A sequence in a Hausdorff space has at most one limit.

Example: Consider \mathbb{R} with the cocountable topology. Is this a Hausdorff topology, and do sequences have unique limits?

Example: Let $X = \{a, b\}$ and let $\tau = \{\emptyset, \{a\}, X\}$. Is this a Hausdorff space, and do sequences have unique limits?

Exercise: "Line with two origins": \mathbb{R} with two copies of 0 (call them 0_a and 0_b). We want an "open ϵ -interval" around 0_a to look like $(-\epsilon,0)\cup 0_a\cup (0,\epsilon)$, and similarly for 0_b . How can we define this topology precisely?

Question: Given a set X, how can we describe a topology on X?

Example: In \mathbb{R} , with the standard topology, a set is open iff it is a countable disjoint union of open intervals.

Exercise: Show that not every open set in \mathbb{R}^2 can be expressed as a disjoint union of open disks.

Let (X, d) be a metric space. Notice:

- **1** $Y \subseteq X$ is open iff Y is a union of open ϵ -balls (we'll allow the empty union).
- ② $Y \subseteq X$ is a neighborhood of $x \in X$ iff Y contains an open ϵ -ball around x.

Let (X, τ) be a topological space.

1 A *base* for τ is a subset $\mathcal{B} \subset \tau$ such that every $V \in \tau$ can be expressed as as a union of elements of \mathcal{B} :

$$V = \bigcup_{i \in I} V_i$$
, where $V_i \in \mathcal{B}$, $\forall i \in I$.

② A *local base* for τ at a point $x \in X$ is a collection $\mathcal{LB}_x \subseteq \tau$ of open neighborhoods of x such that if U is any neighborhood of x, there is a $V \in \mathcal{LB}_x$ such that $V \subseteq U$.

Example: If (X, τ) is a topological space, then τ is a base for itself. For any $x \in X$, the collection of all open neighborhoods of x is a local base for τ at x.

Example: Let (X, d) be a metric space. Then

$$\mathcal{B} = \{B(x, \epsilon)\}_{x \in X, \epsilon > 0}$$

is a base for the metric topology. For any $x \in X$, the set

$$\mathcal{LB}_{x} = \{B(x, \epsilon)\}_{\epsilon > 0}$$

is a local base at x.

Example: In a metric space, we don't actually need all values of ϵ for a base: the set

$$\mathcal{B} = \{B(x, \frac{1}{n})\}_{x \in X, n \in \mathbb{Z}_+}$$

is a base for the metric topology. For any $x \in X$, the set

$$\mathcal{LB}_{x} = \{B(x, \frac{1}{n})\}_{n \in \mathbb{Z}_{+}}$$

is a local base at x

Example: Let $X = \mathbb{R}^2$. As we have seen, all of the metrics d_p , $p \ge 1$ give the same topology. So this topology has a base consisting of open disks, a base of open diamonds, etc. But you can describe many others - let's try a couple.

Example: Let X be a set with the discrete topology. Then the set of singleton sets $\mathcal{B} = \{\{x\}\}_{x \in X}$ is a base. For each $x \in X$, the set $\mathcal{LB}_X = \{\{x\}\}$ is a local base at x.

Exercise: Let (X, τ) be a topological space. If \mathcal{B} is a base for τ , then for any $x \in X$, the set $\mathcal{LB}_X = \{V \in \mathcal{B} : x \in V\}$ is a local base at x. Conversely, if we have a local base \mathcal{LB}_X for each point $x \in X$, then $\mathcal{B} = \bigcup_{x \in X} \mathcal{LB}_X$ is a base.

Theorem

Let X be a set, and let $\mathcal{B} \subseteq \mathcal{P}(X)$ be a collection of subsets. Then

$$\tau = \{ V \subseteq X : V \text{ is a union of sets in } \mathcal{B} \}$$

is a topology iff the following conditions hold:

- ② for every V_1 and V_2 in \mathcal{B} and every $x \in V_1 \cap V_2$, there is $V \in \mathcal{B}$ such that $x \in V \subseteq V_1 \cap V_2$.

