Chapter 1: Vector Spaces

Linear Algebra Done Right, by Sheldon Axler

A: R and C

Problem 1

Suppose a and b are real numbers, not both 0. Find real numbers ¢ and

d such that
=c+di

a+bi

Proof. We have
1 a—bi a b

a+bi  a?2+b> a2+ b2 _112—|-b227

and hence let

a b
C= —— P —
a? + b2’ a? + b2’
and we're done. O
Problem 3
Find two distinct square roots of 1. ]

Proof. Suppose a,b € R are such that (a + bi)?> = i. Then
(a* — b*) + (2ab)i = i.

Since the real and imaginary part of both sides must be equal, respectively, we
have a system of two equations in two variables

a? - =0
1

b=
w=5

The first equation implies b = +a. Plugging b = —a into the second equation
would imply —a? = 1/2, which is impossible, and hence we must have a = b.
But this in turn tells us a = +1/ \/5, and hence our two roots are

4 (\2) (1+1),

as desired. O



Problem 5

Show that (a« + 8) + A=a+ (8 + A) for all o, 8, A € C.

Proof. Suppose a = a1 + agi, 8 = by + bai, and X\ = ¢ + coi for ag, by, cx € R,
where k = 1,2. Then

(a+8) + [(al + agi) + (b + bgl)} + (€1 + c21)
[(al +b1) + (a2 +bo)i ] (c1 + coi)
= [(a1 +b1) + 1] + [(az + b2) + c2] @
= [a1 + (by + &1)] + [a2 + (b2 + ¢2)] i
= (a1 + agi) + [(bl +c1)+ (b + cz)i]
= (a1 + agi) + [(bl + bot) + (1 + cz)i]
=a+(B+2N),
as desired. O

Problem 7

Show that for every a € C, there exists a unique § € C such that
a+ 6 =0.

Proof. Suppose a = a1 + asi for some a;,as € R, and define f = —a; — asi.
Then

a+ B = (a1 + azi) + (—ay — azi)
= (a1 — a1) + (ag — az)i
=0+0:
-0,

proving existence. To see that g is unique, suppose A € C such that o + A = 0.
Then

A=A+ (a+p)=A+a)+8=0+3=3,

and thus S is unique. O

Problem 9
Show that A(a+ 8) = Aa+ A8 for all \,a, 8 € C. ]




Proof. Suppose a = a1 + agi, 8 = by + bai, and X\ = ¢ + coi for ag, by, cx € R,
where £ = 1,2. Then

Mo+ B) = (c1 + ¢2i) [(a1 + agi) + (b1 + bai)]
1+ cai) [(ar + b1) + (az + by)i]
ci(ar + b)) — ea(as + b2)] + [c1(az + b2) + coar + b1)] i

(crar + e1by) — (caaz + c2b2)] + [(c1a2 + c1b2) + (c2a1 + c2b1)] i
(crar — c2a2) + (c1by — c2b2)] + [(c1a2 + c2ar1) + (c1bg + c2b1)] i
(cra1 — c2a2) + (c1az + c2a1)i] + [(c1b1 — c2bs) + (c1b2 + c2by)i]
c1 + c2i)(ar + agi) + (c1 + c21)(by + bat)
=+ A5,

as desired. O

= (
= [ea
[
[
=
= (

Problem 11
Explain why there does not exist A € C such that

A(2 = 30,5 + 4i, —6 + 7i) = (12 — 5i, 7 + 22i, —32 — 9i).

Proof. Suppose such a A € C exists, say A = a + bi for some a,b € R. Then

(a+bi)(2 — 3i) = 12 — 5i
(a+bi)(5 + 4i) = T + 22i
(a+ bi)(—6+ 7i) = —32 — 9i,

which is equivalent to

(2a + 3b) + (=3a + 2b)i = 12 — 5i (1)
(ba — 4b) + (4a + bb)i = 7+ 22i (2)
(—6a — 7b) + (Ta — 6b)i = —32 — 9. (3)

For each equation above, the real part of the LHS must equal the real part of
the RHS, and similarly for their imaginary parts. In particular, the following
two equations hold by comparing the real parts of Equations (1) and (3)
2a +3b=12
—6a — 7b = —32
Multiplying the first equation by 3 and adding it to the second, we find b = 2.

Substituting this value back into the first equation yields a = 2. However,
comparing the imaginary parts of Equation (3) tells us we must have

Ta — 6b = —9,

a contradiction, since a = 3 and b = 2 yields 7a — 6b = 9. Thus no such A € C
exists, as was to be shown. O



Problem 13

Show that (ab)xz = a(bx) for all x € F™ and all a,b € F.

Proof. We may write x = (z1,...,2,) for z1,...,z, € F. It follows
(ab)z = ((ab)x1, ..., (ab)zy)
= (a(bz1),...,a(bz,))
=a(bxy,...,bxy,)
= a(bx),
as desired. O

Problem 15

Show that A(z 4+ y) = Az + Ay for all A € F and all 2,y € F™.

Proof. We may write © = (21,...,2,) and y = (y1,...,yn) for xg,yp € F™,
where k = 1,...,n. It follows

(x1,...,l‘n)+(y1,---7yn))
(T1+y1) + -+ (2n + yn))
(

as desired. ]

B: Definition of a Vector Space

Problem 1
Prove that —(—v) = v for every v € V. ]

Proof. We wish to show that v is the additive inverse of (—v). We have
(—v)+v=(-1)w+lv=(-1+1)v=0=0,

as desired. O

Problem 3

Suppose v, w € V. Explain why there exists a unique x € V such that
v+ 3x = w.




Proof. First we prove existence. Define x € V' by
1
x = g(w — ).
Then

v+3xv+3(;(wv))

:v—|—<3~;>(w—v)

=v+ (w—v)

:’u)’

and so such an z exists. To see that it’s unique, suppose y € V such that
v+ 3y = w. Then

v+3y=v+3r <= Jy=3z <= y==x,

proving uniqueness. U

,_l Problem 5

Show that in the definition of a vector space (1.19), the additive inverse
condition can be replaced with the condition that

Ov=0forallvelV.

Here the 0 on the left side is the number 0, and the 0 on the right side is
the additive identity of V. (The phrase “a condition can be replaced” in
a definition means that the collection of objection satisfying the definition
is unchanged if the original condition is replaced with the new definition.)

Proof. We show that the two statements are equivalent.
First suppose that every v € V has an additive inverse. Since we have

O0v 4+ 0v = (0+ 0)v = Ov,

adding the additive inverse to both sides yields Ov = 0.
Conversely, suppose that 0v = 0 for all v € V. Then

v+ (—1)v=(1+(-1))v =00 =0,

and hence every element has an additive inverse, as desired. O



C: Subspaces

,-' Problem 1

For each of the following subsets of F2, determine whether it is a subspace
of F3:

1. {(x1,x2,x3 €F3|$1+2.’E2+3l‘3=0}

[\o}

{( )
. A(x1, 72, 23) € F3 | 21 + 272 + 323 = 4}
3. {(%1,72,23) € F3 | 213023 = 0}
4. {(z1,72,73) € F3 | 21 = a3}

Proof. (a) Let S denote the specified subset. We claim S is a subspace. To
see this, note that 0 4+2-0+ 3 -0 = 0, and hence 0 € S. Now suppose

x = (v1,T2,23) €S and y = (y1,y2,y3) € S. Then
1+ 222+ 323 =0 and y; +2y2+ 3ys =0,
and hence

(z1 + 222 + 3z3) + (y1 + 2y2 + 3y3) = (w1 + y1) + 2(z2 + y2) + 3(23 + y3)

and so z +y € S and S is closed under addition. Now letting a € F, we

have

a(x1 + 2z + 3x3) = axy + 2(axe) + 3(axs) =0,

and hence azx € S as well, and so S is closed under scalar multiplication,

thus proving S is a subspace, as claimed.

(b) Let S denote the specified subset. Then S is not a subspace, for 0 +2 -0+

3-0 =0, and hence S does not contain the additive identity.

(c¢) Let S denote the specified subset. We claim S is not a subspace since it is
not closed under addition. To see this, let 2 = (1,0,0) and y = (0,1,1).
Then z,y € S, but x+y = (1,1,1) € S since (z1 +y1)(x2+y2)(x3+y3) =

1-1-14#0.

