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Convergence and topology
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Recall that if (X , d) is a metric space, then the collection O(X ) has the
following properties.

1 ∅,X ∈ O(X )

2 If {Vi}i∈I ⊆ O(X ), then
⋃
i∈I

Vi ∈ O(X ).

3 If V1,V2 ∈ O(X ), then V1 ∩ V2 ∈ O(X ).
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Definition

A topological space is a set X together with a set of subsets
τ = O(X ) ⊆ P(X ) satisfying:

1 ∅,X ∈ O(X )

2 If {Vi}i∈I ⊆ O(X ), then
⋃
i∈I

Vi ∈ O(X ).

3 If V1,V2 ∈ O(X ), then V1 ∩ V2 ∈ O(X ).
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Example: Let (X , d) be a metric space. Then we have already seen the
metric topology τd .
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Example: Let X be any set. The coarse topology is τ = {∅,X}.
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Example: Let X be any set. The discrete topology is τ = P(X ).
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Exercise: Let X be a set. Show that the discrete topology on X is the
metric topology of the discrete metric on X .
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Example: Let X be any set. The cofinite topology is

τ = {Y ⊆ X : Y C is finite } ∪ {∅}.
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Example: Let X be any set. The cocountable topology is

τ = {Y ⊆ X : Y C is countable } ∪ {∅}.
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Definition

Let (X , τ) be a topological space, and let Y ⊆ X . The subspace topology
(also called relative topology) is τ |Y = {V ∩ Y : V ∈ τ}.

MATH3611 / MATH5705 11 / 1



Exercise: If (X , d) is a metric space and Y ⊆ X , then the subspace
topology on Y coming from the metric topology on X is the same as the
topology of the subset metric on Y . ( Formally: τd |Y = τd |Y×Y

.)
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Definition

Let (X , τ) be a topological space. A subset Y ⊆ X is closed if Y C is open.

As with metric spaces, denote the closed sets by C(X )). Then we have:

1 ∅,X ∈ C(X )

2 If {Vi}i∈I ⊆ C(X ), then
⋂
i∈I

Vi ∈ C(X ).

3 If V1,V2 ∈ C(X ), then V1 ∪ V2 ∈ C(X ).
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Definition

Let (X , τ) be a topological space.

1 Let x ∈ X be a point. An open neighborhood of x is a set V ∈ τ
such that x ∈ V . A neighborhood of x is any set containing an open
neighborhood of x . We will denote the collection of neighborhoods of
x by Nbhd(x).

2 Let Y ⊆ X be a subset. The interior of Y is

Int(Y ) = {y ∈ Y : ∃Vy ∈ Nbhd(y) such that Vy ⊆ Y }.
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Exercise: Show that

Int(Y ) =
⋃

{V∈τ :V⊆Y }

V .
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Corollary

Let (X , τ) be a topological space. For any subset Y ⊆ X , the interior
Int(Y ) is an open set.
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Definition

Let (X , τ) be a topological space, and let Y ⊆ X .

1 The boundary is

Bd(Y ) = X\(Int(Y ) t Int(Y C )).

2 The closure is
cl(Y ) = Int(Y ) ∪ Bd(Y ).
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Exercise: We have cl(Y ) =
⋂

{V∈C(X ):V⊇Y }
V .
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Definition

Let (X , τ) be a topological space. A sequence {xn}∞n=1 ⊆ X converges to
x ∈ X if for every V ∈ Nbhd(x), there is a K (V ) ∈ N such that xn ∈ V
when n ≥ K .
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Definition

Let (X , τX ) and (Y , τY ) be topological spaces. A function f : X → Y is
continuous if for every V ∈ τY , we have f −1(V ) ∈ τX .

