\DocumentMetadata{} \documentclass[dvipsnames,12pt]{exam} % compiles with % latexmk -pdflatex=lualatex -pdf new.tex \usepackage[top = 2cm, bottom = 3cm, left=1.5cm, right=1.5cm]{geometry} \usepackage{microtype} \usepackage{fontspec} \usepackage{amssymb} \usepackage{titlesec} \usepackage{multicol} \usepackage[shortlabels]{enumitem} \usepackage{braket} \usepackage{graphicx} \usepackage{tikz} \usepackage{pgfplots} \usepgfplotslibrary{fillbetween} \usetikzlibrary{intersections} \graphicspath{{./img/}} \usepackage{xcolor} \usepackage{cancel} \newcommand\Ccancel[2][black]{\renewcommand\CancelColor{\color{#1}}\cancel{#2}} \usepackage{amsmath} \usepackage{hyperref} \usepackage{eso-pic} \runningfooter{}{}{\thepage} \runningheader{}{}{\scriptsize Aayush Bajaj | z5362216} \hypersetup{ colorlinks = true, linkcolor = RedViolet, citecolor = gray } \titleformat{\section}{\normalfont\Large\bfseries}{{\color{RedViolet}\S}}{0.5em}{} \titleformat{\subsection}{\normalfont\large\bfseries}{{\large \color{RedViolet}\S\S}}{0.5em}{} \titleformat{\subsubsection}{\normalfont\bfseries}{{\color{RedViolet}\S\S\S}}{0.5em}{} \parindent 0pt %%% defs courtesy of Denis: \newcommand{\N}{{\mathbb{N}}} \newcommand{\C}{{\mathbb{C}}} \newcommand{\D}{{\mathbb{D}}} \newcommand{\F}{{\mathcal{F}}} \renewcommand{\P}{{\mathcal{P}}} %careful with this, it redefines the usual P! \newcommand{\R}{{\mathbb{R}}} \newcommand{\Q}{{\mathbb{Q}}} \newcommand{\T}{{\mathbb{T}}} \newcommand{\Z}{{\mathbb{Z}}} \newcommand{\ds}{\displaystyle} \newcommand{\st}{\,:\,} \renewcommand{\a}{{\mathbf a}} \newcommand{\x}{{\mathbf x}} \newcommand{\y}{{\mathbf y}} \newcommand{\norm}[1]{\Vert #1 \Vert} \renewcommand{\mod}[1]{\vert #1 \vert} \newcommand\vecx{\boldsymbol{x}} \newcommand\vecy{\boldsymbol{y}} \newcommand{\zero}{\boldsymbol{0}} \newcommand{\Arg}{\mathop{\mathrm{Arg}}} \newcommand{\cl}{\mathop{\mathrm{cl}}} \renewcommand{\Re}{\mathop{\mathrm{Re}}} %%% end defs %% theorems \usepackage{amsthm} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}{Corollary}[theorem] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{prop}{Proposition} \newtheorem*{notation}{Notation} \newtheorem{remark}{Remark} \newtheorem{claim}{Claim} \theoremstyle{definition} \newtheorem{definition}{Definition}[section] %%%%% \AddToShipoutPictureBG*{% % Note the asterisk (*) - this is important! \AtPageCenter{% \makebox(0,0){% \rotatebox{45}{\textcolor{gray!30}{\fontsize{200}{100}\selectfont FINAL}}% }% }% } \author{Aayush Bajaj | z5362216} \date{\today} \title{MATH3611 | Assignment 3} \begin{document} \maketitle \dotfill \tableofcontents \vspace{1cm} \begin{center} \includegraphics[width=0.2\textwidth]{logo.png} \end{center} \vspace{1cm} \hrule \newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Question 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Question 1} \label{question1} \begin{lemma} For $x,y\in\R^{3}$ define \[ d_{1}(x,y)=\sum_{i=1}^{3}\lvert x_{i}-y_{i}\rvert, \qquad d_{\infty}(x,y)=\max_{1\le i\le 3}\lvert x_{i}-y_{i}\rvert. \] Then \[ d_{\infty}(x,y)\;\le\;d_{1}(x,y)\;\le\;3\,d_{\infty}(x,y). \] \end{lemma} \begin{proof} \emph{Lower bound.} The maximum of non‑negative numbers is never larger than their sum, so $d_{\infty}(x,y)\le d_{1}(x,y)$. \emph{Upper bound.