(d) Let S denote the specified subset. We claim S is a subspace. To see this,
note that 0 = 5 -0, and hence 0 € S. Now suppose = = (21, %2, x3) € S

and y = (y1,¥2,y3) € S. Then
r1 =5x3 and Yy = dys,
and hence

(1 +y1) = 53 + Syz = 5(x3 + y3),



and so z +y € S and S is closed under addition. Now letting a € F, we
have

a(z1) = a(bxs)
and thus
(az1) = 5(axs),

showing ax € S as well. Therefore S is closed under scalar multiplication
as well, proving S is a subspace, as claimed. O

Problem 3

Show that the set of differentiable real-valued functions f on the interval
(—4,4) such that f/(—1) = 3f(2) is a subspace of R(-%4),

Proof. Let S denote the set of differentiable real-valued functions f on the
interval (—4,4) such that f/(—1) = 3f(2) . Denote the zero-function (the
additive identity of R&=4%)) by f;. Then f} = fo and f{(—1) = 0, and hence
f0(=1) = 3fo(2) — both sides are 0 — showing fp € S. Now suppose f,g € S.
Then

(f+9)=f+47,

and hence
(f+9)(-1)=f(=1D)+dg(-1)
— 3(2) +39(2

=3(f(2) +9(2
=3(f+9)(2),

showing (f + g) € S and S is closed under addition. Now letting a € R, we have
a(f'(=1)) = a(3f(2)) = (af')(-1) = 3(af)(2),

and hence (af) € S as well, and S is closed under scalar multiplication. Therefore,
S is a subspace. O

—_—

)

Problem 5

Is R? a subspace of the complex vector space C2? ]

Proof. The set R? is not a subspace of C? over the field C since R? is not
closed under scalar multiplication. In particular, we have iz ¢ R? for all

z € R? — {0}. O



Problem 7

Give an example of a nonempty subset U of R? such that U is closed
under addition and taking additive inverses (meaning —u € U whenever
u € U), but U is not a subspace of R2.

Proof. Consider the set Z x Z. Then for all (a,b) € Z x Z, we have (—a, —b) €
Z x Z, and so it’s closed under additive inverses. Similarly, for any (¢, d) € Z X Z,
we have (a,b) + (¢,d) = (a+ ¢, b+ d) € Z x Z, and so it’s closed under addition.
But Z x Z is not a subspace of R?, since it is not closed under scalar multiplication.

In particular, 3(1,1) = (3,%) € Z x Z. O

Problem 9

A function f: R — R is called periodic if there exists a positive number
p such that f(z) = f(x +p) for all x € R. Is the set of periodic functions
from R to R a subspace of R®? Explain.

Proof. Let P denote the set of periodic functions from R to R. We claim P is
not a subspace of R, since it is not closed under addition. To see this, define

F(z) = cos (3%) and  g(z) = cos(2rz).

Then

and so f has period /2, and
glx 4+ 1) =cos(2m(x 4+ 1)) = cos(2rz + 27) = cos(2nz) = g(z),
so that g has period 1.

Suppose by way of contradiction that f + g were periodic with respect to
some p € R*. Then, since

(f +9)(0) = cos (\2/7; : 0> + cos(27 - 0) = cos(0) + cos(0) = 2,



by periodicity of f + g we must also have

(f +9)(p) = cos <\2/7;p> + cos(27p) = 2.

The maximum of cosine is 1, and hence both f and g must have maxima at p.
But the maxima of cosine occur at the integer multiples of 27, and hence we
must have

2

V2

for some n,m € ZT. But this implies

p=2tn and 27p=21m

p=+v2n and p=m.

In other words,

T\@,

n

a contradiction since /2 is irrational. Thus f + g cannot be periodic, and indeed
P is not closed under addition, as claimed. O

Problem 11

Prove that the intersection of every collection of subspaces of V is a
subspace of V.

Proof. Let € denote a collection of subspaces of V', and let

U= (W

wee

Then, since 0 € W for all W € €, we have 0 € U and so U contains the additive
identity. Now suppose u,v € U. Then u,v € W for all W € €, and hence
u+v €W for all W € €. Therefore, u + v € U and U is closed under addition.
Next let a € F. Then au € W for all W € €, and hence au € U, showing U is
closed under scalar multiplication. Therefore, U is indeed a subspace of V. [J

Problem 12

Prove that the union of two subspaces of V' is a subspace of V' if and only
if one of the subspaces is contained in the other.

Proof. Let Uy, Uy be subspaces of V.

First suppose that one of the subspaces is contained in the other. Then either
Ui UU, = Uy or Uy UUy = Us, and in both cases U; U Us is indeed a subspace
of V.



Conversely, suppose by way of contradiction that U; U Us is a subspace of
V', but neither subspace is contained in the other. That is, the sets Uy \ Uz and
U\ U; are both nonempty. Let € Uy \Uz and y € Uz \Uy. We claim 2 +y ¢ Uy
and x +y & Us, so that Uy UUs is not closed under addition, a contradiction. To
see this, suppose  +y € U;. Then (z+y) —x € U; by closure of addition in Uy,
but this is absurd since this implies y € Uy, contrary to assumption. Similarly,
suppose « + y € Us. Then (x + y) — y € Us, which is also absurd since this
implies x € Us. Therefore U; U Us is not closed under addition, producing a
contradiction as claimed. Thus we must have one of the subspaces contained in
the other, as desired. O

Problem 13

Prove that the union of three subspaces of V' is a subspace of V' if and
only if one of the subspaces contains the other two.

Proof. Let Uy, Us,Us be subspaces of V.

(<) Suppose that one of the subspaces contains the other two. Without loss
of generality, assume U; C Us and Uy C Us. Then U; U Us U Uz = Us, and so
U1 UU, UUs is indeed a subspace of V.

(=) Now suppose U UU;UUs is a subspace. If Uy contains Us (or conversely),
let W = Uy UUs. Then applying Problem 12 to the union U; U W, we have that
either Uy contains W or W contains U;, showing that one of the three subspaces
contains the other two, as desired. So assume Us and Uz are such that neither
contains the other. Let

.Z‘EUQ\Ug and :IJE(];),\IJQ7

and choose a,b € F\ {0} such that a —b =1 (such a, b exist since we assume F
is not finite).

We claim that ax + y and bx + y are both in U;. To see that ax +y € Uy,
suppose not. Then either az +y € Uy or ax +y € Us. If ax + y € Us, then
we have (ax +y) — ax = y € Us, a contradiction. And if ax + y € Us, we have
(ax + y) — y = ax € Us, another contradiction, and so az + y € U;. Similarly
for bz + y, suppose bx + y € Uy. Then (bx + y) — bx = y € Us, a contradiction.
And if bz + y € Us, then (bx + y) —y = bx € Us, also a contradiction. Thus
bx + y € Uy as well. Therefore

(ax +y) — (bx+y) = (a—b)x =z € U;.

Now, since & € Uy \ Us implies « € Uy, we have Uy \Us C U;. A similar argument
shows that = + ay and x + by must be in U; as well, and hence

(x+ay) — (z+by) = (a—bly=y e U,

and therefore Uz \ Uy C Uy. If Uy N Us = (), we're done, so assume otherwise.

10



Now for any u € Uy N Us, choose v € Us \ Uy C Uy. Then u+v & Uy NUs,
for otherwise (u +v) —u = v € Us, a contradiction. But this implies u + v must
be in Uy, and hence so is (u + v) — v = w. In other words, if u € Us N Us, then
u € Uy, and hence Uy N U3 C Uy, as was to be shown. O

Problem 15
Suppose U is a subspace of V. What is U + V7

Proof. We claim U +V = V. First suppose x € V. Thenz =0+2 € U +V,
and hence V C U + V. Now suppose y € U + V. Then there exist u € U and
v € V such that y = u 4+ v. But since U is a subspace of V', we have v € V, and
hence u + v € V. Therefore U + V C V| proving the claim. O

Problem 17

Is the operation of addition on the subspaces of V' associative? In other
words, if Uy, Us, Uz are subspaces of V, is

(U1 +Uz)+Us =Uy + (Uz + Us)?

Proof. Let Uy, Us, Us be subspaces of V', and let Vi = Uy + U,y and Vo = Us + Us.
We claim
Vi+Us =U; + Va.

To see this, suppose x € Vi + Us. Then there exist v; € V7 and uz € Us such
that x = v1 + ug. But since v; € V3 = Uy 4 Us, there exist u; € Uy and ug € Uy
such that v;1 = uq +us. Then x = uq +us +ug, and since us +uz € Us+Uz = Vs,
we have x € Uy + V5 and hence Vi + Us C Uy + V5. Now suppose y € Uy + Vs.
Then there exist uf € Uy and v € V5 such that y = u} 4+ vy. But since
vg € Vo = Uy + Us, there exist uj, € Uy and uj € Us such that vy = uf + uf.
Then y = u} + ub + uf, and since v} +ub € Uy + Uz = V1, have y € V; + Us and
hence Uy + Vo C Vi + Us. Thus Vi + Uz = Uy + Vs, as claimed. O

Problem 19

Prove or give a counterexample: if Uy, Us, W are subspaces of V' such
that

Uh+W =Us+W,
then Uy = Us.