MATH3611 / MATH5705 20 / 1



Theorem

Let (X , τX ), (Y , τY ) , and (Z , τZ ) be topological spaces. If f : X → Y
and g : Y → Z are continuous functions, then (g ◦ f ) : X → Z is also
continuous.
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Example: Let X be a set with the coarse topology. Which sequences
converge to which points?
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Example: Let X = N with the cofinite topology. Which sequences
converge to which points?
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Example: Let X = R with the cocountable topology. Which sequences
converge to which points?
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Definition

A topological space X has the Hausdorff property if for every pair of
distinct points x , y ∈ X , there are neighborhoods V (x , y) ∈ Nbhd(x) and
U(x , y) ∈ Nbhd(y) such that V (x , y) ∩ U(x , y) = ∅.
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Exercise: A sequence in a Hausdorff space has at most one limit.
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Example: Consider R with the cocountable topology. Is this a Hausdorff
topology, and do sequences have unique limits?
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Example: Let X = {a, b} and let τ = {∅, {a},X}. Is this a Hausdorff
space, and do sequences have unique limits?
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Exercise: “Line with two origins”: R with two copies of 0 (call them 0a
and 0b). We want an “open ε-interval” around 0a to look like
(−ε, 0) ∪ 0a ∪ (0, ε), and similarly for 0b. How can we define this topology
precisely?
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Question: Given a set X , how can we describe a topology on X?
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Example: In R, with the standard topology, a set is open iff it is a
countable disjoint union of open intervals.
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Exercise: Show that not every open set in R2 can be expressed as a
disjoint union of open disks.
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Let (X , d) be a metric space. Notice:

1 Y ⊆ X is open iff Y is a union of open ε-balls (we’ll allow the empty
union).

2 Y ⊆ X is a neighborhood of x ∈ X iff Y contains an open ε-ball
around x .
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Definition

Let (X , τ) be a topological space.

1 A base for τ is a subset B ⊂ τ such that every V ∈ τ can be
expressed as as a union of elements of B:

V =
⋃
i∈I

Vi , where Vi ∈ B, ∀i ∈ I .

2 A local base for τ at a point x ∈ X is a collection LBx ⊆ τ of open
neighborhoods of x such that if U is any neighborhood of x , there is
a V ∈ LBx such that V ⊆ U.
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Example: If (X , τ) is a topological space, then τ is a base for itself. For
any x ∈ X , the collection of all open neighborhoods of x is a local base for
τ at x .
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Example: Let (X , d) be a metric space. Then

B = {B(x , ε)}x∈X ,ε>0

is a base for the metric topology. For any x ∈ X , the set

LBx = {B(x , ε)}ε>0

is a local base at x .
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Example: In a metric space, we don’t actually need all values of ε for a
base: the set

B = {B(x ,
1

n
)}x∈X ,n∈Z+

is a base for the metric topology. For any x ∈ X , the set

LBx = {B(x ,
1

n
)}n∈Z+

is a local base at x
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Example: Let X = R2. As we have seen, all of the metrics dp, p ≥ 1 give
the same topology. So this topology has a base consisting of open disks, a
base of open diamonds, etc. But you can describe many others - let’s try a
couple.
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Example: Let X be a set with the discrete topology. Then the set of
singleton sets B = {{x}}x∈X is a base. For each x ∈ X , the set
LBx = {{x}} is a local base at x .
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Exercise: Let (X , τ) be a topological space. If B is a base for τ , then for
any x ∈ X , the set LBx = {V ∈ B : x ∈ V } is a local base at x .
Conversely, if we have a local base LBx for each point x ∈ X , then
B =

⋃
x∈X
LBx is a base.
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Theorem

Let X be a set, and let B ⊆ P(X ) be a collection of subsets. Then

τ = {V ⊆ X : V is a union of sets in B}

is a topology iff the following conditions hold:

1
⋃

V∈B
V = X (“B covers X”)

2 for every V1 and V2 in B and every x ∈ V1 ∩ V2, there is V ∈ B such
that x ∈ V ⊆ V1 ∩ V2.
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Exercise: Let (X , τX ) and (Y , τY ) be topological spaces, and suppose B
is a base for τY . Then a function f : X → Y is continuous iff for every
V ∈ B , we have f −1(V ) ∈ τX .
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Exercise: Let (X , τ) be a topological space, and suppose that LBx is a
local base for τ at x ∈ X . Then a sequence {xn}∞n=1 converges to x iff for
every V ∈ LBx , there is a K (V ) such that xn ∈ V for all n ≥ K .
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Definition

Let X be a set, and let S ⊆ P(X ) be any collection of subsets. Define B
to be the set of all finite intersections of sets in S :

B = {V1 ∩ ... ∩ Vn : Vk ∈ S , k = 1, ..., n}.

