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A continuous real valued function on a closed and bounded interval [a, b]
achieves a maximum. Both “closed” and “bounded” are necessary!
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Definition

A topological space (X , τ) is compact if for every {Vi}i∈I ⊆ τ such that

X =
⋃
i∈I

Vi ,

there is a finite subset {i1, ..., in} ⊆ I such that

X =
n⋃

k=1

Vik .

A subset Y ⊆ X is compact iff it is compact in the subspace topology.

In words: “Every open cover has a finite subcover”.
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Exercise:

1 A coarse topological space is compact.

2 A discrete topological space is compact iff it is finite.
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Compactness in terms of closed sets: A topological space (X , τ) is
compact if every collection {Vi}i∈I of closed subsets of X such that all
finite intersections Vi1 ∩ ... ∩ Vin are nonempty has nonempty intersection.
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Question: What does is it mean for a subset Y ⊆ X to be compact?
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Theorem

The interval [0, 1] is compact.
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Theorem

Let (X , τX ) and (Y , τY ) be compact topological spaces. Then X × Y is
compact (in the product topology).
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Corollary: Sets of the form [a, b]n ⊆ Rn are compact (with the standard
topology).
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Exercise: Let (X , τ) be a compact topological space. If Y is a closed
subset of X , then Y is compact.
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Exercise: Let (X , τ) be a Hausdorff space. If Y is a compact subset of X ,
then Y is closed.
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Example: In a coarse topological space, every subset is compact but only
the empty set and the whole space are closed.
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Theorem (Heine-Borel)

A subset X ⊆ Rn is compact iff it is closed and bounded.
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Theorem (Bolzano-Weierstrass)

Every bounded sequence of real numbers has a convergent subsequence.

MATH3611/5705: Compactness 14 / 64



To prove the B-W Theorem, we first show:

Lemma

Every sequence of reals numbers has a monotone subsequence.
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Corollary

Every bounded sequence in Rn has a convergent subsequence.
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Definition

A topological space (X , τ) is called sequentially compact if every sequence
in X has a convergent subsequence. Similarly, a subset Y ⊆ X is
sequentially compact if it is sequentially compact in the subspace topology.
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Theorem

Let X be a subset of Rn. The following are equivalent:

1 X is compact

2 X is sequentially compact

3 X is closed and bounded

MATH3611/5705: Compactness 18 / 64



Theorem

Let (X , τX ) and (X , τY ) be topological spaces. If f : X → Y is continuous
and X is compact, then f (X ) ⊆ Y is compact.
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Corollary (Min-max Theorem)

Let f : [a, b]→ R be a continuous function. Then f attains maximum and
minimum values.
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For a function f : X → Y , where (X , dX ) and (Y , dY ) are metric spaces:

f is continuous if ∀x ∈ X , ∀ε > 0, ∃δ(x , ε) such that dY (f (x ′), f (x)) < ε
whenever dX (x , x ′) < δ.
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Definition

Let (X , dX ) and (Y , dY ) be metric spaces. A function f : X → Y is said
to be uniformly continuous if ∀ε > 0, ∃δ(ε) such that dY (f (x ′), f (x)) < ε
whenever dX (x , x ′) < δ.
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Exercise: If a function f : X → Y is Lipschitz continuous, then it is
uniformly continuous.
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Example: The function f (x) =
√
x on [0, 1] is not Lipschitz continuous

but is uniformly continuous.
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Theorem

Let (X , d) be a compact metric space, and let f : X → R be a continuous
function. Then f is uniformly continuous.
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Exercise: Let f : [a, b]→ R be Riemann integrable, and let
g : [a, b]× [a, b]→ R be continuous. Show that

h(x) =

b∫
a

f (t)g(x , t) dt

is a continuous function of x .
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Question: Does the Heine-Borel Theorem apply in an arbitrary metric
space?
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Example: An infinite discrete metric space is complete and bounded, but
is not compact.
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Example: Consider the closed unit ball in (C [0, 1], ‖·‖∞):

B1 = {f ∈ C [0, 1] : ‖f ‖∞ ≤ 1}.