Proof. The statement is false. To see this, let V =U; = W = R? and U, =
R x {0}. Then U; + W = R? and U, + W = R?, but clearly U; # Us. O

11



Problem 21
Suppose

U= {(z,y,x+y,x—y,22) €F° |2,y € F}.
Find a subspace W of F° such that F° =U @ W.

Proof. Let vi = (1,0,1,1,2,),v, = (0,1,1,—1,0), so that we may instead write
V as
V= {Olll)l + V2 € IFS | 1,09 € IF}

Now let wy = (0,0,1,0,0), w2 = (0,0,0,1,0),ws = (0,0,0,0,1) and define
W = {a1w1 + QW2 + azws € FS | 1,009,033 € F}

We claim U @& W = F5. There are three things to prove: (1) W is a subspace of
F°, (2) U+ W =TF5, and (3) this sum is direct.

To see that W is a subspace of F°, note that 0-w; 4+ 0-ws +0-ws = 0, and
hence 0 € W. Next suppose a,b € W. Then there exist some ay, 8 € F, where
k =1,2,3, such that a = ajw; + asws + azws and b = frwy + Paws + Bzws.
But then a + b = (a1 + 81)wy + (ae + B2)ws + (a3 + B3)ws, which is again
in W, and hence W is closed under addition. Finally, let v € F. Then va =
Y(arwr + aaws + azws) = (yar)wr + (yoz)ws + (yaz)ws which is again in W,
and hence W is closed under scalar multiplication. So W is indeed a subspace.

We next show that U+ W = [F°. First notice that U+ W C F° since U, W are
both subspaces of F5. To see the that F> C U+W, let a = (a1, as,as, as,as) € F°.
Recalling our definition of the vectors vy, vs,wy, we, w3, consider the linear
combination

(a1v1 + agva) + [(ag — a1 — az)wy + (ag — ay + ag)ws + (a5 — 2a1)w3} .

Note that the sum above is an element of U + W. And after reducing, we find
that the sum above equals (a1, az,as, aq,as), and hence a € U + W and so in
fact F°? = U + W.

Lastly we show that the sum is direct. Every element of U + W has the form
a1V + Qv + azvsg + vy + asvs for some o € F with K =1,...,5, so suppose
0 = a1 + vy + aszvs + auvy + asvs. Simplifying yields

(a1, 00,01 + ao + a3, 1 — ag + ag, 201 + as) = 0.
Clearly a3 = as = 0. But now this equation simplifies to

(07 0,&3, Qy, 0[5) = 07

and so ag = a4 = a5 = 0 as well, and hence the sum is indeed direct. O

12



Problem 23

Prove or give a counterexample: if Uy, Us, W are subspaces of V' such
that

V=Ui&W and V=U&W,
then Uy = Us.

Proof. The statement is false. Let V = R? W =R x {0}, U; = {0} x R, and
Uy = {(x,z) € R? | x € R}. Then clearly

V=U,+W=U+W.
Moreover, Uy N W = {0} and Uy N W = {0}, and hence the sums are direct.
That is,

V=UeW=UaW,
but U1 75 UQ. O

13



Chapter 2: Finite-Dimensional Vector Spaces

Linear Algebra Done Right, by Sheldon Axler

A: Span and Linear Independence

Problem 1

Suppose vy, U2, v3,v4 spans V. Prove that the list

V1 — V2,V2 — VU3, V3 — VU4, V4

also spans V.

Proof. Let w € V. Then there exist a1, as, az,as € F such that
W = a1V] + a2 + azvs + a4v4.
We wish to find by, bo, b3, by € F such that
b1(v1 — v2) + ba(ve — v3) + b3(vs — v4) + byvy = a1v1 + agve + azvs + agvy.
Simplifying the LHS, we have
bivr + (ba — b1)va + (bs — b2)vs + (bs — b3)vy = a1v1 + agvs + asvs + aqgvy.
Hence we may choose

by =a

by = a1 + as

b3 = a1+ as + as

by = a1 + as + az + ay,

so that w is given as a linear combination of the list v; — vg, V9 — v3, V3 — vy, Vg,
and thus the list spans V as well. O

Problem 3
Find a number ¢ such that

(3,1,4),(2,-3,5),(5,9,1%)

is not linearly independent in R3.




Proof. Let t = 2. Then
3(37 ]-7 4) - 2(27 737 5) = (57 97 2)3

and hence the vectors are not linearly independent since one of the vectors can
be written as a linear combination of the other two. O

Problem 5
(a) Show that if we think of C as a vector space over R, then the list
(1 44,1 —4) is linearly independent.

(b) Show that if we think of C as a vector space over C, then the list
(1+4,1—14) is linearly dependent.

Proof.  (a) Suppose
a(l+i)+b(1—i) =0
for some a,b € R. Then
(a+b)+ (a—0b)i=0.

Comparing imaginary parts, this implies a — b = 0 and hence a = b. But
now substituting for b and comparing real parts, this implies 2a = 0, and
hence a = b = 0. Thus the vectors are linearly independent over R.

(b) Note that

—i(1+14) =1—1,
so that 1 — 4 is a scalar multiple of 1 + ¢ and hence the vectors are linearly
dependent over C. O
,—l Problem 7 \
Prove or give a counterexample: If v1,vs, ..., vy, is a linearly independent

list of vectors in V', then
5v1 — 4vg, V2, V3, . .., Uy

is linearly independent.

Proof. Let u = bv; — 4vy. We claim the list u, v, ..., vy, is linearly independent.
To see this, suppose not. Then there exists some j € {2,...,m} such that
vj € span(u,vs,...,v;—1). But then v; is also in span(vi,vs,...,v;-1), since
u = Hvy — 4vs is a linear combination of vy and vs, a contradiction. O



Problem 9

Prove or give a counterexample: If vy, ..., v, and wy, ..., w,, are linearly
independent lists of vectors in V', then vy + wy, ..., vy, + W, is linearly
independent.

Proof. The statement is false. To see this, let wy = —vg for K =1,...,m. Then
w1, . .., W, are also linearly independent, but v1 +wy = -+ =v,, +w,, =0. 0O

Problem 11

Suppose vq, . .

., U, 18 linearly independent in V' and w € V. Show that

V1, - .-, Unm,w is linearly independent if and only if
w & span(vy, .. ., V).
Proof. (=) First suppose v1,...,0n,,w is linearly independent. If w €
span(vy, ..., Vy), then there exist ay,...,a,, € F such that

W= a1V1 + *** + A Upp-

But then
—w+a1vy + -+ apvy, =0,
a contradiction. Therefore we must have w ¢ span(vy, ..., Un).
(<) Now suppose w ¢ span(vy, ..., v, ) and consider the list vy,..., v, w.

Suppose the list were linearly dependent. Then there exists a vector in the
list which is in the span of its predecessors. Since this vector cannot be w by

assumption, there exists some j € {1,...,m} such that v; € span(v,...,vj_1),
contradicting the hypothesis that v1, ..., vy, is linearly independent (and hence
all sublists are). Thus vy, ..., v, w must be linearly independent. O

Problem 13

Explain why no list of four polynomials spans P, (TF).

Proof. Note that the list 1, z, ..., 2* spans P, (F), is linearly independent, and
has length 5. Since the length of every spanning list must be at least as long as
every linearly independent list, there exist no spanning lists of vectors in P(F)

of length less than 5. O
Problem 14
Prove that V is infinite-dimensional if and only if there is a sequence
v1, Vg, ... of vectors in V' such that vq,...,v,, is linearly independent for

every positive integer m.




Proof. (=) First suppose V is infinite-dimensional. We will prove by induction
that there exists a sequence vy, vo, . .. of vectors in V such that for every m € Z 7T,
the first m vectors are linearly independent.

Base Case: Since V is infinite-dimensional, V' contains some nonzero vector
v1. The list containing only this vector is clearly linearly independent.

Inductive Step: Suppose the list of vectors vy, ..., v is linearly independent
for some k € Z*. Since V is infinite-dimensional, these vectors cannot span V/,
and hence there exists some vg1 € V' \ span(vy, ..., vx). In particular, note that
Vg+1 7 0. But then vy,..., v, vg41 is linearly independent by the Linear Depen-
dence Lemma (for if it were linearly dependent, the Lemma guarantees there
would exist a vector in the list which could be written as a linear combination of
its predecessors, which is impossible by our construction).

By induction, we have shown there exists a list vy, vo, ... such that vy,..., v,
is linearly independent for every m € Z7T.

