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1. Foundations

1. Metric: An abstract notion of distance in a space (not necessarily R").
2. Topology: An abstract notion of convergence (even in spaces with no
underlying notion of distance).



2. Russell’s Paradox
Let

S={T:Tisasetand T ¢ T'}. (1)

IsS € 5?

3. Constructing Sets

1. Unions: If S = {T;} _,, then
UTZ-:{J;:EIZ'EIsuChthata:ETi} (2)
i€l
is a set.
2. Subsets with Conditions: If S is a set and () is a condition on elements,
then
{zeS:p()} (3)
is a set.
3. Power Set: If S is a set, then
P6)={T:TC S} (4)
is a set.
4. Cartesian Product
If A and B are sets, then
Ax B={(a,b):a€ A,be B}. (5)

More generally, if {Si}z‘e ; is a collection of sets, we can form the product

An element is a tuple (s;) .

IIs: (6)

el

.7 such that s; € 5;. Formally,

HSiz{f:[—)USi:f(i)ESiforalliEI}. (7)

el el



5. Axiom of Choice (AC)

Proposition 5.1 Axiom of Choice

A Cartesian product of non-empty sets is non-empty.

6. Functions

A function f : A — B assigns each element of A exactly one element of B.
Formally,

f € A x B is a function <= Vz € A,3ly € B such that (z,y) € f. (8)

6.1. Types of Functions

1. Injective: Vx|, z, € A, f(z,) = f(zy) = 21 = 5.
2. Surjective: Vy € B, 3z € A such that f(z) =y.

3. Bijective: f is both injective and surjective.

Two sets A and B have the same cardinality if there exists a bijection
f:A— B.Wewrite A ~ B.

Theorem 6.2 Cantor's Theorem

For any set S, the power set 9(S) has strictly greater cardinality than S:
S—~ P(S9).

7. Cardinality

7.1. Properties

1. A ~ A (reflexive)

2. A~ B = B ~ A (symmetric)

3. A~ B and B ~ C = A ~ (C (transitive)

7.2. Notations

1. A < B: there exists an injective map f: A - B
2. A=B:A~B

3. A< B:A< Band A—~~ B



8. Schroder-Bernstein Theorem

Theorem 8.1 Schroder-Bernstein Theorem

If there are injective maps f : A — B and g : B — A, then there exists a
bijection h : A — B.

9. Finite and Infinite Sets

A set Sisfiniteif | S | = {1,2,...,n} for some n € N. Otherwise it is
infinite.

A set S is Dedekind-infinite if there exists a bijection from S to a proper
subset of itself. Otherwise, it is Dedekind-finite.

10. Countability

A set S is countable if S < N. If countable and infinite, we say it is
countably infinite. Otherwise, it is uncountable.

Theorem 10.2 Countable Union of Countable Sets

Let I be a countable set, and let {S;},_, be a countable collection of
countable sets. Then

s (9)

el

is countable.




11. Metric Spaces

11.1. Basic Definitions and Properties

A metric space is a pair (X, d), where X is a non-empty set and
d: X x X — [0,00) is a function such that for all z,y, z € X:

1. d(z,y) =0<=z =y

2. d(x,y) = d(y, ) (symmetry)

3. d(z,2) < d(z,y) + d(y, 2) (triangle inequality)

A sequence in a set X is a function from N (or Z") to X.

Theorem 11.3 Uniqueness of Limits

A sequence in a metric space can have at most one limit.

For a point z in a metric space (X, d) and € > 0, the open e-ball is

B(z,e) ={y € X : d(y,x) < €}. (10)

11.2. Topology in Metric Spaces

Let Y C X in a metric space (X, d). Define:
1. Int(Y) ={y € Y : 3¢ > 0 such that B(y,e) C Y}
2. Bd(Y) =X\ (Int(Y)UInt(X \Y))

Y is openif Y = Int(Y).

Y is closed if X \'Y is open.