Exercise: Let (X, τ_X) and (Y, τ_Y) be topological spaces, and suppose \mathcal{B} is a base for τ_Y . Then a function $f: X \to Y$ is continuous iff for every $V \in \mathcal{B}$, we have $f^{-1}(V) \in \tau_X$.

Exercise: Let (X, τ) be a topological space, and suppose that \mathcal{LB}_X is a local base for τ at $x \in X$. Then a sequence $\{x_n\}_{n=1}^{\infty}$ converges to x iff for every $V \in \mathcal{LB}_X$, there is a K(V) such that $x_n \in V$ for all $n \geq K$.

Definition

Let X be a set, and let $S \subseteq \mathcal{P}(X)$ be any collection of subsets. Define \mathcal{B} to be the set of all **finite** intersections of sets in S:

$$\mathcal{B} = \{ V_1 \cap ... \cap V_n : V_k \in S, \ k = 1, ..., n \}.$$

(We allow the empty intersection X). Then \mathcal{B} satisfies the conditions for a base in the previous theorem (why?), so

$$\tau(S) = \{ V \subseteq X : V \text{ is a union of sets in } \mathcal{B} \}$$

is a topology. We call S a *subbase* for $\tau(S)$, and say that τ is generated by S.

Exercise:

1 Let X be a set, and let $\{\tau_i\}_{i\in I}$ be a set of topologies on X. Then

$$\tau = \bigcap_{i \in I} \tau_i$$

is a topology.

2 Let X be a set, and let $S \subseteq X$ be a subset. Show that $\tau(S)$, as defined above, is the intersection of all topologies on X which contain S.

Example: The set of infinite open intervals

 $S = \{(a, \infty)\}_{a \in \mathbb{R}} \cup \{(-\infty, a)\}_{a \in \mathbb{R}}$ is a subbase for the standard topology on \mathbb{R} .

Example: The set of open half-planes is a subbase for the standard topology on \mathbb{R}^2 .

Example: Let X be a set, and let $S = \{X \setminus \{a\}\}_{a \in X}$. What is the topology $\tau(S)$ generated by S?

Example: Let $S = \{[a, b]\}_{a < b \in \mathbb{R}}$. What is the topology $\tau(S)$ on \mathbb{R} ?

Exercise: Let S be a subbase for a topology τ . Then a sequence $\{x_n\}_{n=1}^{\infty}$ converges to x iff for every $V \in S$ such that $x \in V$, there is a K(V) such that $x_n \in V$ for $n \geq K$.

Topologies defined by modes of convergence

General procedure for defining a topology for a type of convergence:

- Start by writing down precisely what we mean by convergence
- Use the description of convergence to say what "open neighborhoods" should look like
- Oefine the topology generated by such neighborhoods

Pointwise convergence

Let X be any set, and let $Y = F(X, \mathbb{R})$ be the set of real-valued functions on X. A sequence of functions $\{f_n\}_{n=1}^{\infty}$ converges to f pointwise if

$$\forall x \in X, \epsilon > 0, \ \exists K(x, \epsilon) \text{ such that } \forall n \geq K, \text{ we have}$$

$$|f_n(x)-f(x)|<\epsilon.$$

Question: How can we rephrase that last part as f_n eventually belonging to some "neighborhood" of f?

The set

$$V = \{g \in Y : |g(x) - f(x)| < \epsilon\} \subseteq Y$$

depends on three things:

- lacktriangledown a point $x \in X$
- ② a number $f(x) \in \mathbb{R}$
- **3** a number $\epsilon > 0$

Definition

Let X be a set and let $Y = F(X, \mathbb{R})$. For each $x \in X$, $y \in \mathbb{R}$, and $\epsilon > 0$, define

$$V_{x,y,\epsilon} = \{g \in Y : |g(x) - y| < \epsilon\}.$$

Then let

$$S = \{V_{x,y,\epsilon}\}_{x \in X, y \in \mathbb{R}, \epsilon > 0}.$$

Finally, define the topology of pointwise convergence to be $\tau_{pt} = \tau(S)$, the topology generated by the subbase S.

Exercise: The topology τ_{pt} is Hausdorff.

Theorem

A sequence of functions $f_n: X \to \mathbb{R}$ converges pointwise to f iff $f_n \to f$ in the topology τ_{pt} .