(<) Now suppose there is a sequence vy, vs, ... of vectors in V' such that
V1,...,Un is linearly independent for every m € Z™. If V were finite-dimensional,
there would exist a list vy, . .., v, for some n € Z* such that V' = span(vy,...,v,).
But then, by our assumption, the list vy, ..., v,41 is linearly independent. Since
every linearly independent list must have length no longer than every spanning
list, this is a contradiction. Thus V is infinite-dimensional. O

Problem 15

Prove that F*° is infinite-dimensional.

Proof. For each k € Z, define the vector ey such that it has a 1 in coordinate k

and 0 everywhere else. Then for the sequence ey, es, ..., the list eq,...,e,, is
linearly independent for any choice of m € Z*. By Problem 14, F* must be
infinite-dimensional. U

Problem 17

Suppose po, P1, - - - ; Pm are polynomials in Py, (IF) such that p;(2) = 0 for
each j. Prove that pg,p1, ..., pm is not linearly independent in P, (F).

Proof. Suppose it were. We will show that this implies pg,p1,-..,Pm sSpans
P (F) and that this in turn leads to a contradiction by explicitly constructing a
polynomial that is not in this span.

Note that the list 1,z,...,2™*! spans P,,(F) and has length m + 1,
hence every linearly independent list must have length m + 1 or less. If
span(po, P1, -« - Pm) 7 Pm(F), there exists some p & span(po,p1,.-..,Pm), and
thus the list pg,p1,--.,DPm,p is linearly independent and of length m + 2, a
contradiction. And so we must have span(po, p1, ..., Pm) = Pm(F).



Now define the polynomial ¢ = 1. Then ¢ € span(po,p1,...,Pm), and hence
there exist ag,...,a,, € F such that

q = appo +aip1 + -+ + amPm,
which in turn implies

q(2) = aopo(2) + a1p1(2) + -+ - + amPm(2).

But this is absurd, since this implies 1 = 0. Therefore pg, p1, ..., pm cannot be
linearly independent, as desired. O
B: Bases

Problem 1

Find all vector spaces that have exactly one basis.

Proof. We claim that only the trivial vector space has exactly one basis. We
first consider finite-dimensional vector spaces. Let V' be a nontrivial vector space

with basis v1,...,v,. We claim that for any ¢ € F*, the list cvq,...,cv, is a
basis as well. Clearly the list is still linearly independent, and to see that it still
spans V, let u € V. Then, since vy,...,v, spans V, there exist ay,...,a, € F
such that

U=aiv] + -+ apvy.

But then we have
aj (7%
u= ?(cvl) +- 4 ?(cvn)

and so cvy, ..., cv, span V as well. Thus we have more than one basis for all
finite-dimensional vector spaces.

Essentially the same proof shows the same thing for infinite-dimensional
vector spaces. So let W be an infinite-dimensional vector space with basis

w1, Wa, . ... We claim that for any ¢ € F, the list cwy, cws, ... is a basis as well.
Clearly the list is again linearly independent, and to see that it still spans V, let
u € V. Then, since wy, ws, ... spans W, there exist a1, aqo, - € I such that

U= ajwy + aws + ...

But then we have a a
u = %(cwl) + f(cwg) +...

and so cwi, cws, ... span W as well. Thus we have more than one basis for all
infinite-dimensional vector spaces as well, proving our original claim. O



,_l Problem 3

(a) Let U be the subspace of R® defined by
U = {(x1,29,23,%4,75) € R® | 21 = 33 and x3 = Tz4}.
Find a basis of U.
(b) Extend the basis in part (a) to a basis of R,

(c) Find a subspace W of R® such that RS = U & W.

Proof.  (a) We claim the list of vectors
(3, 17 Oa Oa 0)7 (07 07 7a 17 0)7 (07 Oa 07 07 1)

is a basis of U. We first show they span U. So let w € U. Then there exist
z1,...,r5 € R such that

u = (z1,T2,23,Tq,T5)
and such that 1y = 3z and x3 = 7z4. Substitution yields
u = (3xa, T2, X4, Tq,X5),

and hence we have

u=x2(3,1,0,0,0) + 24(0,0,7,1,0) + 25(0,0,0,0,1)
and indeed they span U. Now suppose a1, as,as € R are such that

a1(3,1,0,0,0) + a2(0,0,7,1,0) + a3(0,0,0,0,1) = 0.
Then we have

(3a1,a1,0,0,0) + (0,0, 7as, az,0) + (0,0,0,0,a3) = 0

which clearly implies a; = a2 = a3 = 0. Thus they are also linearly
independent, and hence a basis.

(b) We claim the list

U1 = , V2 = , U3 = , Us =

(el el Y
O = OO
o O o O

<

N

|
[eslien el el S
OO = OO



is a basis of R® expanding the basis from (a). To see that it spans R, let
u = (u1,uz, us, ug, us) € R®. Notice

UV + ugve + usvz + (ug — 2u2)vg + (uz — Guyg)vs =

3us 0 0 uy — 2us 0
Ug 0 0 0 0
0 + | Tus | +1 0 | + 0 + | uz — 6uy
0 Uy 0 0 0
0 0 Us 0 0
Simplifying the RHS, we have
3ug 0 0 up — 2ug 0 Uy
u2 0 0 0 0 u
0 + 1 Tug | +1 0 | + 0 4+ |us—6ug | = | us|,
0 U4 0 0 0 Uy
0 0 Us 0 0 Us
and so indeed vy, ..., vs span R®. To see that they are linearly independent,
suppose ai,...,a5 € R are such that
3 0 0 1 0 0
1 0 0 0 0 0
a1 O + ag 7 + as 0 + (o7} 0 + as 1 = 0
0 1 0 0 0 0
0 0 1 0 0 0
We have the equivalent system of linear equations
3a1 +a4 =0
ay = 0
Tas + a5 =0
as = 0
az = 07
which clearly implies each of the a; are 0. Hence vy,...,v5 are linearly

independent as well, and thus a basis.

Let W = span(vg,vs), where vy and vs are defined as in (b). We claim
R =U@W. Tosee R® = U4+ W, let v € R?. Then, because we’ve already
shown vy, ..., vs span R, there exist ai,...,as € R such that

u = (a1v1 + agvy + azvs) + (agvg + asvs).

The first term in parentheses is an element of U, and the second is an
element of W, and thus V =U + W.



To prove the sum is direct, it suffices to show U N W = {0}. So suppose
u € UNW. Then there exist ay, as, as, by, b € R such that

v = a1v1 + agv2 + azvs = byvyg + bovs.

Thus

a1v1 + agvs + azvz — byvg — bavs = 0.
Since v1,...,v5 are linearly independent, this implies each of the a’s and
b’s are 0, and so indeed U N W = {0}. Therefore the sum is direct, proving
our claim that R =U @ W. O

Problem 5

Prove or disprove: there exists a basis po, p1,p2, ps of P3(F) such that
none of the polynomials pg, p1, p2, p3 has degree 2.

Proof. Consider the list
Po = 1;101 = X7p2 = X3 +X27p3 = X3

which contains no polynomial of degree 2. We claim this list is a basis. First we
prove span(pg, p1, p2,p3) = P3(F). Let ¢ € P3(FF). Then there exist ag,...,a3 €
F (some of which may be 0) such that

g=ao+amX +aX?+asX3.
But notice
aopo + a1p1 + asps + (az — az)ps = ag + a1 X + az(X* + X?) + (a3 — az) X*
=ag+a; X +asX?+a3X3
=4q,

and so indeed pg, p1, P2, p3 spans P3(F). To see the list is linearly independent,
suppose by, ...,bs € F are such that

bopo + b1p1 + bapa + b3pz = 0.
It follows that
bo + b1 X + by X2 + (ba + b3)X3 =0

which is true iff all coefficients are zero. Hence we must have by = by = by = b3 =
0, and so pg, ..., ps is linearly independent. Thus it is a basis, as claimed. [

Problem 7

Prove or give a counterexample: If vy, vo,v3,v4 is a basis of V and U is a
subspace of V' such that vi,vs € U and vs € U and vy &€ U, then vy, vs is
a basis of U.




Proof. The statement is false. To see this, let V = R* and let
v1 = (1,0,0,0),v2 = (0,1,0,0),v3 = (0,0,1,0),v4 = (0,0,0,1).
Define
U = {(z1,20,23,24) € R* | 23 = 24}.

We have vi,v € U and vs,vs € U. But since no linear combination of vy, vy
yields (0,0, 1,1), v1,v2 do not span U, and hence they cannot form a basis. [

C: Dimension

Problem 1

Suppose V is finite-dimensional and U is a subspace of V such that
dimU = dim V. Prove that U = V.

Proof. Let n =dimU = dimV, and let uq,...,u, be a basis for U. Since this
list is linearly independent and has length equal to the dimension of V', it must
be a basis for V as well (by Theorem 2.39). Clearly we have U C V', so it remains
to show V C U. Let v € V. Then there exist aq,...,a, € F such that

V=a1u] + -+ apun,.-

But now v is expressed as a linear combination of vectors in U and hence is in
U as well. Thus U =V, as desired. O

Problem 3

Show that the subspaces of R? are precisely {0}, R3, all lines in R?
through the origin, and all planes in R3 through the origin.