11. Metric Spaces

Let (X, d) be a metric space and Y C X. Then Int(Int(Y)) = Int(Y).

Corollary 11.9 Interior is Open

Int(Y) is open.

The closure of Y is C1(Y) = Int(Y) UBd(Y).

Y is dense if C1(Y) = X.

A neighborhood of z is a set U C X such that there exists an open set V'
withx € V CU.

The set of open subsets of X is called the topology O(X).

Theorem 11.14 Properties of Topology

The topology O(X) satisfies:
1. §, X € 6(X)

2. Arbitrary unions of open sets are open

3. Finite intersections of open sets are open

11.3. Continuity and Boundedness

Let (X,dy) and (Y, dy ) be metric spaces. A function f : X — Y is
continuous if for every open V' C Y, the preimage f~*(V) is open in X.



11. Metric Spaces

Theorem 11.16 Composition of Continuous Functions

If f: X —>Yandg:Y — Z are continuous, thengo f : X — Z is
continuous.

A subset Y C X is bounded if there exists R > 0 and £ € X such that
Y C B(z, R).

11.4. Completeness and Cauchy Sequences

A sequence {z,, } in (X, d) is a Cauchy sequence if for all £ > 0, there
exists IV such that d(z,,,, z,,) < € forall m,n > N.

A metric space is complete if every Cauchy sequence converges to a
point in the space.

Theorem 11.20 Completeness and Closedness

Let (X, d) be a complete metric space. A subset Y C X is complete <= Y
is closed.

Two Cauchy sequences {a,, } and {b,,} are equivalent if
limd(a,,b,) = 0.

The completion of a metric space (X, d) is the space of equivalence
classes of Cauchy sequences with distance

d([{a,}]; [{0,}]) = limd(a,,b,). (11)



11. Metric Spaces

Theorem 11.23 Properties of Completion

The completion X of X is a complete metric space. The map z  [{z}] is
an isometry, and its image is dense in X. The completion is unique up to
isometric bijection.

10



11. Metric Spaces

11.5. Normed and Inner Product Spaces

A norm on a vector space V is a function | - | : V' — [0, 00) satisfying:
L |z|=0<2=0

2 Az =1A]-]=]

3. |z+y || <| x|+ y| (triangle inequality)

Theorem 11.25 Norm Induces Metric

Let (V,| - ||) be a normed vector space. Then d(z,y) = | * — y || defines a
metric.

A Banach space is a complete normed vector space.

For p € [1,00), define

Ep:{{xn}gR:ixn |p<oo}, (12)

=1

=

with norm || z ||, = >z, )

Theorem 11.28 $ell"p$ is Banach

(€7, - |,,) is a Banach space.

An inner product space is a vector space V with a function (-, -) such
that:

1. (x,z) >0ifz #0

2. {z,y) = (y,x) (conjugate symmetry)

3. (x 4+ Ay, 2) = (x, z) + My, 2) (linearity)

11



11. Metric Spaces

A Hilbert space is a complete inner product space.

11.6. Contraction and Lipschitz Mappings

A contraction is a function f : X — X such that there exists ¢ < 1 with

d(f(z), f(y)) < cd(z,y).

Let (X, d) be a metric space and f a contraction. Then the sequence
z,.1 = f(z,) is Cauchy.

Theorem 11.33 Contraction Mapping Theorem

Let (X, d) be a complete metric space and f : X — X a contraction. Then
f has a unique fixed point. Moreover, for any € X, the sequence

z,.1 = f(x, ) converges to that fixed point.

A function f : X — R is Lipschitz continuous if there exists K > 0
such that | f(z) — f(y) [< K [z —y|.

A function f : X C R? — R is Lipschitz in the second variable if

| f(z,y1) — fl@,92) | S K [y — 9o |- (13)

Theorem 11.36 Picard-Lindelof Theorem

Let g be continuous near (a,b) € R? and Lipschitz in the second variable.
Then the differential equation

/

Yy =g(z,y), yla)=> (14)

has a unique solution near a.

12
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