(We allow the empty intersection X ). Then B satisfies the conditions for a
base in the previous theorem (why?), so

τ(S) = {V ⊆ X : V is a union of sets in B}

is a topology. We call S a subbase for τ(S), and say that τ is generated
by S .
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Exercise:

1 Let X be a set, and let {τi}i∈I be a set of topologies on X . Then

τ =
⋂
i∈I
τi

is a topology.

2 Let X be a set, and let S ⊆ X be a subset. Show that τ(S), as
defined above, is the intersection of all topologies on X which contain
S .
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Example: The set of infinite open intervals
S = {(a,∞)}a∈R ∪ {(−∞, a)}a∈R is a subbase for the standard topology
on R.
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Example: The set of open half-planes is a subbase for the standard
topology on R2.
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Example: Let X be a set, and let S = {X\{a}}a∈X . What is the
topology τ(S) generated by S?
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Example: Let S = {[a, b]}a<b∈R. What is the topology τ(S) on R?
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Exercise: Let S be a subbase for a topology τ . Then a sequence {xn}∞n=1

converges to x iff for every V ∈ S such that x ∈ V , there is a K (V ) such
that xn ∈ V for n ≥ K .
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Topologies defined by modes of convergence

General procedure for defining a topology for a type of convergence:

1 Start by writing down precisely what we mean by convergence

2 Use the description of convergence to say what “open
neighborhoods” should look like

3 Define the topology generated by such neighborhoods
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Pointwise convergence

Let X be any set, and let Y = F (X ,R) be the set of real-valued functions
on X . A sequence of functions {fn}∞n=1 converges to f pointwise if

∀x ∈ X , ε > 0, ∃K (x , ε) such that ∀n ≥ K , we have

|fn(x)− f (x)| < ε.

Question: How can we rephrase that last part as fn eventually belonging
to some “neighborhood” of f ?

MATH3611 / MATH5705 52 / 1



The set
V = {g ∈ Y : |g(x)− f (x)| < ε} ⊆ Y

depends on three things:

1 a point x ∈ X

2 a number f (x) ∈ R
3 a number ε > 0

MATH3611 / MATH5705 53 / 1



Definition

Let X be a set and let Y = F (X ,R). For each x ∈ X , y ∈ R, and ε > 0,
define

Vx ,y ,ε = {g ∈ Y : |g(x)− y | < ε}.

Then let
S = {Vx ,y ,ε}x∈X ,y∈R,ε>0.

Finally, define the topology of pointwise convergence to be τpt = τ(S), the
topology generated by the subbase S .
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Exercise: The topology τpt is Hausdorff.
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Theorem

A sequence of functions fn : X → R converges pointwise to f iff fn → f in
the topology τpt .
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A base for τpt is given by finite intersections of elements of S . We can
visualise these for X = [0, 1] as gate sets.
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Weak convergence

Definition

Let H be a Hilbert space, such as Rn or `2. We say that a sequence of
vectors {xn}∞n=1 converges weakly to a vector x ∈ H if for every vector
y ∈ H , we have

〈xn, y〉 → 〈x, y〉.
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Exercise: Show that if a sequence of vectors in a Hilbert space converges
in the norm topology, then it converges weakly.
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Example: Consider the sequence of standard basis vector {en}∞n=1 in `2

(where (en)k = δn,k). Then en converges to 0 weakly but not in norm.
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A sequence {xn}∞n=1 converges weakly to x if for every y ∈ H, we have
〈xn − x, y〉 → 0.

This means that for every y ∈ H and every ε > 0, there is a K (y, ε) such
that ∀n ≥ K , we have

|〈xn − x, y〉| < ε.