Proof. A subspace of R3 can have a basis of length 0, 1,2 or 3. We consider each
in turn:

0: The only basis of length 0 is the empty basis, which generates {0}.

1: Any basis of length 1 contains a single € R*. Notice span(z) = {azx €
R | a € R}, and hence bases of length 1 generate lines through the origin.

2: Any basis of length 2 consists of two linearly independent x,y € R*.
Notice span(z,y) = {az + by € R? | a,b € R}, and hence bases of length 2
generate planes through the origin.

3: Any basis of length 3 is simply a basis of R? and hence generates all of R3.

Since we’ve exhausted all possibilities, all subspaces of R3 have been classified
as one of these four types. O



Problem 4
(a) Let U = {p € P4(F) | p(6) = 0}. Find a basis of U.

(b) Extend the basis in part (a) to a basis of Py(F).

(c) Find a subspace W of P4(F) such that Py(F) =U & W.

We first prove a helpful lemma that we will use repeatedly.

Lemma 1. Any list of nonzero polynomials in P(F), no two of which have the
same degree, is linearly independent.

Proof of the lemma. Let p1,...,p, € P(F) be nonzero and each of unique degree,
and without loss of generality suppose they are ordered from smallest degree
to largest. Denote their degrees by dy,...,d,. Now suppose aq,...,a, € F are
such that

aipr + -+ +app, =0.

Without explicitly expanding the LHS, we see that it must have an X% term
with a nonzero coefficient (since each polynomial is assumed to have unique
degree). Since the RHS is identically 0, this implies a,, = 0. But now by repeating
this same argument n — 1 times, we see that in fact each of aq,...,a,_1 must
be zero as well, and hence the list is indeed linearly independent. O

Proof.  (a) We claim the list of polynomials
(X - 6)7 (X - 6)23 (X - 6)37 (X - 6>4

is a basis of U. By Lemma 1, since each polynomial in the list has unique
degree, the list is linearly independent. Thus dim U must be at least 4,
since we’ve demonstrated a linearly independent list of length 4. Since U
is a subspace of P4(F), which has dimension 5, this implies dim U € {4,5}.
But notice U is a proper subset of Py (F) since, in particular, it excludes
the monomial X. Thus dim U cannot be 5, and we conclude dim U = 4.
Since our list is linearly independent and of length equal to dim U, it must
be a basis.

(b) We claim
1(X = 6), (X —6)* (X —6)°, (X —6)*

is an extension of our basis of U to P4(F). Since this list is of length
equal to dim P4(F), it suffices to show it is linearly independent. But this
follows immediate by Lemma 1, since each polynomial in the list has unique
degree.

(¢) Let W =F. We claim P4(F) = U @ W. Label our basis from (b) as

po=1,p1 = (X —6),p2 = (X —6)%p3 = (X —6)°ps= (X —6)".

10



Problem 7

In this notation, we have W = span(pg) and U = span(p1,...,ps). Clearly
P4(F) =U + W since pg, ..., ps is a basis of Py(F), so it suffices to show
UNW = {0}. Suppose ¢ € UNW. Then ¢ must be a scalar by inclusion
in W. If ¢ were nonzero, there would exist ao,...,as € F such that

ao(X —6) + a1 (X —6)% + aa(X —6) + az(X —6)* #0

for all X € F. But this is absurd, since the LHS evaluates to 0 for X = 6.
Thus ¢ cannot be nonzero, and the sum is indeed direct. O

(a) Let U = {p € Ps(F) | p(2) = p(5) = p(6)}. Find a basis of U.
(b) Extend the basis in part (a) to a basis of P4(F).

(¢) Find a subspace W of P4 (F) such that P,(F) =U & W.

Proof. (a) We claim the list of polynomials

L (X = 2)(X = 5)(X = 6), (X - 2)(X = 5)(X - 6)° (1)

is a basis of U. Linear independence follows from Lemma 1, and so dim U
must be at least 3. We will exhibit a proper subspace V of P4(F) of
dimension 4 such that U is a proper subspace of V. This will in turn imply
that 3 < dimU < 4. Since all dimensions are of course integers, this will
imply dim U = 3. Since our list of polynomials is a linearly independent
list of length equal to dim U, this will prove it to be a basis. So consider
the subspace

V ={pePu(F) | p(2) =p()}
of P4(F). Clearly U is a subspace of V, and moreover it is a proper
subspace since (X —2)(X —5) is in V but not in U. So it only remains to
show dim V' = 4. Note that the list of polynomials

L(X = 2)(X —5),(X —2)*(X =5),(X —2)*(X —5)?

is linearly independent in V' (again by Lemma 1). Note also that V a
proper subspace of P4(F) since it does not contain the monomial X. Since
this implies 4 < dim V' < 5, we must have dim V' = 4, completing the proof
that (T) is indeed a basis of U.

We claim
L,X, X% (X —2)(X =5)(X —6),(X —2)(X —5)(X —6)2

is an extension of our basis of U to P, (F). Since this list is of length equal
to dim P4(F), it suffices to show it is linearly independent. But this follows
immediately from Lemma 1.

11



(c) Label our basis from (b) as

p0:17
plZXa
b2 = X27

ps = (X = 2)(X = 5)(X - 6),

py= (X —2)(X —5)(X —6)?
and let W = span(p1, p2). We claim Py(F) = U@ W. That P4(F) =U+W
follows from the fact that po,...,ps is a basis of Py(F) and since U =

span(po, p3, p4). To prove the sum is direct, it suffices to show UNW = {0}.
So suppose g € U N W. Then there exist ag, a1, by, b1, b2 € F such that

q = agp1 + a1p2 = bopo + bip3 + bapa.
But then
aop1 + a1pz — bopo — b1pz — bapy = 0,

and since the py, ..., ps are linearly independent, this implies each of the
a’s and b’s are zero. Thus ¢ = 0 and the sum is indeed direct. O

Problem 9

Suppose v1, ..., U, is linearly independent in V and w € V. Prove that

dimspan(vy +w, ..., vy +w) > m — 1.

Proof. Let W = span(vy + w, ..., v, + w), and consider the list
V2 —V1,V3 —V2y...,Um — Umn—1,

which has length m — 1. Note that vy — vg—1 = (v + w) — (vpg—1 + w), so that
each vector in this list is indeed in W. Since the dimension of W must be greater
than the length of any linearly independent list, if we prove this list is linearly
independent, we will have proved dim W > m — 1. So suppose aq,...a;,—1 € F
are such that

a1(vg —v1) + -+ @m—1(Vm — Vm—1) = 0.
Expanding, we see
(—a1)v1 + (a1 — az2)ve + -+ + (@m—2 — Q) V-1 = 0.

But since vy, ..., v, 1 is linearly independent by hypothesis, each of the coef-
ficients must be zero. Thus a; = 0 and ay_1 = a; for k =2,...,m — 1, and
hence we must have as = --- = a,,—1 = 0 as well. Therefore, our list is linearly
independent, and indeed dim W > m — 1. O

12



Problem 11

Suppose that U and W are subspaces of R® such that dimU = 3, dim W =
5,and U + W = R®. Prove that RE =U @ W.

Proof. We have
dim(U + W) =dimU + dim W — dim(U N W),
and thus since U + W = R8, dim U = 3, and dim W = 5, it follows
8 =3+5—dim(UNW),

and hence dim(U N W) = 0. Therefore we must have U N W = {0}, and hence
RE=UaW. O

Problem 13

Suppose U and W are both 4-dimensional subspaces of C®. Prove that
there exist two vectors in U N W such that neither of these vectors is a
scalar multiple of the other.

Proof. Note that we view C® as a vector space over C. We have
dim(U + W) =dimU + dim W — dim(U N W),
and thus since dimU = dim W = 4, it follows
dim(U + W) =8 —dim(U N W). (1)

Since U + W is a subspace of C® and dim C® = 6, and since dim(U + W) >
max{dim U, dim W} = 4, we have

4 < dim(U + W) <6. (2)
Combining (1) and (2) yields
—4 < —dim(UnNW) < -2,

and hence
2<dim(UNW) <A4.

Thus U N W has a basis of length at least two, and thus there exist two vectors
in U NW such that neither is a scalar multiple of the other (namely, two vectors
in the basis). O

13



Problem 14

Suppose Uy, ...,U,, are finite-dimensional subspace of V. Prove that
U, +---+ U, is finite-dimensional and

dim (U + -+ Uyp) <dimU; + - - - + dim U,,.

