# **Real Analysis**

# Aayush Bajaj

Version 1.2

2025-06-24



# **Table of Contents**

| 1.  | Foundations                               |
|-----|-------------------------------------------|
| 2.  | Russell's Paradox 4                       |
| 3.  | Constructing Sets                         |
| 4.  | Cartesian Product                         |
| 5.  | Axiom of Choice (AC)                      |
| 6.  | Functions                                 |
|     | 6.1. Types of Functions                   |
| 7.  | Cardinality 5                             |
|     | 7.1. Properties                           |
|     | 7.2. Notations                            |
| 8.  | Schröder-Bernstein Theorem 6              |
| 9.  | Finite and Infinite Sets 6                |
| 10. | Countability6                             |
| 11. | Metric Spaces                             |
|     | 11.1. Basic Definitions and Properties    |
|     | 11.2. Topology in Metric Spaces           |
|     | 11.3. Continuity and Boundedness 8        |
|     | 11.4. Completeness and Cauchy Sequences 9 |
|     | 11.5. Normed and Inner Product Spaces     |
|     | 11.6. Contraction and Lipschitz Mappings  |

# 1. Foundations

### **Definition 1.1**

### **Analysis Concepts**

- 1. **Metric:** An abstract notion of distance in a space (not necessarily  $\mathbb{R}^n$ ).
- 2. **Topology:** An abstract notion of convergence (even in spaces with no underlying notion of distance).

# 2. Russell's Paradox

Let

$$S = \{T : T \text{ is a set and } T \notin T\}. \tag{1}$$

Is  $S \in S$ ?

# 3. Constructing Sets

1. Unions: If  $S = \{T_i\}_{i \in I}$ , then

$$\bigcup_{i \in I} T_i = \{x : \exists i \in I \text{ such that } x \in T_i\}$$
 (2)

is a set.

2. **Subsets with Conditions:** If S is a set and  $\varphi(x)$  is a condition on elements, then

$$\{x \in S : \varphi(x)\}\tag{3}$$

is a set.

3. **Power Set:** If S is a set, then

$$\mathscr{P}(S) = \{T : T \subseteq S\} \tag{4}$$

is a set.

### 4. Cartesian Product

If A and B are sets, then

$$A \times B = \{(a,b) : a \in A, b \in B\}. \tag{5}$$

More generally, if  $\left\{S_i\right\}_{i\in I}$  is a collection of sets, we can form the product

$$\prod_{i \in I} S_i. \tag{6}$$

An element is a tuple  $\left(s_{i}\right)_{i\in I}$  such that  $s_{i}\in S_{i}.$  Formally,

$$\prod_{i \in I} S_i = \left\{ f : I \to \bigcup_{i \in I} S_i : f(i) \in S_i \text{ for all } i \in I \right\}.$$
 (7)

# 5. Axiom of Choice (AC)

### **Proposition 5.1**

**Axiom of Choice** 

A Cartesian product of non-empty sets is non-empty.

### 6. Functions

A function  $f:A\to B$  assigns each element of A exactly one element of B. Formally,

 $f \subseteq A \times B$  is a function  $\iff \forall x \in A, \exists ! y \in B \text{ such that } (x, y) \in f.$  (8)

### 6.1. Types of Functions

- 1. Injective:  $\forall x_1, x_2 \in A, f(x_1) = f(x_2) \Longrightarrow x_1 = x_2.$
- 2. Surjective:  $\forall y \in B, \exists x \in A \text{ such that } f(x) = y.$
- 3. **Bijective:** f is both injective and surjective.

### **Definition 6.1**

**Cardinality Equivalence** 

Two sets A and B have the same cardinality if there exists a bijection  $f:A\to B.$  We write  $A\sim B.$ 

#### Theorem 6.2

Cantor's Theorem

For any set S, the power set  $\mathscr{P}(S)$  has strictly greater cardinality than S:  $S \neg \sim \mathscr{P}(S)$ .

# 7. Cardinality

## 7.1. Properties

- 1.  $A \sim A$  (reflexive)
- 2.  $A \sim B \Longrightarrow B \sim A$  (symmetric)
- 3.  $A \sim B$  and  $B \sim C \Longrightarrow A \sim C$  (transitive)

### 7.2. Notations

- 1.  $A \leq B$ : there exists an injective map  $f: A \rightarrow B$
- 2.  $A = B: A \sim B$
- 3. A < B:  $A \le B$  and  $A \neg \sim B$

### 8. Schröder-Bernstein Theorem

#### Theorem 8.1

### Schröder-Bernstein Theorem

If there are injective maps  $f:A\to B$  and  $g:B\to A$ , then there exists a bijection  $h:A\to B$ .