This is a closed and bounded set. Yet the sequence of functions {xn}∞n=1

does not have any convergent subsequence in (C [0, 1], ‖·‖∞) (why not?)
Therefore B1 is not sequentially compact.
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Definition

A metric space (X , d) is said to be totally bounded if for every ε > 0,
there is a finite set {x1, ..., xn} ⊆ X such that

X =
n⋃

k=1

B(xk , ε).

Similarly, a subset of a metric space is totally bounded if it is totally
bounded with respect to the subset metric.
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Exercise: Let (X , d) be a metric space, and let Y ⊆ X be a totally
bounded subset.

1 Every subset of Y is totally bounded.

2 The closure of Y is totally bounded.
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Exercise: Show that a bounded subset of Rn is totally bounded.
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Exercise: Show that, for any p ≥ 1, the closed unit ball in `p

{x ∈ `p : ‖x‖p ≤ 1}

is not totally bounded.
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Example: More generally, it can be shown that any ball of positive radius
in an infinite-dimensional Banach space is not totally bounded.
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Theorem

Let (X , d) be a metric space. The following are equivalent:

1 X is compact

2 X is sequentially compact

3 X is complete and totally bounded
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Compact =⇒ sequentially compact
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Sequentially compact =⇒ complete and totally bounded
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Complete and totally bounded =⇒ compact
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Question: A metric space is compact iff it is complete and totally
bounded. But what does “totally bounded” actually mean for a set of
functions in (C [0, 1], ‖·‖∞)?
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Definition

Let (X , dX ) and (Y , dY ) be metric spaces. A subset S ⊆ C (X ,Y ) is said
to be:

1 Pointwise equicontinuous if

∀x ∈ X , ε > 0, ∃δ(x , ε), such that ∀f ∈ S ,

dY (f (x ′), f (x)) < ε whenever dX (x ′, x) < δ.

2 Uniformly equicontinuous if

∀ε > 0, ∃δ(ε), such that ∀f ∈ S

dY (f (x ′), f (x)) < ε whenever dX (x ′, x) < δ.
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Theorem

Let (X , dX ) and (Y , dY ) be metric spaces, with X compact. Then
S ⊆ C (X ,Y ) is pointwise equicontinuous iff it is uniformly equicontinuous.

MATH3611/5705: Compactness 41 / 64



Example: Consider a sequence of “spike functions” {fn}∞n=2 in C [0, 1],
where each fn is 0 outside the interval (n−2n , n−1n ) and spikes linearly to 1
and then back down to 0 within that interval. This sequence is uniformly
bounded, but is not equicontinuous.

Note: On the open interval (0, 1), the above sequence is pointwise
equicontinuous but not uniformly equicontinuous.
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Exercise: Let S ⊆ C [0, 1] be a set of functions which are all differentiable
on (0, 1). Suppose there exists a constant K such that
|f ′(x)| ≤ K , ∀f ∈ S , x ∈ (0, 1). Then S is uniformly equicontinuous.
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Theorem (Arzela-Ascoli)

A bounded subset of (C [0, 1], ‖·‖∞) is totally bounded iff it is
equicontinuous.

(More generally, [0, 1] can be replace by any compact metric space).
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Corollary

A subset of (C [0, 1], ‖·‖∞) is compact iff it is closed, bounded and
equicontinuous.
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Corollary

A uniformly bounded and equicontinuous sequence of functions on a
closed interval [a, b] has a uniformly convergent subsequence.
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Example: Define a sequence of functions in C [0, 1] by

gn(x) = cos(n) +

x∫
0

sin(n
√
t) dt.

Show that this sequence does not converge but has a uniformly convergent
subsequence.
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Theorem (Weierstrass Approximation Theorem)

Let f be a continuous function on a closed, bounded interval [a, b]. For
any ε > 0, there is a polynomial function p(x) such that

‖f − p‖∞ < ε.
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Definition

Consider a function f ∈ C [0, 1]. The nth Bernstein polynomial for f is
defined as

Bf ,n(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k , x ∈ [0, 1].