Proof. For each j =1,...,m, choose a basis for U;. Combine these bases to form
a single list of vectors in V. Clearly this list spans U; + - - - + U,,, by construction.
Hence U; + - - - + U, is finite-dimensional with dimension less than or equal to
the number of vectors in this list, which is equal to dim Uy + - - - + dim U,,,. That
is,

dim (U + -+ Up) <dimU; + -+ - + dim U,

as desired. O
Problem 15
Suppose V is finite-dimensional, with dim V' = n > 1. Prove that there
exist 1-dimensional subspaces Uy, ...,U, of V such that

V=U,& - ®U,.

Proof. Since dim V' = n, there exists a basis vy,...,v, of V. Let Uy = span(vy)
for k =1,...,n, so that each Uy has dimension 1. Clearly

V=Uy+ -+ Uy,

so it remains to show this sum is direct. If uw € Uy + - + U, there exist
ai,...,a, € F such that

U=aiv] + - -+ apvy,.

But since vy, ..., v, is a basis, this representation of u as a linear combination
of v1,...,v, is unique, and thus the sum is direct, as desired. O

Problem 16

Suppose Uy, ...,U,, are finite-dimensional subspaces of V such that
Ui+ --+U,, is a direct sum. Prove that U; ®- - -®U,,, is finite-dimensional
and

dimU; ®---®U,, =dimU; + --- +dim U,,.

Proof. For each j =1,...,m, choose a basis for U;. Combine these bases to form
a single list of vectors in V. Clearly this list spans U; + - - - 4+ U,,, by construction,

14



so that Uy + - -+ + U, is finite-dimensional. We claim this list must be linearly
independent, hence it will be a basis of length dim Uy + - - - 4+ dim U,,,, and thus

dlmU1@@Um:dlmU1++dlmUm

So suppose some linear combination of the vectors in this list equals 0. For
k=1,...,m, denote by uy the sum of all terms in that linear combination which
are formed from our chosen basis of Uj. Then we have

up + -+ Uy =0.

Since Uy +---+U,, =U; & --- ® U, each ur must equal 0. But then, since uy
is a linear combination of a basis of Uy, each of the coefficients in that linear
combination must equal 0. Thus all coefficients in our original linear combination
must be 0. That is, our basis is linearly independent, justifying our claim and
completing the proof. O

,_l Problem 17

You might guess, by analogy with the formula for the number of elements
in the union of three subsets of a finite set, that if Uy, Uy, U3 are subspaces
of a finite-dimensional vector space, then

— dlm(U1 n Ug) — d1m(U1 N Ug) — dlm(UQ n Ug)
+d1m(U1 NU; N Ug)

Prove this or give a counterexample.

Proof. The statement is false. Consider
Uy =R x {0}, Uy ={(z,z) € R? |z € R}, Uz = {0} x R.
We have

dim(U; 4 Uy + Us) = dimR? = 2
dimU; =dimU; =dimUs =1
dlITl(Ul n UQ) = dlm(U2 n Ug) =1
d1m(U1 n Ug) = d1m(U1 n U2 n Ug) = O,
and therefore
— d1m(U1 N UQ) — d1rn(U1 N Ug) — dlm(UQ n Ug)
+d1m(U1 NUyN U3)

since the LHS is 2, whereas the RHS is 1 in this case. O

15



Chapter 3: Linear Maps

Linear Algebra Done Right, by Sheldon Axler

A: The Vector Space of Linear Maps

Problem 1
Suppose b, c € R. Define T : R? — R? by

T(x,y,2) = (20 — 4y + 3z + b, 62 + cxyz).

Show that T is linear if and only if b = ¢ = 0.

Proof. (<) Suppose b = ¢ =0. Then
T(%% Z) = (21: - 4y + 32’, GI)
Let (21,y1,21), (T2, Y2, 22) € R®. Then

T((z1,91,21) + (2,92, 22)) = T(@1 + 22,51 + Y2, 21 + 22)
= (2(z1 + 22) — 4(y1 + y2) +3(21 + 22), 6(21 + 22))
= (21’1 + 229 — 4y1 — 4y + 321 + 329,621 + 61’2)
= (2z1 — 4y1 + 321, 621) + (229 — 4yo + 329, 622)
=T(x1,y1,21) + T(22, Y2, 22).
Now, for A € F and (z,y, 2) € R3, we have
TNz, y,z)) =T(A\x, Ay, A\z)
= (2(\z) — 4(\y) + 3(A2),6(\x))
= (A (22 — 4y + 32), \(62))
= A2z — 4y + 3z,62)
= )\T(:E7 y’ Z)7
and thus T is a linear map.
(=) Supose T is a linear map. Then
T(21 + 22,51 + Y2, 21 + 22) = T(21,91,21) + T(22, Y2, 22) (1)
for all (z1,y1,21), (T2, Y2, 22) € R3. In particular, by applying the definition of
T and comparing first coordinates of both sides of (), we have
2(wy +x2) —4(y1 +y2) +3(21 + 22) + b=
(2]}1 — 4y + 321 + b) + (2.132 —4ys + 329 + b),



and after simplifying, we have b = 2b, and hence b = 0. Now by applying the
definition of T and comparing second coordinates of both sides of (), we have

6(x1 4+ x2) + c(z1 + 22) (Y1 + y2) (21 + 22) = 621 + c(z1y121) + 622 + c(w2y222)
= 6(1'1 + 1’2) + c(xlylzl + $2y222),
which implies
c(xy +22) (11 + y2) (21 + 22) = c(1y121 + T2y222).

Now suppose ¢ # 0. Then choosing (z1,y1,21) = (z2,y2,22) = (1,1,1), the
equation above implies 8 = 2, a contradiction. Thus ¢ = 0, completing the
proof. O

,-' Problem 3 \

Suppose T' € L(F™,F™). Show that there exist scalars A, € F for
j=1,...,mand k=1,...,n such that

T($1, 000 7xn) = (Al,lxl S oco P Al,nxna 000 7Am,1xl P eee P Am,nxn)

for every (x1,...,z,) € F".

Proof. Given x € F", we may write
r=2x1€] + -+ Tpetp,
where eq, ..., e, is the standard basis of F™. Since T is linear, we have
Te=T(x1e1 + -+ zpe,) =x1Ter + -+ x,Te,.

Now for each T'e, € F™, where k =1,...,n, there exist A; 1,..., Ap i € F such
that
Ter =Ai1per + -+ A kem
= (A1, Amk)
and thus
kaek = (Al,kl’ka N ,AmJka) .
Therefore, we have

n

Tr = Z (Al,kxk’a cey Am,kxk)

k=1
n n

= §A1,kka-',§ Am iy |,
k=1 k=1

and thus there exist scalars A;, € Ffor j =1,...,mand k= 1,...,n of the
desired form. O



Problem 5

Prove that £(V,W) is a vector space.

Proof. We check each property in turn.
Commutative: Given S,T € L(V,W) and v € V, we have

(T+S)(v)=Tv+Sv=Sv+Tv=(S+T)(v)

and so addition is commutative.
Associative: Given R, S,T € L(V,W) and v € V, we have

(R+S)+T)(v)=(R+S)(v)+Tv=Rv+ Sv+Tv
=R+ (S+T)(v)=(R+(S+T))(v)

and so addition is associative. And given a,b € F, we have
((ab)T)(v) = (ab)(Tw) = a(b(Tv)) = (a(bT))(v)

and so scalar multiplication is associative as well.
Additive identity: Let 0 € L(V, W) denote the zero map, let T € L(V, W),
and let v € V. Then

T+0)(v)=Tv+0w=Tv+0=Tv

and so the zero map is the additive identity.
Additive inverse: Let T € L(V, W) and define (—T) € L(V,W) by (-T)v =
—Twv. Then

T+ (-T)w)=Tv+ (-T)v=Tv—-Tv=0,

and so (—T) is the additive inverse for each T € L(V,W).
Multiplicative identity: Let T € L(V,W). Then

(1T)(v) = 1(Tv) =Twv

and so the multiplicative identity of F is the multiplicative identity of scalar
multiplication.
Distributive properties: Let S,T € L(V,W), a,b € F, and v € V. Then

(a(S+T))(v)=a((S+T)(v)) =a(Sv+ Tv) = a(Sv) + a(Tv)
= (aS)(v) + (aT)(v)
and
((a+b)T)(v) = (a+b)(Tv) = a(Tv) + b(Tv) = (aT)(v) + (bT)(v)

and so the distributive properties hold.
Since all properties of a vector space hold, we see L(V, W) is in fact a vector
space, as desired. O



Problem 7

Show that every linear map from a 1-dimensional vector space to itself is
multiplication by some scalar. More precisely, prove that if dimV =1
and T € L(V,V), then there exists A € F such that Tv = Av for all
velV.

