MATH3611 — Final Solutions

Aayush Bajaj | z5362216

September 23, 2025

Contents

	2
	2
	2
	2
	2

- 1. (15 points) Set Theory
 - (a) (5 points) i. $|A| \leq |B|$
 - ii. |A| = |B|
 - iii. |A| < |B|
 - iv. Prove that $|\mathbb{N}| = |2\mathbb{N}|$.
 - (b) (10 points) i. State the Schroder–Bernstein Theorem. This is also known as the Cantor Bernstein Theorem.
 - ii. If A is infinite, show $|\mathbb{N}| \leq |A|$.
 - iii. Deduce $|A \cup \mathbb{N}| = |A|$ for infinite A.
 - iv. If A is countably infinite prove that $|\mathbb{N}| \leq |A|$.
- 2. (13 points) Metric Spaces
 - (a) Define a Metric Space (X, d).
 - (b) Define an open set $Y \subseteq X$.
 - (c) Define a boundary point.
 - (d) (4 points) Prove that the interior of Y is open.
- 3. (5 points) Suppose $\limsup x_n = a$ and $\limsup x_n = b$. Prove a = b.
- 4. (11 points) Norm Topology
 - (a) Define a Normed Space.
 - (b) Define a Banach Space.
 - (c) Consider a Cauchy sequence $(f_n)_{n\geq 1}$ in the $\|\cdot\|_{\infty}$ norm. Prove that (f_n) converges pointwise.
 - (d) Hence or otherwise prove that the limit f is continuous (under the standard hypothesis).
 - (e) Show c_{00} with the ℓ_1 metric is not complete.
- 5. (11 points) Topology, Compactness
 - (a) Define a Hausdorff Space.
 - (b) Define a compact space.
 - (c) Consider

$$\tau = \{\varnothing, \mathbb{R}\} \ \cup \ \{(-t,t) \subset \mathbb{R}: \ t > 0\}.$$

- i. Define a topology.
- ii. Prove τ is a topology on \mathbb{R} .
- iii. Find the limit(s) of the sequence $x_n = (-1)^n$ in (\mathbb{R}, τ) .
- (d) Let X be Hausdorff and $Y \subseteq X$ compact. Prove Y is closed in X.