} Since each term $\lvert x_{i}-y_{i}\rvert\le d_{\infty}(x,y)$, summing over $i=1,2,3$ yields $d_{1}(x,y)\le 3\,d_{\infty}(x,y)$. \end{proof} \begin{theorem}\label{thm:topology} The metrics $d_{1}$ and $d_{\infty}$ induce the same topology on $\R^{3}$. \end{theorem} \begin{proof} Fix $x\in\R^{3}$ and $\varepsilon>0$. \smallskip \textbf{$d_{1}$‑open $\implies$ $d_{\infty}$‑open.} If $y\in B_{1}(x,\varepsilon)$, then $d_{\infty}(x,y)\le d_{1}(x,y)<\varepsilon$; hence \[ B_{1}(x,\varepsilon)\subset B_{\infty}(x,\varepsilon). \] Thus every $d_{1}$‑open set is $d_{\infty}$‑open. \smallskip \textbf{Converse $(\impliedby)$.} Let $y\in B_{\infty}(x,\varepsilon)$. By the lemma, $d_{1}(x,y)\le 3\,d_{\infty}(x,y)<3\varepsilon$, so \[ B_{\infty}(x,\varepsilon)\subset B_{1}(x,3\varepsilon). \] Hence every $d_{\infty}$‑open set is $d_{1}$‑open. \smallskip Because each topology is contained in the other, they coincide. \end{proof} \newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Question 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Question 2} \label{question2} \begin{definition} \[\tau = \set{\varnothing} \cup \set{U\subset \R:\R \setminus U \text{ is countable}}\] \end{definition} \begin{theorem}[A sequence $(x_n)_{n\in\N}\subset\R$ converges in $(\R,\tau)$ iff it is eventually constant]\label{thm2} \[\exists K\in \N: \forall n \ge K: x_n = x \iff x_n \xrightarrow{\tau} x\] \end{theorem} \begin{proof} $(\implies)$ Assume $x_n \xrightarrow{\tau}x$. Set \[C := \set{x_n:x_n\neq x}\] to be the countable collection of terms different from $x$, and set \[U:=\R \setminus C \cup \set{x}\] to be the neighbourhood.\\ Since $\R\setminus U = C$ is countable, $U\in\tau$ and $x\in U$.\\ By convergence, there exists $K$ such that $x_n\in U$ for all $n\ge K$. But if any $n\ge K$ with $x_n \neq x$, then $x_n \in C = \R\setminus U$ which contradicts $x_n\in U$. Hence $x_n=x \;\forall n \ge K$.\\ $(\impliedby)$ Conversely, suppose $x_n=x$ for all $n\ge K$. Let $U\in \tau$ be any neighbourhood of $x$. Then $x_n \in U$ whenever $n\ge K$, so $x_n\xrightarrow{\tau} x$. \end{proof} \begin{corollary} For the sequence \[x_n=\begin{cases}1,& n\text{ odd},\\1-\dfrac1n, & n\text{ even}\end{cases}\] no tail is constant, hence \[x_n \not\xrightarrow{\tau}x\quad\text{for any }x\in\R\] \end{corollary} \begin{proof} The set of odd indices is infinite so $x_{2k-1} = 1$ occurs infinitely often. Likewise, the even subsequence $(1-\tfrac1{2k})_{k\ge1}$ takes infinitely many distinct values. Thus the sequence $(x_n)_{n\in\N}$ cannot be eventually constant and by \ref{thm2} does not converge in the co-countable topology. \end{proof} \newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Question 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Question 3} \begin{theorem}[Uniform convergence on closed sub‑intervals]\label{thm:innerUniform} Let \[ S(x)=\sum_{n=0}^{\infty} a_n x^{n}, \qquad x\in\R, \] be a power series with (finite) radius of convergence \(R>0\). Then for every \(\varepsilon>0\) the series \(S\) converges \emph{uniformly} on the closed interval \[ [-\,R+\varepsilon,\; R-\varepsilon]. \] \end{theorem} \begin{proof} Fix $\varepsilon>0$ and set $r:=R-\varepsilon>0$. Let $I=[-\,r,r]$.\\ For $n\in\mathbb N$ define $f_n(x):=a_n x^n$ on $I$.