MATH3611 | Assignment 3

Aayush Bajaj | z
5362216 $\label{eq:July 28, 2025} \text{July 28, 2025}$

.....

Contents

1	Question 1		2
2	Question 2		3
3	Question 3		4

4 Question 4 5

Lemma 1.1. For $x, y \in \mathbb{R}^3$ define

$$d_1(x,y) = \sum_{i=1}^{3} |x_i - y_i|, \qquad d_{\infty}(x,y) = \max_{1 \le i \le 3} |x_i - y_i|.$$

Then

$$d_{\infty}(x,y) \leq d_1(x,y) \leq 3 d_{\infty}(x,y).$$

Proof. Lower bound. The maximum of non-negative numbers is never larger than their sum, so $d_{\infty}(x,y) \leq d_1(x,y)$.

Upper bound. Since each term $|x_i - y_i| \le d_{\infty}(x, y)$, summing over i = 1, 2, 3 yields $d_1(x, y) \le 3 d_{\infty}(x, y)$.

Theorem 1.2. The metrics d_1 and d_{∞} induce the same topology on \mathbb{R}^3 .

Proof. Fix $x \in \mathbb{R}^3$ and $\varepsilon > 0$.

 d_1 -open $\implies d_{\infty}$ -open. If $y \in B_1(x,\varepsilon)$, then $d_{\infty}(x,y) \leq d_1(x,y) < \varepsilon$; hence

$$B_1(x,\varepsilon) \subset B_{\infty}(x,\varepsilon)$$
.

Thus every d_1 -open set is d_{∞} -open.

Converse (\iff). Let $y \in B_{\infty}(x,\varepsilon)$. By the lemma, $d_1(x,y) \leq 3 d_{\infty}(x,y) < 3\varepsilon$, so

$$B_{\infty}(x,\varepsilon) \subset B_1(x,3\varepsilon).$$

Hence every d_{∞} -open set is d_1 -open.

Because each topology is contained in the other, they coincide.

Definition 2.1.

$$\tau = \{ \varnothing \} \cup \{ U \subset \mathbb{R} : \mathbb{R} \setminus U \text{ is countable } \}$$

Theorem 2.1 (A sequence $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ converges in (\mathbb{R},τ) iff it is eventually constant).

$$\exists K \in \mathbb{N} : \forall n \ge K : x_n = x \iff x_n \xrightarrow{\tau} x$$

Proof. (\Longrightarrow) Assume $x_n \xrightarrow{\tau} x$. Set

$$C := \{ x_n : x_n \neq x \}$$

to be the countable collection of terms different from x, and set

$$U := \mathbb{R} \setminus C \cup \{x\}$$

to be the neighbourhood.

Since $\mathbb{R} \setminus U = C$ is countable, $U \in \tau$ and $x \in U$.

By convergence, there exists K such that $x_n \in U$ for all $n \geq K$. But if any $n \geq K$ with $x_n \neq x$, then $x_n \in C = \mathbb{R} \setminus U$ which contradicts $x_n \in U$. Hence $x_n = x \ \forall n \geq K$.

(\Leftarrow) Conversely, suppose $x_n = x$ for all $n \geq K$. Let $U \in \tau$ be any neighbourhood of x. Then $x_n \in U$ whenever $n \geq K$, so $x_n \xrightarrow{\tau} x$.

Corollary 2.1.1. For the sequence

$$x_n = \begin{cases} 1, & n \text{ odd,} \\ 1 - \frac{1}{n}, & n \text{ even} \end{cases}$$

no tail is constant, hence

$$x_n \not\xrightarrow{\mathcal{T}} x \quad for \ any \ x \in \mathbb{R}$$

Proof. The set of odd indices is infinite so $x_{2k-1} = 1$ occurs infinitely often. Likewise, the even subsequence $(1 - \frac{1}{2k})_{k \ge 1}$ takes infinitely many distinct values. Thus the sequence $(x_n)_{n \in \mathbb{N}}$ cannot be eventually constant and by 2.1 does not converge in the co-countable topology.

Theorem 3.1 (Uniform convergence on closed sub-intervals). Let

$$S(x) = \sum_{n=0}^{\infty} a_n x^n, \qquad x \in \mathbb{R},$$

be a power series with (finite) radius of convergence R > 0. Then for every $\varepsilon > 0$ the series S converges uniformly on the closed interval

$$[-R+\varepsilon, R-\varepsilon].$$

Proof. Fix $\varepsilon > 0$ and set $r := R - \varepsilon > 0$. Let I = [-r, r].