A base for τ_{pt} is given by finite intersections of elements of S. We can visualise these for X = [0,1] as *gate sets*.

Weak convergence

Definition

Let \mathbf{H} be a Hilbert space, such as \mathbb{R}^n or ℓ^2 . We say that a sequence of vectors $\{\mathbf{x}_n\}_{n=1}^{\infty}$ converges *weakly* to a vector $\mathbf{x} \in \mathbf{H}$ if for every vector $\mathbf{y} \in \mathbf{H}$, we have

$$\langle \mathbf{x}_n, \mathbf{y} \rangle \to \langle \mathbf{x}, \mathbf{y} \rangle.$$

Exercise: Show that if a sequence of vectors in a Hilbert space converges in the norm topology, then it converges weakly.

Example: Consider the sequence of standard basis vector $\{\mathbf{e}_n\}_{n=1}^{\infty}$ in ℓ_2 (where $(\mathbf{e}_n)_k = \delta_{n,k}$). Then \mathbf{e}_n converges to $\mathbf{0}$ weakly but not in norm.

A sequence $\{\mathbf{x}_n\}_{n=1}^{\infty}$ converges weakly to \mathbf{x} if for every $\mathbf{y} \in \mathbf{H}$, we have $\langle \mathbf{x}_n - \mathbf{x}, \mathbf{y} \rangle \to 0$.

This means that for every $\mathbf{y} \in \mathbf{H}$ and every $\epsilon > 0$, there is a $K(\mathbf{y}, \epsilon)$ such that $\forall n \geq K$, we have

$$|\langle \mathbf{x}_n - \mathbf{x}, \mathbf{y} \rangle| < \epsilon.$$

How can we rephrase this last part as x_n eventually belonging to some "neighborhood" of x?

The set

$$V_{\mathbf{x},\mathbf{y},\epsilon} = \{\mathbf{z} : |\langle \mathbf{z} - \mathbf{x}, \mathbf{y} \rangle| < \epsilon\}$$

depends on three things: vectors \mathbf{x} and \mathbf{y} , and a number $\epsilon > 0$.

Definition

Let **H** be a Hilbert space, and for each $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ and $\epsilon > 0$, let

$$V_{\mathbf{x},\mathbf{y},\epsilon} = \{\mathbf{z} \in \mathbf{H} : |\langle \mathbf{z} - \mathbf{x}, \mathbf{y} \rangle| < \epsilon\}.$$

Let

$$S = \{V_{\mathbf{x},\mathbf{y},\epsilon}\}_{\mathbf{x},\mathbf{y}\in\mathbf{H},\epsilon>0}.$$

The *weak* topology on **H** is $\tau_{weak} = \tau(S)$.

Exercise:

- 1 The weak topology is Hausdorff.
- ② A sequence $\{\mathbf{x}_n\}_{n=1}^{\infty}$ converges weakly to \mathbf{x} in \mathbf{H} if it converges in the topology τ_{weak} .

Slice sets

The weak topology agrees with the standard topology on \mathbb{R}^n .

Definition

Let (a, b) be an open interval in \mathbb{R} . A sequence of functions is said to converge compactly if it converges uniformly on every closed subinterval $[c, d] \subseteq (a, b)$.

Exercise: Define a topology τ_{cpt} on $C((0,1),\mathbb{R})$ (the set of continuous functions from the open interval (0,1) to \mathbb{R}) such that a sequence of functions converges compactly iff it converges in the topology τ_{cpt} .

Definition

A topological space (X, τ) is said to be:

- **1** First countable if every point in X has a countable local base for τ .
- 2 Second countable if X has a countable base for τ .

Example:

- Every metric space is first countable.
- **3** The cofinite topology on \mathbb{N} is second countable.

Definition

A topological space is *separable* if it contains a countable dense subset.

Exercise:

- Every second countable topological space is separable.
- 2 Every separable *metric* space is second countable.

Exercise:

- For each $1 \le p < \infty$, the space ℓ^p is separable.
- 2 The space ℓ^{∞} is not separable.

Exercise: Show that \mathbb{R} with the cocountable topology is **not** first countable.