### 9. Finite and Infinite Sets

Definition 9.1

A set S is finite if  $\mid S \mid = \{1, 2, ..., n\}$  for some  $n \in \mathbb{N}$ . Otherwise it is infinite.

#### **Definition 9.2**

#### **Dedekind-Infinite Sets**

A set S is Dedekind-infinite if there exists a bijection from S to a proper subset of itself. Otherwise, it is Dedekind-finite.

# 10. Countability

#### **Definition 10.1**

**Countable Sets** 

**Finite Sets** 

A set S is **countable** if  $S \leq \mathbb{N}$ . If countable and infinite, we say it is **countably infinite**. Otherwise, it is **uncountable**.

#### Theorem 10.2

#### **Countable Union of Countable Sets**

Let I be a countable set, and let  $\left\{S_i\right\}_{i\in I}$  be a countable collection of countable sets. Then

$$\bigcup_{i \in I} S_i \tag{9}$$

is countable.

# 11. Metric Spaces

### 11.1. Basic Definitions and Properties

#### **Definition 11.1**

**Metric Space** 

A **metric space** is a pair (X, d), where X is a non-empty set and

 $d: X \times X \to [0, \infty)$  is a function such that for all  $x, y, z \in X$ :

- 1.  $d(x,y) = 0 \iff x = y$
- 2. d(x,y) = d(y,x) (symmetry)
- 3.  $d(x, z) \le d(x, y) + d(y, z)$  (triangle inequality)

### **Definition 11.2**

Sequence in Metric Space

A **sequence** in a set X is a function from  $\mathbb{N}$  (or  $\mathbb{Z}^+$ ) to X.

#### Theorem 11.3

**Uniqueness of Limits** 

A sequence in a metric space can have at most one limit.

### **Definition 11.4**

**Open Ball** 

For a point x in a metric space (X,d) and  $\varepsilon>0$ , the **open**  $\varepsilon$ **-ball** is

$$B(x,\varepsilon) = \{ y \in X : d(y,x) < \varepsilon \}. \tag{10}$$

### 11.2. Topology in Metric Spaces

#### **Definition 11.5**

**Interior and Boundary** 

Let  $Y \subseteq X$  in a metric space (X, d). Define:

- 1.  $\operatorname{Int}(Y) = \{ y \in Y : \exists \varepsilon > 0 \text{ such that } B(y, \varepsilon) \subseteq Y \}$
- 2.  $\operatorname{Bd}(Y) = X \setminus (\operatorname{Int}(Y) \cup \operatorname{Int}(X \setminus Y))$

#### **Definition 11.6**

**Open Sets** 

Y is **open** if Y = Int(Y).

#### **Definition 11.7**

**Closed Sets** 

Y is **closed** if  $X \setminus Y$  is open.

### 11. Metric Spaces

**Lemma 11.8** 

**Interior is Idempotent** 

Let (X, d) be a metric space and  $Y \subseteq X$ . Then Int(Int(Y)) = Int(Y).

**Corollary 11.9** 

**Interior** is Open

Int(Y) is open.

**Definition 11.10** 

Closure

The **closure** of Y is  $Cl(Y) = Int(Y) \cup Bd(Y)$ .

**Definition 11.11** 

**Dense Sets** 

Y is **dense** if Cl(Y) = X.

**Definition 11.12** 

Neighborhood

A **neighborhood** of x is a set  $U \subseteq X$  such that there exists an open set V with  $x \in V \subseteq U$ .

**Definition 11.13** 

**Topology** 

The set of open subsets of X is called the **topology**  $\mathcal{O}(X)$ .

**Theorem 11.14** 

**Properties of Topology** 

The topology  $\mathcal{O}(X)$  satisfies:

- 1.  $\emptyset, X \in \mathcal{O}(X)$
- 2. Arbitrary unions of open sets are open
- 3. Finite intersections of open sets are open

## 11.3. Continuity and Boundedness

**Definition 11.15** 

**Continuity in Metric Spaces** 

Let  $(X, d_X)$  and  $(Y, d_Y)$  be metric spaces. A function  $f: X \to Y$  is **continuous** if for every open  $V \subseteq Y$ , the preimage  $f^{-1}(V)$  is open in X.

#### **Theorem 11.16**

### **Composition of Continuous Functions**

If  $f:X\to Y$  and  $g:Y\to Z$  are continuous, then  $g\circ f:X\to Z$  is continuous.

### Definition 11.17 Bounded Sets

A subset  $Y \subseteq X$  is **bounded** if there exists R > 0 and  $x \in X$  such that  $Y \subseteq B(x, R)$ .