For $n \in \mathbb{N}$ define $f_n(x) := a_n x^n$ on I.

Because $|x| \le r$ for all $x \in I$,

$$|f_n(x)| \le |a_n| r^n =: M_n \quad (x \in I).$$

Since |r| < R, the power series converges absolutely at $x^* = r$; hence the series $\sum_{n=0}^{\infty} M_n = \sum_{n=0}^{\infty} |a_n| r^n$ converges.

With $|f_n(x)| \leq M_n$ for every $x \in I$, the Weierstrass M-test guarantees that $\sum_{n=0}^{\infty} f_n(x)$ converges uniformly on I, i.e.

$$\sum_{n=0}^{\infty} a_n x^n \text{ converges uniformly on } [-R + \varepsilon, R - \varepsilon].$$

For each integer $k \ge 1$ define

$$f_k: [0,1] \longrightarrow \mathbb{R}, \qquad f_k(x) = \max\{0, 1 - 4k^2 | x - \frac{1}{k^2} | \}.$$

a) Sketches of f_1, f_2, f_3 .

b) Support of f_k .

Solve $1 - 4k^2|x - \frac{1}{k^2}| > 0 \iff |x - \frac{1}{k^2}| < \frac{1}{4k^2}$. Hence

$$supp(f_k) = \left(\frac{3}{4k^2}, \frac{5}{4k^2}\right) \cap [0, 1], k \ge 1$$

whereby,

$$\operatorname{supp}(f_1) = (\frac{3}{4}, 1], \quad \operatorname{supp}(f_k) = (\frac{3}{4k^2}, \frac{5}{4k^2}) \ (k \ge 2).$$

c) Pointwise convergence and failure of uniform convergence of

$$S(x) := \sum_{k=1}^{\infty} \frac{f_k(x)}{k}, \quad x \in [0, 1].$$

(i) Pointwise convergence.

Fix $x \in (0,1]$. The inequality $\frac{3}{4k^2} < x < \frac{5}{4k^2}$ is equivalent to

$$A(x) := \sqrt{\frac{3}{4x}} < k < B(x) := \sqrt{\frac{5}{4x}}$$

Whose length is

$$L(x) := B(x) - A(x) = \frac{\sqrt{5} - \sqrt{3}}{2\sqrt{x}} < \frac{0.253}{\sqrt{x}} < \infty,$$

so the interval holds at most $\lceil L(x) \rceil$ integers. Hence only finitely many k satisfy $f_k(x) \neq 0$; the series S(x) reduces to a finite sum and converges. For x = 0 every term is 0, so S(0) = 0. Thus S converges for every $x \in [0, 1]$.

(ii) Failure of uniform convergence.

Let
$$S_N(x) := \sum_{k=1}^N \frac{f_k(x)}{k}$$
. For $N \ge 10$ choose

$$x_N := \frac{1}{N^2} \in [0, 1].$$

Claim 1. For every $k \in [N+1, N+\lfloor N/10\rfloor]$ we have $f_k(x_N) \geq \frac{1}{2}$.

Proof. For such k,

$$\left| x_N - \frac{1}{k^2} \right| = \frac{|k^2 - N^2|}{k^2 N^2} = \frac{(k - N)(k + N)}{k^2 N^2} \le \frac{(N/10)(11N/10)}{k^2 N^2} < \frac{11}{100 \, k^2} < \frac{1}{8 \, k^2} < \frac{1}{4k^2},$$
so $x_N \in \text{supp}(f_k)$ and $f_k(x_N) = 1 - 4k^2 |x_N - \frac{1}{k^2}| \ge \frac{1}{2}.$

Therefore the tail $T_N(x) := \sum_{k>N} \frac{f_k(x)}{k}$ satisfies

$$T_N(x_N) \ge \frac{1}{2} \sum_{k=N+1}^{N+\lfloor N/10 \rfloor} \frac{1}{k} \ge \frac{1}{2} \ln\left(1 + \frac{1}{10}\right) =: c > 0 \qquad (N \ge 10),$$

using $\sum_{k=m}^{n} \frac{1}{k} \ge \ln \frac{n}{m}, \forall n, m \in \mathbb{N}, n \ge m \ge 1$:

$$||S - S_N||_{\infty} = \sup_{x \in [0,1]} |S(x) - S_N(x)| \ge |T_N(x_N)| \ge c$$
 for all $N \ge 10$,

so $||S - S_N||_{\infty} \not\to 0$. The convergence of the series is therefore not uniform on [0, 1].