Note that Bf ,n(x) is equal to the expected value E
(
f
(
X
n

))
, where X is a

random variable with binomial distribution B(n, x).

On the other hand f (x) = f
(nx
n

)
= f

(
E(X )
n

)
.

So

|f (x)− Bf ,n(x)| =

∣∣∣∣f (E(X )

n

)
− E

(
f

(
X

n

))∣∣∣∣ .
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Constructive proof of W.A.T. - show that {Bn,f }∞n=1 converges
uniformly to f .

As we will see, W.A.T. is a special case of a much more general result
called the Stone-Weierstrass Theorem.
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Exercise: Show that (C [0, 1], ‖·‖∞) is separable.

MATH3611/5705: Compactness 51 / 64



Definition

Let X and Y be sets. A set S of functions between X and Y is said to
separate points if for every pair of distinct points x , y ∈ X , there is a
function f ∈ S such that f (x) 6= f (y).
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Theorem (Urysohn’s Lemma)

Let X be a compact Hausdorff space. Then C (X ,R) separates points.
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Let k be a vector space, and let X be a set. As we have seen, F (X , k)
(the set of functions from X to k) is a vector space with pointwise
operations. Similarly, any (nonempty) subset of F (X , k) which is closed
under pointwise addition and scalar multiplication is a vector space.

Definition

An algebra of functions is a vector space of functions with pointwise
operations which is also closed under pointwise multiplication of functions.
An algebra of functions is called unital if it contains the constant function
1.
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Example: Let (X , τ) be a topological space. Then C (X ,R) is a unital
algebra.
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Theorem (Stone-Weierstrass Theorem)

Let X be a compact Hausdorff space, and let A ⊆ C (X ,R) be a unital
subalgebra. Then A is dense with respect to ‖·‖∞ iff A separates points.
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Example: Consider the compact Hausdorff space X = [0, 1]. The function
f (x) = x by itself separates the points of [0, 1]. The smallest unital
algebra containing x is the set of polynomials functions. Therefore the set
of polynomials is uniformly dense in C [0, 1] (i.e. W.A.T.)
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Question: What about complex functions?

Example: Let X = T (the unit circle in the complex plane). The function
f (z) = z separates the points of T. The smallest complex unital algebra
containing z is the set of complex polynomials functions.

But this algebra is not uniformly dense in C (T,C). For example, g(z) = 1
z

cannot be uniformly approximated by complex polynomials on T (why
not?).
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Definition

An algebra of complex-valued functions is called a ∗-algebra if it is closed
under pointwise complex conjugation.
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Theorem (Stone-Weierstrass Theorem - complex version)

Let X be a compact Hausdorff space, and let A ⊆ C (X ,C) be a unital
∗-subalgebra. Then A is dense with respect to ‖·‖∞ iff A separates points.
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Example: Let X = T. The function f (z) = z separates the points of T.
The smallest complex unital ∗-algebra containing z is the set of Laurent
polynomials functions (i.e. polynomials with negative powers of z
allowed). By the Stone-Weierstrass Theorem, this algebra is uniformly
dense in C (T,C).
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Recall that a closed ball in an infinite-dimensional Banach is not compact
in the norm topology.

For this reason, it is sometimes useful when studying Banach spaces to
work with coarser topologies than the norm topology (for example the
weak topology on a Hilbert space).
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Theorem (Tychonoff’s Theorem)

Let {(Xi , τi )}i∈I be a collection of compact topological spaces. Then∏
i∈I

Xi is compact in the product topology.

MATH3611/5705: Compactness 63 / 64



Theorem

Let H be a Hilbert space. The closed unit ball in H (i.e.
{x ∈ H : ‖x‖ ≤ 1} ) is compact in the weak topology.

This is a special case of an important result in functional analysis called
the Banach-Alaoglu Theorem.
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