Recall that if (X, d) is a metric space, then $Y \subseteq X$ is closed iff Y contains the limits of all of its sequences. Is this true in a topological space?

Example: Consider \mathbb{R} with the cocountable topology.

Definition

Let (X, τ) be a topological space. A local base $\{V_n\}_{n \in \mathbb{N}}$ at a point x is called *nested* if $V_n \subseteq V_m$, $\forall n \geq m$.

Exercise: Show that a point in a first countable space always has a nested local base.

Exercise: Show that if (X, τ) is a first countable topological space and $Y \subseteq X$, then every point in cl(Y) is the limit of a sequence in Y.

Theorem

Let (X, τ) be a first countable topological space. Then a subset $Y \subseteq X$ is closed iff for every sequence in Y which converges (in X), the limit is in Y.

Nets

A sequence is a function from $\mathbb N$ to some set or space. When we talk about the limit of a sequence as $n \to \infty$, we are using the fact that the index set/domain $\mathbb N$ has a *direction*: there is a clear meaning to moving "further along" in the sequence.

Definition

A *directed set* is a set Λ , together with a binary relation \leq satisfying, for all $i, j, k \in \Lambda$:

- $0 i \leq i$
- $2 i \le j \& j \le k \implies i \le k$
- ③ $\exists m \in \Lambda$ such that $i, j \leq m$.

Example: Any totally ordered set is directed (under either \leq or \geq !).

Example:

There are many ways to make $\mathbb{N} \times \mathbb{N}$ a directed set. Here are a couple:

- $(m1, n1) \le (m_2, n_2)$ iff $m_1 \le m_2$ and $n_1 \le n_2$
- $(m1, n1) \le (m_2, n_2)$ iff either $m_1 > m_2$ or $m_1 = m_2$ and $n_1 \ge n_2$

Example: Let (X, τ) be a topological space, and fix $x \in X$. Then Nbhd(x) is a directed set, with $U \subseteq V$ iff $V \subseteq U$. (Note the direction!)

Example: Let S be the set whose *tagged partitions* of [0,1], meaning partitions of [0,1] into finitely many subintervals, together with choices of points from each of these subintervals.

Define the *mesh* of a tagged partition to be the maximum length of its subintervals. Then for two tagged partitions s and t, we say that $s \ge t$ if s has a *smaller* mesh than t.

Definition

A *net* is a function from a directed set (Λ, \leq) to a set X. As for sequences, we'll use the notation $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$.

Definition

Let (X, τ) be a topological space. A net $\{x_{\lambda}\}_{{\lambda} \in \Lambda}$ converges to a point $x \in X$ if for every neighborhood V of x, there is an $\alpha(V) \in \Lambda$ such that $x_{\lambda} \in V$ when $\lambda \geq \alpha$.

Example: Let $X = \mathbb{R}$ with the standard topology, and let $\Lambda = \mathbb{R}$ with the standard direction \leq . Then a Λ -net $\{f(x)\}_{x \in \mathbb{R}}$ is simply a function $f: \mathbb{R} \to \mathbb{R}$. What does it mean for this net to converge? What if you use the opposite direction \geq ?

Example: Let $X = \mathbb{R}$, and let $\Lambda = \mathbb{N} \times \mathbb{N}$, with one of the two directions described above. Consider the net $\{\frac{1}{n+1}\}_{(m,n)\in\mathbb{N}\times\mathbb{N}}$. Does this net converge?

Example: Let $X = \mathbb{R}$, and let Λ be the directed set of tagged partitions of [0,1]. Fix a function $f:[0,1] \to \mathbb{R}$. Then we can define the Riemann net $\{f_{\lambda}\}_{{\lambda}\in{\lambda}}$, where for a tagged partition

$$\lambda = [0, x_1], x_1^*; [x_1, x_2], x_2^*; ...; [x_{n-1}, 1], x_n^*,$$

we define the Riemann sum

$$f_{\lambda} = \sum_{k=1}^{n} f(x_{k}^{*})(x_{k} - x_{k-1}).$$

What does it mean for this net to converge?

Exercise: A net in a Hausdorff space has at most one limit.

Exercise: Let (X, τ) be a topological space, and let $Y \subseteq X$. Then any point in cl(Y) is the limit of a net in Y.

