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§ Question 1
Lemma 1.1. For x, y ∈ R3 define

d1(x, y) =
3∑

i=1

|xi − yi|, d∞(x, y) = max
1≤i≤3

|xi − yi|.

Then
d∞(x, y) ≤ d1(x, y) ≤ 3 d∞(x, y).

Proof. Lower bound. The maximum of non‑negative numbers is never larger than their sum, so d∞(x, y) ≤
d1(x, y).
Upper bound. Since each term |xi − yi| ≤ d∞(x, y), summing over i = 1, 2, 3 yields d1(x, y) ≤ 3 d∞(x, y).

Theorem 1.2. The metrics d1 and d∞ induce the same topology on R3.

Proof. Fix x ∈ R3 and ε > 0.
d1‑open =⇒ d∞‑open. If y ∈ B1(x, ε), then d∞(x, y) ≤ d1(x, y) < ε; hence

B1(x, ε) ⊂ B∞(x, ε).

Thus every d1‑open set is d∞‑open.
Converse ( ⇐= ). Let y ∈ B∞(x, ε). By the lemma, d1(x, y) ≤ 3 d∞(x, y) < 3ε, so

B∞(x, ε) ⊂ B1(x, 3ε).

Hence every d∞‑open set is d1‑open.
Because each topology is contained in the other, they coincide.
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§ Question 2
Definition 2.1.

τ = {∅ } ∪ {U ⊂ R : R \ U is countable }

Theorem 2.1 (A sequence (xn)n∈N ⊂ R converges in (R, τ) iff it is eventually constant).

∃K ∈ N : ∀n ≥ K : xn = x ⇐⇒ xn
τ−→ x

Proof. ( =⇒ ) Assume xn
τ−→ x. Set

C := {xn : xn 6= x }

to be the countable collection of terms different from x, and set

U := R \ C ∪ {x }

to be the neighbourhood.

Since R \ U = C is countable, U ∈ τ and x ∈ U .

By convergence, there exists K such that xn ∈ U for all n ≥ K. But if any n ≥ K with xn 6= x, then
xn ∈ C = R \ U which contradicts xn ∈ U . Hence xn = x ∀n ≥ K.

( ⇐= ) Conversely, suppose xn = x for all n ≥ K. Let U ∈ τ be any neighbourhood of x. Then xn ∈ U
whenever n ≥ K, so xn

τ−→ x.

Corollary 2.1.1. For the sequence

xn =

1, n odd,

1− 1

n
, n even

no tail is constant, hence
xn 6 τ−→ x for any x ∈ R

Proof. The set of odd indices is infinite so x2k−1 = 1 occurs infinitely often. Likewise, the even subsequence
(1− 1

2k
)k≥1 takes infinitely many distinct values. Thus the sequence (xn)n∈N cannot be eventually constant

and by 2.1 does not converge in the co-countable topology.
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§ Question 3
Theorem 3.1 (Uniform convergence on closed sub‑intervals). Let

S(x) =
∞∑
n=0

anx
n, x ∈ R,

be a power series with (finite) radius of convergence R > 0. Then for every ε > 0 the series S converges
uniformly on the closed interval

[−R + ε, R− ε].

Proof. Fix ε > 0 and set r := R− ε > 0. Let I = [− r, r].

For n ∈ N define fn(x) := anx
n on I.

Because |x| ≤ r for all x ∈ I,
|fn(x)| ≤ |an| r n =: Mn (x ∈ I).

Since |r| < R, the power series converges absolutely at x∗ = r; hence the series
∑∞

n=0Mn =
∑∞

n=0 |an|r n

converges.

With |fn(x)| ≤ Mn for every x ∈ I, the Weierstrass M ‑test guarantees that
∑∞

n=0 fn(x) converges
uniformly on I, i.e.

∞∑
n=0

anx
n converges uniformly on [−R + ε,R− ε].
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§ Question 4
For each integer k ≥ 1 define

fk : [0, 1] −→ R, fk(x) = max{0, 1− 4k2|x− 1
k2
|}.

a) Sketches of f1, f2, f3.

x

y

f1

(
3
4
, 0

)

(
1, 1

)

(
5
4
, 0

)
f2

( 3
16
, 0)

(1
4
, 1)

( 5
16
, 0)

f3

(1, 0)( 1
12
, 0)

(1
9
, 1)

( 5
36
, 0)

b) Support of fk.
Solve 1− 4k2|x− 1

k2
| > 0 ⇐⇒ |x− 1

k2
| < 1

4k2
. Hence

supp(fk) =
(

3
4k2

, 5
4k2

)
∩ [0, 1], k ≥ 1

whereby,
supp(f1) = (3

4
, 1], supp(fk) =

(
3

4k2
, 5

4k2

)
(k ≥ 2).

c) Pointwise convergence and failure of uniform convergence of

S(x) :=
∞∑
k=1

fk(x)

k
, x ∈ [0, 1].

(i) Pointwise convergence.
Fix x ∈ (0, 1]. The inequality 3

4k2
< x < 5

4k2
is equivalent to

A(x) :=
√

3
4x

< k < B(x) :=
√

5
4x
.

Whose length is

L(x) := B(x)− A(x) =

√
5−

√
3

2
√
x

<
0.253√

x
< ∞,

so the interval holds at most dL(x)e integers. Hence only finitely many k satisfy fk(x) 6= 0;
the series S(x) reduces to a finite sum and converges. For x = 0 every term is 0, so S(0) = 0.
Thus S converges for every x ∈ [0, 1].
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(ii) Failure of uniform convergence.
Let SN(x) :=

∑N
k=1

fk(x)
k

. For N ≥ 10 choose

xN :=
1

N2
∈ [0, 1].

Claim 1. For every k ∈ [N + 1, N + bN/10c] we have fk(xN) ≥ 1
2
.

Proof. For such k,

∣∣xN − 1
k2

∣∣ = |k2 −N2|
k2N2

=
(k −N)(k +N)

k2N2
≤ (N/10)(11N/10)

k2N2
<

11

100 k2
<

1

8 k2
<

1

4k2
,

so xN ∈ supp(fk) and fk(xN) = 1− 4k2|xN − 1
k2
| ≥ 1

2
.

Therefore the tail TN(x) :=
∑

k>N
fk(x)
k

satisfies

TN(xN) ≥
1

2

N+bN/10c∑
k=N+1

1

k
≥ 1

2
ln
(
1 + 1

10

)
=: c > 0 (N ≥ 10),

using
∑n

k=m
1
k
≥ ln n

m
,∀n,m ∈ N, n ≥ m ≥ 1:

‖S − SN‖∞ = sup
x∈[0,1]

|S(x)− SN(x)| ≥ |TN(xN)| ≥ c for all N ≥ 10,

so ‖S − SN‖∞ 6→ 0. The convergence of the series is therefore not uniform on [0, 1].
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