### 11.4. Completeness and Cauchy Sequences

### **Definition 11.18**

### **Cauchy Sequence**

A sequence  $\{x_n\}$  in (X,d) is a **Cauchy sequence** if for all  $\varepsilon>0$ , there exists N such that  $d(x_m,x_n)<\varepsilon$  for all m,n>N.

### **Definition 11.19**

### **Complete Metric Space**

A metric space is **complete** if every Cauchy sequence converges to a point in the space.

### Theorem 11.20

### **Completeness and Closedness**

Let (X,d) be a complete metric space. A subset  $Y\subseteq X$  is complete  $\Longleftrightarrow Y$  is closed.

### **Definition 11.21**

### **Equivalent Cauchy Sequences**

Two Cauchy sequences  $\{a_n\}$  and  $\{b_n\}$  are equivalent if  $\lim d(a_n,b_n)=0.$ 

### **Definition 11.22**

## **Completion of Metric Space**

The **completion** of a metric space (X, d) is the space of equivalence classes of Cauchy sequences with distance

$$d([\{a_n\}], [\{b_n\}]) = \lim d(a_n, b_n). \tag{11}$$

# Theorem 11.23

### **Properties of Completion**

The completion  $\overline{X}$  of X is a complete metric space. The map  $x\mapsto [\{x\}]$  is an isometry, and its image is dense in  $\overline{X}$ . The completion is unique up to isometric bijection.

# 11.5. Normed and Inner Product Spaces

**Definition 11.24** Norm

A **norm** on a vector space V is a function  $\|\cdot\|:V\to [0,\infty)$  satisfying:

- 1.  $||x|| = 0 \iff x = 0$ 2.  $||\lambda x|| = |\lambda| \cdot ||x||$ 3.  $||x + y|| \le ||x|| + ||y||$  (triangle inequality)

### Theorem 11.25

#### **Norm Induces Metric**

Let  $(V,\|\cdot\|)$  be a normed vector space. Then  $d(x,y)=\|\;x-y\;\|$  defines a metric.

#### **Definition 11.26**

**Banach Space** 

A **Banach space** is a complete normed vector space.

### **Definition 11.27**

\$ell^p\$ Spaces

For  $p \in [1, \infty)$ , define

$$\ell^p = \left\{ \{x_n\} \subseteq \mathbb{R} : \sum_{n=1}^{\infty} |x_n|^p < \infty \right\}, \tag{12}$$

with norm  $\|x\|_p = \left(\sum |x_n|^p\right)^{\frac{1}{p}}$ .

### Theorem 11.28

\$ell^p\$ is Banach

 $\left(\ell^p,\|\cdot\|_p\right)$  is a Banach space.

### **Definition 11.29**

**Inner Product Space** 

An **inner product space** is a vector space V with a function  $\langle \cdot, \cdot \rangle$  such

- 1.  $\langle x, x \rangle > 0$  if  $x \neq 0$ 2.  $\langle x, y \rangle = \langle y, x \rangle$  (conjugate symmetry) 3.  $\langle x + \lambda y, z \rangle = \langle x, z \rangle + \lambda \langle y, z \rangle$  (linearity)

#### **Definition 11.30**

**Hilbert Space** 

A **Hilbert space** is a complete inner product space.

# 11.6. Contraction and Lipschitz Mappings

### **Definition 11.31**

**Contraction Mapping** 

A **contraction** is a function  $f: X \to X$  such that there exists c < 1 with  $d(f(x), f(y)) \le cd(x, y)$ .

#### Lemma 11.32

**Contraction Generates Cauchy Sequence** 

Let (X,d) be a metric space and f a contraction. Then the sequence  $x_{n+1}=f(x_n)$  is Cauchy.

#### Theorem 11.33

### **Contraction Mapping Theorem**

Let (X,d) be a complete metric space and  $f:X\to X$  a contraction. Then f has a unique fixed point. Moreover, for any  $x\in X$ , the sequence  $x_{n+1}=f(x_n)$  converges to that fixed point.

### **Definition 11.34**

**Lipschitz Continuity** 

A function  $f: X \to \mathbb{R}$  is **Lipschitz continuous** if there exists K > 0 such that  $\mid f(x) - f(y) \mid \leq K \mid x - y \mid$ .

### **Definition 11.35**

**Lipschitz in Second Variable** 

A function  $f:X\subseteq\mathbb{R}^2\to\mathbb{R}$  is **Lipschitz in the second variable** if

$$\mid f(x,y_1) - f(x,y_2) \mid \ \leq K \mid y_1 - y_2 \mid. \tag{13}$$

#### Theorem 11.36

Picard-Lindelöf Theorem

Let g be continuous near  $(a,b)\in\mathbb{R}^2$  and Lipschitz in the second variable. Then the differential equation

$$y' = g(x, y), \quad y(a) = b \tag{14}$$

has a unique solution near a.