Theorem

Let (X, τ) be a topological space. The $Y \subseteq X$ is closed iff Y contains the limits of all of its convergent nets.

Comparison of topologies

Definition

Suppose τ and σ are two topologies on a set X such that $\tau \subseteq \sigma$. Then we say that τ is *coarser* and σ is *finer*.

If τ is a coarser topology than σ , and $\{x_{\lambda}\}_{{\lambda}\in{\Lambda}}$ is a net in X which converges to a point x with respect to σ , then $\{x_{\lambda}\}_{{\lambda}\in{\Lambda}}$ also converges to x with respect to τ .

Example:

- For any set X, the coarse topology is coarser than any other topology, and the discrete topology is finer than any other topology.
- ② On C[0,1], the $\|\cdot\|_{\infty}$ topology is finer than the $\|\cdot\|_p$ topology for any p, and is also finer than the pointwise topology. (It is also true that the $\|\cdot\|_p$ topology is finer than the $\|\cdot\|_q$ topology for p>q).
- **3** On C[0,1], the $\|\cdot\|_1$ topology and the pointwise topology are incomparable.
- On a Hilbert space, the norm topology is finer than the weak topology.

Definition

Let (X, τ_X) and (Y, τ_Y) be topological spaces. A bijection $f: X \to Y$ is called a *homeomorphism* if both f and f^{-1} are continuous. We say that X and Y are *homeomorphic* if there exists a homeomorphism $f: X \to Y$.

Exercise: Show that homeomorphism satisfies the properties of an equivalence relation.

Exercise: Show that \mathbb{R} is homeomorphic to (0,1) (with the standard topologies).

Exercise: Give an example of a continuous bijection that is not a homeomorphism.

Two metric (X, d_X) and (Y, d_Y) are said to be *isometric* if there is a bijection $f: X \to Y$ such that

$$d_Y(f(x_1), f(x_2)) = d_Y(x_1, x_2), \ \forall x_1, x_2 \in X.$$

Definition

Two metric spaces (X, d_X) and (Y, d_Y) are said to be *equivalent* if there is a bijection $f: X \to Y$ and constants k, K > 0 such that

$$k \cdot d_X(x_1, x_2) \le d_Y(f(x_1), f(x_2)) \le K \cdot d_X(x_1, x_2), \ \forall x_1, x_2 \in X.$$

Two normed spaces $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are said to be *equivalent* if there is a bijection $f: X \to Y$ and constants k, K > 0 such that

$$||\mathbf{x}||_{X} \le ||f(\mathbf{x})||_{Y} \le K \cdot ||\mathbf{x}||_{X}, \ \forall x_{1}, x_{2} \in X.$$

Exercise:

- Show that each of the two the relations defined above satisfies the properties of an equivalence relation.
- Show that if two normed spaces are equivalent (as normed spaces), then the two metric spaces coming from the norms are equivalent (as metric spaces).
- Show that if two metric spaces are equivalent (as metric spaces), then the two topological spaces coming from the metrics are homeomorphic.
- Give an example of two metric spaces which are not equivalent as metric spaces, but whose metric topologies are homeomorphic.

Homeomorphism invariants

Definition

A topological space (X, τ) is *connected* if it is not the union of two disjoint nonempty open subsets. A subset $Y \subseteq X$ is connected if it is connected in the subspace topology.

Exercise: Unpack the definition of what it means for a subset of a topological space to be connected.

Example:

- A discrete space (with at least two points) is not connected.
- ② The set of invertible $n \times n$ matrices, $GL_n(\mathbb{R}) \subseteq M_n(\mathbb{R})$, is not connected in the norm topology inherited from $M_n(\mathbb{R})$.

Theorem

The interval [0,1] is connected.

Theorem

Let (X, τ_X) and (Y, τ_Y) be topological spaces, and suppose $f : X \to Y$ is a continuous function. If X is connected, then so is f(X) (as a subset of Y).

Lemma

Let (X,τ) be a topological space, and suppose that $\{W_i\}_{i\in I}$ are connected subsets such that $\bigcap_{i\in I}W_i\neq\emptyset$. Then $\bigcup_{i\in I}W_i$ is connected.