Proof. Since dimV = 1, a basis of V' consists of a single vector. So let w € V
be such a basis. Then there exists a € F such that v = aw and X € F such that
Tw = \w. It follows

Tv =T(aw) = aTw = adw = Aaw) = Av,

as desired. ]

,_l Problem 9

Give an example of a function ¢ : C — C such that

p(w + 2) = p(w) + ()

for all w, z € C but ¢ is not linear. (Here C is thought of as a complex
vector space.)

Proof. Define
p:C—>C
T4yt = x — yi.
Then for 1 + y14, 2 + y2i € C, it follows

(1 +y1) + (22 + y21)) = o((21 + 22) + (y1 + Y2)7)
= (z1 +22) — (y1 +y2)i
= (z1—y1)i + (22 — y2)i
= (1 + y19) + p(x2 + Yai)

and so ¢ satisfies the additivity requirement. However, we have
p(i-i) =p(-1)=-1

and
1) =1i(—i) =1

and hence ¢ fails the homogeneity requirement of a linear map. O



Problem 11

Suppose V is finite-dimensional. Prove that every linear map on a
subspace of V can be extended to a linear map on V. In other words,
show that if U is a subspace of V and S € L(U, W), then there exists
T € L(V,W) such that Tu = Su for all u € U.

Proof. Suppose U is a subspace of V and S € L(U,W). Let v1,...,u, be a
basis of U and let v1,...,vm, Um+1,--.,V, be an extension of this basis to V.
For any z € V, there exist aq,...,a, € F such that z = 22:1 apvk, and so we
define

T:V =W

n m n
E ARV — E apSvg + E AUk .
k=1 k=1

k=m+1

Since every v € V has a unique representation as a linear combination of elements
of our basis, the map is well-defined. We first show T is a linear map. So suppose
21, 20 € V. Then there exist ay,...a, € F and by,...,b, € F such that

z1=aiv1 + - +apv, and zo =bjvy + -+ byv,.

It follows

T(z1+22)=T Z apvy + Z brvg
k=1 k=1

T Z(ak + bk)vk

k=1

(ak +br)Sve + > (ak + br)vg

I
NE

k=1 k=m+1
= ZakSvk + Z agVg | + Z b Svi + Z brvy,
k=1 k=m+1 k=1 k=m+1
=T Zakvk +T Zbkvk
k=1 k=1
=Tz + T2

and so T is additive. To see that T is homogeneous, let A € F and z € V, so



that we may write z = 22:1 ayvy for some ay,...,a, € F. We have

TAz)=T 1| A Z ax v
k=1

n

=T Z(Aak)vk

k=1

()\(lk)’l)k —+ Z ()\ak.)vk

I
NE

k=1 k=m+1
=S Z apvr | + A Z apVk
k=1 k=m+1
=A|S Z arpvi | + Z QUL
k=1 k=m+1
= \T Z AUk
k=1
=Tz

and so T is homogeneous as well hence T' € L(V, W). Lastly, to see that T |y= S5,
let w € U. Then there exist ay,...,a, € F such that u = Z;nzl arvg, and hence

Tu=1T Z apUE
k=1

m
=5 E ApUE
k=1

= Su,
and so indeed T agrees with S on U, completing the proof. O
Problem 13
Suppose v, ..., v, is a linearly dependent list of vectors in V. Suppose

also that W # {0}. Prove that there exist wy, ..., w,, € W such that no
T € L(V,W) satisfies Tvy, = wy, for each k =1,...,m.

Proof. Since vy, ...,v,, is linearly dependent, one of them may be written as a
linear combination of the others. Without loss of generality, suppose this is v,,.



Then there exist aq,...,a,,_1 € F such that
Um = Q101 + - + Qm—1Vm—1.

Since W # {0}, there exists some nonzero z € W. Define wy, ..., w, € W by

z fk=m
W = .
0 otherwise.

Now suppose there exists T € L(V, W) such that Tvy = wy, for k=1,...,m. It
follows

T0) =T(vm —a1v1 — +* — Am—1Vm—1)
=Tvy, —a1Tvy — - — @m_1TVm—1
=2z.

But z # 0, and thus T(0) # 0, a contradiction, since linear maps take 0 to 0.
Therefore, no such linear map can exist. U

B: Null Spaces and Ranges

Problem 1

Give an example of a linear map T such that dimnullT = 3 and
dimrangeT = 2.

Proof. Define the map
T:R>— R
(21,22, 73, 74, 25) > (0,0,0, 74, 25).

First we show T is a linear map. Suppose z,y € R®. Then

T(x+y) =T((x1, 72,23, 74, 5) + (Y1, Y2, Y3, Y4, Y5))
=T(xy +y1, 22 + Y2, 23 + Y3, 24 + Y4, T5 + Y5)
=(0,0,0, 24 + ys5, 25 + ys)
=(0,0,0,24,25) + (0,0,0,y4,ys5)
=T(z)+T(y).

Next let A € R. Then
T(A\x) = T(Axq, \xa, Az, Axg, AT5)
= (0,0,0, Az4, A\x5)
= A(0,0,0,24,x5)
—\T(),



and so T is in fact a linear map. Now notice that
null T = {(x1, 22, 23,0,0) € R® | 21,29, 23 € R}.

This space clearly has as a basis ej, es, e3 € R? and hence has dimension 3. Now,
by the Fundamental Theorem of Linear Maps, we have

dimR® = 3 4 dimrange T

and hence dimrangeT = 2, as desired. O

,—l Problem 3 <

Suppose v1, . . ., Uy, is a list of vectors in V. Define T' € L(F™, V') by

T(z1,- s 2m) = 2101 + - + Zm U,
(a) What property of T corresponds to vy, ..., vy, spanning V?

(b) What property of T' corresponds to vy, ..., v, being linearly inde-
pendent?

Proof.  (a) We claim surjectivity of T' corresponds to vy, ..., v,, spanning V.
To see this, suppose T is surjective, and let w € V. Then there exists
z € F™ such that Tz = w. This yields

Z1’U1+"'+Zm11m:w,

and hence every w € V can be expressed as a linear combination of

V1,...,0,. That is, span(vy,...,v,) = V.

(b) We claim injectivity of T corresponds to v1,..., v, being linearly inde-
pendent. To see this, suppose T is injective, and let aq,...,a, € F such
that

aivy + - + apv, = 0.
Then
T(a) =T(a1,...,an) =a1v1+ -+ anv, =0
which is true iff a = 0 since T is injective. That is, a; = --- = a, = 0 and
hence v1,...,v, is linearly independent. O

Problem 5

Give an example of a linear map T : R* — R* such that

range T = null 7.




Proof. Define
T:R*— R
(z1,22,23,24) — (23,24,0,0).
Clearly T is a linear map, and we have
null T = {(x1, 20, 23,24) | 3 = 24 = 0 € R} = R? x {0}?

and
rangeT = {(,9,0,0) | z,y € R} = R? x {0}°.

Hence rangeT = null T, as desired. O

Problem 7

Suppose V and W are finite-dimensional with 2 < dim V' < dim W. Show
that {T" € L(V,W) | T is not injective} is not a subspace of L(V, W).

Proof. Let Z = {T € L(V,W) | T is not injective}, let vq,...,v,, be a basis of
V', where m > 2, and let wy, ..., w, be a basis of W, where n > m. We define
T € L(V,W) by its behavior on the basis

0 ifk=1
T = < ws ifk=2
%wk otherwise

so that clearly T is not injective since Tv; = 0 = T(0), and hence T € Z.
Similarly, define S € L(V, W) by its behavior on the basis

Svg =<0 itk=2

%wk otherwise

and note that S is not injective either since Sve = 0 = S(0), and hence S € Z.
However, notice

(S4+T)(vg) =wg fork=1,...,n

and hence null(S + T') = {0} since it takes the basis of V' to the basis of W, so
that S + T is in fact injective. Therefore S+ T ¢ Z, and Z is not closed under
addition. Thus Z is not a subspace of L(V, W). O

Problem 9

Suppose T' € L(V, W) is injective and vy, ..., v, is linearly independent
in V. Prove that Tvq,...,Tv, is linearly independent in W.




Proof. Suppose aq,...,a, € F are such that

arTvi +---+a,Tv, =0.
Since T is a linear map, it follows

T(av1 + - + apv,) = 0.

But since nullT = {0} (by virtue of T being a linear map), this implies ajv; +

-+« 4+ apv, = 0. And since vy, ...,v, are linearly independent, we must have
ap = -+ = an, = 0, which in turn implies Tvy,...,Tv, is indeed linearly
independent in W. O

Problem 11

Suppose Sy, . ..,S, are injective linear maps such that 5155 ... S,, makes
sense. Prove that S§1.55...S,, is injective.