How can we rephrase this last part as xn eventually belonging to some
“neighborhood” of x?
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The set
Vx,y,ε = {z : |〈z− x, y〉| < ε}

depends on three things: vectors x and y, and a number ε > 0.
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Definition

Let H be a Hilbert space, and for each x, y ∈ H and ε > 0, let

Vx,y,ε = {z ∈ H : |〈z− x, y〉| < ε}.

Let
S = {Vx,y,ε}x,y∈H,ε>0.

The weak topology on H is τweak = τ(S).
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Exercise:

1 The weak topology is Hausdorff.

2 A sequence {xn}∞n=1 converges weakly to x in H if it converges in the
topology τweak .
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Slice sets
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The weak topology agrees with the standard topology on Rn.
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Definition

Let (a, b) be an open interval in R. A sequence of functions is said to
converge compactly if it converges uniformly on every closed subinterval
[c, d ] ⊆ (a, b).
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Exercise: Define a topology τcpt on C ((0, 1),R) (the set of continuous
functions from the open interval (0, 1) to R) such that a sequence of
functions converges compactly iff it converges in the topology τcpt .
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Definition

A topological space (X , τ) is said to be:

1 First countable if every point in X has a countable local base for τ .

2 Second countable if X has a countable base for τ .
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Example:

1 Every metric space is first countable.

2 R is second countable.

3 The cofinite topology on N is second countable.
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Definition

A topological space is separable if it contains a countable dense subset.

Exercise:

1 Every second countable topological space is separable.

2 Every separable metric space is second countable.
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Exercise:

1 For each 1 ≤ p <∞, the space `p is separable.

2 The space `∞ is not separable.
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Exercise: Show that R with the cocountable topology is not first
countable.
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Recall that if (X , d) is a metric space, then Y ⊆ X is closed iff Y contains
the limits of all of its sequences. Is this true in a topological space?
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Example: Consider R with the cocountable topology.
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Definition

Let (X , τ) be a topological space. A local base {Vn}n∈N at a point x is
called nested if Vn ⊆ Vm, ∀n ≥ m.

Exercise: Show that a point in a first countable space always has a nested
local base.
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Exercise: Show that if (X , τ) is a first countable topological space and
Y ⊆ X , then every point in cl(Y ) is the limit of a sequence in Y .
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Theorem

Let (X , τ) be a first countable topological space. Then a subset Y ⊆ X is
closed iff for every sequence in Y which converges (in X ), the limit is in Y .
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Nets

A sequence is a function from N to some set or space. When we talk
about the limit of a sequence as n→∞, we are using the fact that the
index set/domain N has a direction: there is a clear meaning to moving
“further along” in the sequence.
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Definition

A directed set is a set Λ, together with a binary relation ≤ satisfying, for
all i , j , k ∈ Λ:

1 i ≤ i

2 i ≤ j & j ≤ k =⇒ i ≤ k

3 ∃m ∈ Λ such that i , j ≤ m.
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Example: Any totally ordered set is directed (under either ≤ or ≥!).
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Example:
There are many ways to make N× N a directed set. Here are a couple:

(m1, n1) ≤ (m2, n2) iff m1 ≤ m2 and n1 ≤ n2

(m1, n1) ≤ (m2, n2) iff either m1 > m2 or m1 = m2 and n1 ≥ n2

.
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Example: Let (X , τ) be a topological space, and fix x ∈ X . Then
Nbhd(x) is a directed set, with U ≤ V iff V ⊆ U. (Note the direction!)
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Example: Let S be the set whose tagged partitions of [0, 1], meaning
partitions of [0, 1] into finitely many subintervals, together with choices of
points from each of these subintervals.

Define the mesh of a tagged partition to be the maximum length of its
subintervals. Then for two tagged partitions s and t, we say that s ≥ t if s
has a smaller mesh than t.
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Definition

A net is a function from a directed set (Λ,≤) to a set X . As for
sequences, we’ll use the notation {xλ}λ∈Λ.
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Definition