Let (X, τ) be a topological space. For each $x \in X$, define

$$\mathsf{Comp}(x) = \bigcup_{\{V \subseteq X : x \in V \& V \text{ is connected}\}} V$$

Now, for points x and y in X, we'll say $x \sim^{ct} y$ if $y \in \text{Comp}(x)$.

Exercise: Show that \sim^{ct} is an equivalence relation on X.

The equivalence classes of X under \sim^{ct} are called the *connected* components of X.

Exercise: Let (X, τ) be a topological space, and let $Y \subseteq X$ be a connected subset. Show that cl(Y) is connected.

Exercise: Connected components are closed.

Example: What are the connected components of $\{0\} \cup \{\frac{1}{n}\}_{n \in \mathbb{Z}_+}$ (in the standard topology inherited from \mathbb{R})?

A topological space (X, τ) is *path-connected* if for every pair of points $x, y \in X$, there is a continuous function $f: [0,1] \to X$ such that f(0) = x and f(1) = y. A subset $Y \subseteq X$ is path-connected if it is path-connected in the subspace topology.

Theorem

If a topological space is path-connected, then it is connected.

Exercise: Consider the set $\{(x, \sin \frac{1}{x})\}_{x \in \mathbb{R} \setminus \{0\}} \cup \{(0,0)\} \subseteq \mathbb{R}^2$. Show that this space (with the subspace topology inherited from \mathbb{R}^2) is connected but not path-connected.

Example: The space $(C[0,1], \|\cdot\|_{\infty})$ is connected.

Example: The spaces (0,1) and (0,1] are not homeomorphic.

Question: Let (X, τ_X) and (Y, τ_Y) be topological spaces. How can we define a topology on the Cartesian product $X \times Y$?

Let (X, τ_X) and (Y, τ_Y) be topological spaces. The product topology on $X \times Y$ is the topology generated by the base

$$\{U \times V\}_{U \in \tau_X, V \in \tau_Y}.$$

Exercise: Show that the product topology on $\mathbb{R} \times \mathbb{R}$ (where each copy of \mathbb{R} has the standard topology) is the standard topology on \mathbb{R}^2 .

Exercise: Let \mathbb{T} be the unit circle in the complex plane, with the standard topology. Describe the product topology on $\mathbb{T} \times \mathbb{T}$.

Exercise: Let (X, τ_X) and (Y, τ_Y) be topological spaces, and suppose that \mathcal{B}_X and \mathcal{B}_Y are bases for τ_X and τ_Y , respectively. Then $\{U \times V\}_{U \in \mathcal{B}_X, V \in \mathcal{B}_Y}$ is a base for the product topology on $X \times Y$.

Question: What about an arbitrary (possibly infinite) collection of topological spaces $\{(X_i, \tau_i)\}_{i \in I}$? Can we similarly put a topology on the Cartesian product $\prod_{i \in I} X_i$?

Let $\{(X_i, \tau_i)\}_{i \in I}$ be a collection of topological spaces. The **box topology** $\prod_{i \in I} X_i$ is the topology with base

$$\mathcal{B} = \{ \prod_{i \in I} U_i : U_i \in \tau_i, \ \forall i \in I \}$$

Example: Consider \mathbb{R}^N (infinite Cartesian power of \mathbb{R} , i.e. the set of real sequences), with the box topology coming from the standard topology on each copy of \mathbb{R} . Show that the sequence

$$(1,0,0,\ldots), (0,\frac{1}{2},0,\ldots), (0,0,\frac{1}{3}),\ldots$$

does **not** converge to the zero sequence.

Let $\{(X_i, \tau_i)\}_{i \in I}$ be a set of topological spaces. The *product topology* on $\prod_{i \in I} X_i$ is the topology generated by the base

$$\{\prod_{i \in I} U_i : U_i \in \tau_i, \ \forall i \in I \& U_i = X_i \text{ for all but finitely many } i \in I \}.$$

Exercise: Show that a sequence in \mathbb{R}^N with the product topology converges iff it converges pointwise.

Exercise: More generally, let X be a set. Show that the product topology on $\mathbb{R}^X = F(X, \mathbb{R})$ is the topology of pointwise convergence.