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Roughly speaking, analysis (in the mathematical sense) is a generalization
of calculus. But the topics, questions, and methods that come up often
look quite different than what you may have seen in first and second year
calculus courses! Rather than precisely defining analysis, in this
introduction we will consider a few questions and concepts to motivate the
material that we will study in this course.
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Newton’s method to find the square root of 2

(from desmos.com )

We can use calculus to help solve various types
of equations. For example, suppose we want
to find the square root of 2, or equivalently
a (positive) root of the differentiable function

f (x) = x2 − 2.

Newton’s method
is an iterative procedure, where we start
with an initial value x0, and then from each xn
we choose the next value xn+1 to be the root
of the linear function which passes through
the point (xn, f (xn)) and has slope f ′(xn):

xn+1 = xn −
f (xn)

f ′(xn)
.

The square root of 2 is clearly between 1 and 2, so we might try starting at
x0 = 1. It turns out that Newton’s method then actually gives a sequence which
converges to

√
2.
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Now let’s consider a differential equation. Differential equations are
ubiquitous across all areas of science, and are often used to model the
dynamics of systems (for example an epidemic spread). Consider the
differential equation

y ′ = cos(xy).

Question: Does this equation have a solution? And if so can we find one,
or at least approximate one?

Here it’s understood that x is a real variable, and y = y(x) is function. To
specify a solution uniquely, we would presumably need an initial condition
such as

y(0) = 1.

In this case, the variable y that we are trying to solve for is not a number,
but is rather a function. If we are to have any hope of using an iterative
method to approximate a solution to a differential equation, we’ll need to
develop a theory of convergence for functions.

MATH3611 / MATH5705 4 / 14



For a function f : R → R,
lim
x→a

f (x) = L

means
“For any ϵ > 0, there is a δ(ϵ) such that |f (x)− L| < ϵ when |x − a| < δ.”

The absolute value of a difference corresponds to distance on the real line:

d(x , y) = |x − y |.

Or:

“For any ϵ > 0, there is a δ(ϵ) such that d(f (x), L) < ϵ whenever
d(x , a) < δ,”

where by definition d(x , y) = |x − y |. This generalizes nicely to two
dimensions. For f : R2 → R, what does it mean to say

lim
(x ,y)→(a,b)

f (x , y) = L?

“For any ϵ > 0, there is a δ(ϵ) such that d(f (x , y), L) < ϵ whenever
d((x , y), (a, b)) < δ.”
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Question: What does d((x1, y1), (x2, y2)) mean in R2?

Some possibilities:√
|x1 − x2|2 + |y1 − y2|2 (“Euclidean distance” or “2-distance ”)

|x1 − x2|+ |y1 − y2| (“1-distance” )

(|x1− x2|p + |y1− y2|p)
1
p for some fixed number p > 1 (“p-distance” )

max{|x1 − x2|, |y1 − y2|} (“∞-distance”)
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Question: What does the set

{(x , y) : dp((x , y), (0, 0)) ≤ 1}

look like for p = 1, 2, 3,∞?
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Question: In the definition of a limit for f : R2 → R, does it matter which
p we use? Why or why not?

The answer is that for the definition of limits it doesn’t matter which p we
use. Try to think about why the two definitions of limit (using p = 1 or
p = 2) are equivalent. Later in the course, we will say that d1 and d2 are
different “metrics” but give the same “topology”. The metric is the notion
of distance, while the topology is the notion of convergence (we will give
precise definitions later). As we have seen for R and R2, one way to define
limits/convergence is in terms of distance between points. Two main
abstractions in this course:

Metric - an abstract notion of distance in a space (not necessarily R
or Rn)

Topology - an abstract notion of convergence (even in spaces when
there is no underlying notion of distance).
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The notion of p-distance makes sense in Rn. For fixed p > 1 we can define
for the p-distance of two vectors

x = (x1, ..., xn) and y = (y1, ..., yn)

as

dp(x, y) =

(
n∑

k=1

|xk − yk |p
) 1

p

;

and
d∞(x, y) = max{|x1 − y1|, ..., |xn − yn|}.

Question: What about for infinite sequences x = (x1, x2, ...) and
y = (y1, y2, ...)?

Answer: Not in general. The formula above would now require an infinite
sum, and for arbitrary sequences this doesn’t necessarily converge. As we’ll
see later in the course, we can sometimes work around this by restricting
our attention to only those sequences for which the appropriate sum
converges (this condition depends on p).
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What about functions? How do we measure the “distance” between two
functions? For simplicity let’s restrict our attention to the continuous
real-valued functions on the interval [0, 1], which we call C [0, 1].

Question: How can we define the distance between two functions in
C [0, 1]?
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Some possibilities:

The “maximum vertical gap” between the graphs of the functions -
formally:

d∞(f , g) = sup
x∈[0,1]

|f (x)− g(x)|.

(Question: does this always exist?)

The area between the graphs of the functions - formally:

d1(f , g) =

1∫
0

|f (x)− g(x)| dx .

(Question: does this always exist?)

For any p > 1, we can define dp in a similar way:

dp(f , g) =

 1∫
0

|f (x)− g(x)|p dx


1
p

.
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Let’s look at a couple of examples in C [0, 1].

Example

Let

fn(x) =

{
n − n2x 0 ≤ x ≤ 1

n

0 1
n < x ≤ 1

.

(Draw it!) What is the distance between fn and the constant 0 function?
(For d1 and d∞). (Depends on the metric!) Try d1 and d∞.
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Example

What is the distance between g(x) = xn and the constant 0 function on
[0, 1]?
(Again, answer for both d1 and d∞.)
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Analysis on vector spaces

As we can see from these examples, deciding what is meant by distance or
convergence is not so straightforward once we are dealing with
complicated things like functions, and the “correct” definition will depend
on what you are trying to do. This will be a major theme in this course. In
many examples of interest, there is also an underlying vector space
structure, and a large part of modern analysis deals with studying
convergence in (usually infinite-dimensional) vector spaces.

Exercise

Consider C [0, 1] as a vector space over R (with pointwise operations).
Show that this vector space is not finite-dimensional.

Before getting on to our main business of analysis, we will take a brief
detour into the foundations of mathematics in Chapter 1: Sets and
Cardinality.
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