Let (X , τ) be a topological space. A net {xλ}λ∈Λ converges to a point
x ∈ X if for every neighborhood V of x , there is an α(V ) ∈ Λ such that
xλ ∈ V when λ ≥ α.
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Example: Let X = R with the standard topology, and let Λ = R with the
standard direction ≤. Then a Λ-net {f (x)}x∈R is simply a function
f : R→ R. What does it mean for this net to converge? What if you use
the opposite direction ≥?
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Example: Let X = R, and let Λ = N× N, with one of the two directions
described above. Consider the net { 1

n+1}(m,n)∈N×N. Does this net
converge?
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Example: Let X = R, and let Λ be the directed set of tagged partitions of
[0, 1]. Fix a function f : [0, 1]→ R. Then we can define the Riemann net
{fλ}λ∈λ, where for a tagged partition

λ = [0, x1], x∗1 ; [x1, x2], x∗2 ; ...; [xn−1, 1], x∗n ,

we define the Riemann sum

fλ =
n∑

k=1

f (x∗k )(xk − xk−1).

What does it mean for this net to converge?
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Exercise: A net in a Hausdorff space has at most one limit.
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Exercise: Let (X , τ) be a topological space, and let Y ⊆ X . Then any
point in cl(Y ) is the limit of a net in Y .
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Theorem

Let (X , τ) be a topological space. The Y ⊆ X is closed iff Y contains the
limits of all of its convergent nets.
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Comparison of topologies
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Definition

Suppose τ and σ are two topologies on a set X such that τ ⊆ σ. Then we
say that τ is coarser and σ is finer.
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If τ is a coarser topology than σ, and {xλ}λ∈Λ is a net in X which
converges to a point x with respect to σ, then {xλ}λ∈Λ also converges to
x with respect to τ .
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Example:

1 For any set X , the coarse topology is coarser than any other topology,
and the discrete topology is finer than any other topology.

2 On C [0, 1], the ‖·‖∞ topology is finer than the ‖·‖p topology for any
p, and is also finer than the pointwise topology. (It is also true that
the ‖·‖p topology is finer than the ‖·‖q topology for p > q).

3 On C [0, 1], the ‖·‖1 topology and the pointwise topology are
incomparable.

4 On a Hilbert space, the norm topology is finer than the weak
topology.
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Definition

Let (X , τX ) and (Y , τY ) be topological spaces. A bijection f : X → Y is
called a homeomorphism if both f and f −1 are continuous. We say that X
and Y are homeomorphic if there exists a homemorphism f : X → Y .
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Exercise: Show that homeomorphism satisfies the properties of an
equivalence relation.
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Exercise: Show that R is homeomorphic to (0, 1) (with the standard
topologies).
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Exercise: Give an example of a continuous bijection that is not a
homeomorphism.
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Two metric (X , dX ) and (Y , dY ) are said to be isometric if there is a
bijection f : X → Y such that

dY (f (x1), f (x2)) = dY (x1, x2), ∀x1, x2 ∈ X .

Definition

Two metric spaces (X , dX ) and (Y , dY ) are said to be equivalent if there
is a bijection f : X → Y and constants k ,K > 0 such that

k · dX (x1, x2) ≤ dY (f (x1), f (x2)) ≤ K · dX (x1, x2), ∀x1, x2 ∈ X .

Two normed spaces (X , ‖·‖X ) and (Y , ‖·‖Y ) are said to be equivalent if
there is a bijection f : X → Y and constants k,K > 0 such that

k · ‖x‖X ≤ ‖f (x)‖Y ≤ K · ‖x‖X , ∀x1, x2 ∈ X .
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Exercise:

1 Show that each of the two the relations defined above satisfies the
properties of an equivalence relation.

2 Show that if two normed spaces are equivalent (as normed spaces),
then the two metric spaces coming from the norms are equivalent (as
metric spaces).

3 Show that if two metric spaces are equivalent (as metric spaces), then
the two topological spaces coming from the metrics are
homeomorphic.