\\ Because $|x|\le r$ for all $x\in I$, \[ |f_n(x)|\le |a_n|\,r^{\,n}=:\,M_n \quad (x\in I). \] Since $|r|] (0,0) -- (1.32,0) node[right] {$x$}; \draw[->] (0,0) -- (0,1.10) node[above] {$y$}; %----------------------------------------------------------------------------% % f1 (k = 1) -------------------------------------------------------------% % support = [3/4 , 5/4], apex at (1 , 1) \draw[very thick,blue] (3/4,0) -- (1,1) -- (5/4,0) node[midway,above right,blue] {$f_{1}$}; \filldraw[blue] (3/4,0) circle (0.7pt) node[below] {$\bigl(\tfrac34,\,0\bigr)$}; \filldraw[blue] (1,1) circle (0.7pt) node[above] {$\bigl(1,\,1\bigr)$}; \filldraw[blue] (5/4,0) circle (0.7pt) node[below] {$\bigl(\tfrac54,\,0\bigr)$}; %----------------------------------------------------------------------------% % f2 (k = 2) -------------------------------------------------------------% % support = [3/16 , 5/16], apex at (1/4 , 1) \draw[very thick,red] (3/16,0) -- (1/4,1) -- (5/16,0) node[midway,right,pos=0.48,red] {$f_{2}$}; \filldraw[red] (3/16,0) circle (0.7pt) node[below=20pt] {$\tiny(\tfrac{3}{16},\,0)$}; \filldraw[red] (1/4,1) circle (0.7pt) node[above] {$\tiny(\tfrac14,\,1)$}; \filldraw[red] (5/16,0) circle (0.7pt) node[below=20pt] {$\tiny(\tfrac{5}{16},\,0)$}; %----------------------------------------------------------------------------% % f3 (k = 3) -------------------------------------------------------------% % support = [1/12 , 5/36], apex at (1/9 , 1) \draw[very thick,green!70!black] (1/12,0) -- (1/9,1) -- (5/36,0) node[midway,right,pos=.48,green!70!black] {$f_{3}$}; \draw[very thick,black] (0,0) -- (1,0); \draw (1,-0.02) -- (1,0.02) node[below] {$(1,0)$}; \filldraw[green!70!black] (1/12,0) circle (0.7pt) node[below left] {$\tiny(\tfrac1{12},\,0)$}; \filldraw[green!70!black] (1/9,1) circle (0.7pt) node[above] {$\tiny(\tfrac19,\,1)$}; \filldraw[green!70!black] (5/36,0) circle (0.7pt) node[below] {$\tiny(\tfrac5{36},\,0)$}; \end{tikzpicture} \end{figure} %------------------------------------------------------------------------------% \item \textbf{Support of $f_k$.} Solve \( 1-4k^{2}\lvert x-\tfrac1{k^{2}}\rvert>0 \iff \lvert x-\tfrac1{k^{2}}\rvert<\tfrac1{4k^{2}} \). Hence \[ \boxed{ \operatorname{supp}(f_k) =\left(\tfrac{3}{4k^{2}},\,\tfrac{5}{4k^{2}}\right) \cap[0,1], k\ge1} \] whereby, \[ \operatorname{supp}(f_1)=(\tfrac34,\,1],\qquad \operatorname{supp}(f_k)=\bigl(\tfrac{3}{4k^{2}},\,\tfrac{5}{4k^{2}}\bigr) \ (k\ge2). \] %------------------------------------------------------------------------------% \item \textbf{Pointwise convergence and failure of uniform convergence of} \[ S(x):=\sum_{k=1}^{\infty}\frac{f_k(x)}{k}, \qquad x\in[0,1]. \] \begin{enumerate}[label=(\roman*)] %..............................................................................% \item \emph{Pointwise convergence.} Fix $x\in(0,1]$. The inequality \( \frac{3}{4k^{2}}N}\frac{f_k(x)}{k}\) satisfies \[ T_N(x_N) \ge \frac12 \sum_{k=N+1}^{N+\lfloor N/10\rfloor}\frac1k \ge \frac12\ln\left(1+\tfrac1{10}\right) =:c>0 \qquad(N\ge10), \] using $\sum_{k=m}^n \tfrac1k \ge \ln\dfrac{n}{m}, \forall n,m\in\N,n\ge m\ge 1$: \[ \|S-S_N\|_{\infty} =\sup_{x\in[0,1]}|S(x)-S_N(x)| \ge |T_N(x_N)| \ge c \quad\text{for all }N\ge10, \] so \(\|S-S_N\|_{\infty}\not\to0\). The convergence of the series is therefore \emph{not} uniform on \([0,1]\). \end{enumerate} \end{enumerate} \end{document}