4 Give an example of two metric spaces which are not equivalent as
metric spaces, but whose metric topologies are homeomorphic.
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Homeomorphism invariants
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Definition

A topological space (X , τ) is connected if it is not the union of two
disjoint nonempty open subsets. A subset Y ⊆ X is connected if it is
connected in the subspace topology.
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Exercise: Unpack the definition of what it means for a subset of a
topological space to be connected.
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Example:

1 A discrete space (with at least two points) is not connected.

2 The set of invertible n × n matrices, GLn(R) ⊆ Mn(R), is not
connected in the norm topology inherited from Mn(R).
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Theorem

The interval [0, 1] is connected.
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Theorem

Let (X , τX ) and (Y , τY ) be topological spaces, and suppose f : X → Y is
a continuous function. If X is connected, then so is f (X ) (as a subset of
Y ).
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Lemma

Let (X , τ) be a topological space, and suppose that {Wi}i∈I are
connected subsets such that

⋂
i∈I

Wi 6= ∅. Then
⋃
i∈I

Wi is connected.
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Let (X , τ) be a topological space. For each x ∈ X , define

Comp(x) =
⋃

{V⊆X :x∈V & V is connected}

V .

Now, for points x and y in X , we’ll say x ∼ct y if y ∈ Comp(x).
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Exercise: Show that ∼ct is an equivalence relation on X .
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Definition

The equivalence classes of X under ∼ct are called the connected
components of X .
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Example: Show that a plus sign is not homeomorphic to a minus sign.
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Question: Are connected components open and/or closed?
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Exercise: Let (X , τ) be a topological space, and let Y ⊆ X be a
connected subset. Show that cl(Y ) is connected.
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Exercise: Connected components are closed.
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Example: What are the connected components of {0} ∪ { 1
n}n∈Z+ (in the

standard topology inherited from R)?
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Definition

A topological space (X , τ) is path-connected if for every pair of points
x , y ∈ X , there is a continuous function f : [0, 1]→ X such that f (0) = x
and f (1) = y . A subset Y ⊆ X is path-connected if it is path-connected in
the subspace topology.
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Theorem

If a topological space is path-connected, then it is connected.
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Exercise: Consider the set {(x , sin 1
x )}x∈R\{0} ∪ {(0, 0)} ⊆ R2. Show that

this space (with the subspace topology inherited from R2) is connected
but not path-connected.
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Example: The space (C [0, 1], ‖·‖∞) is connected.
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Example: The spaces (0, 1) and (0, 1] are not homeomorphic.
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Question: Let (X , τX ) and (Y , τY ) be topological spaces. How can we
define a topology on the Cartesian product X × Y ?
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Definition

Let (X , τX ) and (Y , τY ) be topological spaces. The product topology on
X × Y is the topology generated by the base

{U × V }U∈τX ,V∈τY .
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Exercise: Show that the product topology on R× R (where each copy of
R has the standard topology) is the standard topology on R2 .
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Exercise: Let T be the unit circle in the complex plane, with the standard
topology. Describe the product topology on T× T.
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Exercise: Let (X , τX ) and (Y , τY ) be topological spaces, and suppose
that BX and BY are bases for τX and τY , respectively. Then
{U × V }U∈BX ,V∈BY is a base for the product topology on X × Y .
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Question: What about an arbitrary (possibly infinite) collection of
topological spaces {(Xi , τi )}i∈I ? Can we similarly put a topology on the
Cartesian product

∏
i∈I

Xi?
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Definition

Let {(Xi , τi )}i∈I be a collection of topological spaces. The box topology∏
i∈I

Xi is the topology with base

B = {
∏
i∈I

Ui : Ui ∈ τi , ∀i ∈ I}
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Example: Consider RN (infinite Cartesian power of R, i.e. the set of real
sequences), with the box topology coming from the standard topology on
each copy of R. Show that the sequence

(1, 0, 0, ...), (0,
1

2
, 0, ...), (0, 0,

1

3
), ...

does not converge to the zero seqeunce.
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Definition

Let {(Xi , τi )}i∈I be a set of topological spaces. The product topology on∏
i∈I

Xi is the topology generated by the base

{
∏
i∈I

Ui : Ui ∈ τi , ∀i ∈ I & Ui = Xi for all but finitely many i ∈ I }.
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Exercise: Show that a sequence in RN with the product topology
converges iff it converges pointwise.

MATH3611 / MATH5705 132 / 1



Exercise: More generally, let X be a set. Show that the product topology
on RX = F (X ,R) is the topology of pointwise convergence.
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