Proof. For n € Z>9, let P(n) be the statement: S1,...,S, are injective linear
maps such that 5155 ...S, makes sense, and the product 5155 ....S, is injective.
We induct on n.
Base case: Suppose n = 2, and assume S; € L(Vp, V1) and Sy € L(V1, Va), so
that the product 5155 is defined, and assume that both S; and Sy are injective.
Suppose vy,ve € Vp are such that vy # vg, and let wy = Sovy and wy = Sav.
Since Sy is injective, w; # ws. And since 57 is injective, this in turn implies
that S1(wi1) # S1(wz). In other words, S1(S2(v1)) # S1(S2(v2)), so that 5152 is
injective as well, and hence P(2) is true.
Inductive step: Suppose P(k) is true for some k € ZT, and consider the
product (5152 ...5%)Sk+1. The term in parentheses is injective by hypothesis,
and the product of this term with Sg41 is injective by our base case. Thus
P(k+1) is true.

By the principle of mathematical induction, the statement P(n) is true for
all n € Z>9, as was to be shown. O

Problem 13

Suppose T is a linear map from F* to F? such that
null T = {(z1, 22, 23,24) € F* | 21 = Bao and @3 = Tx4}.

Prove that T is surjective.

Proof. We claim the list
(57 17 07 0)7 (07 07 77 1)

10



is a basis of null 7. This implies

dimrange T = dimF* — dim null T
=4-2
= 2,
and hence T is surjective (since the only 2-dimensional subspace of F? is the
space itself). So let’s prove our claim that this list is a basis.

Clearly the list is linearly independent. To see that it spans null T, suppose
x = (x1,22,23,24) € null T, so that 1 = 5x9 and x3 = Tzy. We may write

€1 5To 51 0
X9 o i) o 1 0
I3 o 7$4 — T2 0 + T4 71’
T4 T4 0 1

and indeed x is in the span of our list, so that our list is in fact a basis, completing
the proof. O

Problem 15

Prove that there does not exist a linear map from F® to F? whose null
space equals

{(z1, 2, 3,24, 25) € F® | 21 = 329 and x3 = 24 = 5}.

Proof. Suppose such a T € L(F5,F?) did exist. We claim
(37 17 0’ 07 0)7 (07 0’ 17 17 1)
is a basis of null 7. This implies

dimrange T = dim F® — dimnull T
=5-2
= 37

which is absurd, since the codomain of T" has dimension 2. Hence such a T
cannot exist. So, let’s prove our claim that this list is a basis.

Clearly (3,1,0,0,0),(0,0,1,1,1) is linearly independent. To see that it spans
null T, suppose & = (x1,...,25) € nullT, so that 1 = 3z9 and x5 = x4 = w5.
We may write

X1 3%‘2 3 0
i) To 1 0
T3 = T3 = T2 0+ T3 1 5
Ty T3 0 1
I5 I3 0 1

and indeed x is in the span of our list, so that our list is in fact a basis, completing
the proof. O

11



Problem 17

Suppose V and W are both finite-dimensional. Prove that there exists
an injective linear map from V' to W if and only if dim V' < dim W'

Proof. (=) Suppose T' € L(V, W) is injective. If dim V' > dim W, Thereom 3.23
tells us that no map from V to W would be injective, a contradiction, and so we
must have dim V' < dim W.

(<) Suppose dim V' < dim W. Then the inclusion map ¢ : V' — W is both a
linear map and injective. U

Problem 19

Suppose V' and W are finite-dimensional and that U is a subspace of V.
Prove that there exists T' € £L(V, W) such that nullT = U if and only if
dimU > dimV — dim W.

Proof. (<) Suppose dimU > dim V' — dim W. Since U is a subspace of V, there
exists a subspace U’ of V' such that

V=UaU'.

Let w1, . .. un, be abasis for U, let u},...,u, be a basis for U’, and let w1, ..., w,
be a basis for W. By hypothesis, we have

m > (m+n) —p,

which implies p > n. Thus we may define a linear map T € L(V, W) by its values
on the basis of V.= U @ U’ by taking Tu =0 for k = 1,...m and Tu; = wj
for j =1,...,n (since p > n, there is a w; for each u;) The map is linear by
Theorem 3.5, and its null space is U by construction.

(=) Suppose U is a subspace of V, T € L(V,W), and nullT = U. Then,
since range T is a subspace of W, we have dimrangeT < dim W. Combining

this inequality with the Fundamental Theorem of Linear Maps yields

dimnull” = dimV — dimrange T
>dimV —dim W.

Since dimnull7 = dim U, we have the desired inequality. O

Problem 21

Suppose V is finite-dimensional and T € L(V,W). Prove that T is
surjective if and only if there exists S € L(W, V) such that T'S is the
identity map on W.

12



Proof. (=) Suppose T € L(V,W) is surjective, so that W is necessarily finite-
dimensional as well. Let v1,...,v,, be a basis of V and let n = dim W, where
m > n by surjectivity of T. Note that

Tvy,...,Tvm,

span W. Thus we may reduce this list to a basis by removing some elements
(possibly none, if n = m). Suppose this reduced list were Tv;,, ..., Tv;, for some
i1,...,0n € {1,...,m}. We define S € L(W,V) by its behavior on this basis

S(Tv;,,) =, fork=1,... n.
Suppose w € W. Then there exist a1, ...,a, € F such that
w=a1Tvy + - +a,Tv;,
and thus

TS(w) =TS (a1Tviy + -+ + anTv;,)
=T (S (a1Tvi, + -+ a,Tv;,))
=T (a1S(Tvy,) + -+ + anS(Tv;,))
=T(a1vs, + -+ anv;,)
=a1Tvi, +- -+ a,Tv;,
= w,
and so T'S is the identity map on W.

(<) Suppose there exists S € L(W,V) such that T'S € L(W,W) is the
identity map, and suppose by way of contradiction that T is not surjective, so
that dimrangeTS < dim W. By the Fundamental Theorem of Linear Maps,
this implies

dim W = dimnull T'S 4 dim range T'S
< dimnull TS + dim W

and hence dimnull 7S > 0, a contradiction, since the identity map can only
have trivial null space. Thus T is surjective, as desired. O

Problem 23

Suppose U and V are finite-dimensional vector spaces and S € L(V, W)
and T € L(U,V). Prove that

dimrange ST < min{dim range S, dimrange T'}.

Proof. We will show that both dim range ST < dimrange S and dim range ST <
dimrange T, since this implies the desired inequality.

13



We first show that dimrange ST < dimrangeS. Suppose w € rangeST.
Then there exists u € U such that ST(u) = w. But this implies that w €
range S as well, since Tu € S~!(w). Thus range ST C range .S, which implies
dim range ST < dimrange S.

We now show that dimrange ST < dimrangeT. Note that if v € null T, so
that Tv = 0, then ST'(v) = 0 (since linear maps take zero to zero). Thus we
have nullT" C null ST, which implies dim null 7" < dimnull ST. Combining this
inequality with the Fundamental Theorem of Linear Maps applied to T yields

dim U < dimnull ST + dimrangeT. (1)
Similarly, we have
dim U = dimnull ST + dimrange ST (2)
Combining (1) and (2) yields
dimnull ST + dimrange ST < dimnull ST + dimrange T’

and hence dimrange ST < dimrangeT’, completing the proof. O

Problem 25

Suppose V is finite-dimensional and 77,75 € L(V,W). Prove that
range Ty C rangeT5 if and only if there exists S € L£(V,V) such that
T, =1T15S.

Proof. (<) Suppose there exists S € L(V,V) such that T} = T»S, and let
w € range T7. Then there exists v € V such that Tyv = w, and hence T2 S(v) = w.
But then w € rangeT» as well, and hence range 77 C rangeT5.

(=) Suppose range Ty C rangeTs, and let v1,...,v, be a basis of V. Let
wg = Twvg for k =1,...,n. Then there exist uq,...,u, € V such that Touy = wy,
for k=1,...,n (since wy € range T} implies wy € rangeT»). Define S € L(V, V)
by its behavior on the basis

Svgp =up for k=1,...,n.

It follows that T5S(vg) = Tour = wi, = Tivg. Since T5S and T; are equal on the
basis, they are equal as linear maps, as was to be shown. O

Problem 27

Suppose p € P(R). Prove that there exists a polynomial ¢ € P(R) such
that 5¢” + 3¢’ = p.

14



Proof. Suppose degp = n, and consider the linear map

D :P,i1(R) = P,(R)
g+~ 5q¢" +3¢.

If we can show D is surjective, we’re done, since this implies that there exists
some ¢ € Ppi1(R) such that Dg = 5¢” + 3¢’ = p. To that end, suppose
r € null D. Then we must have "/ = 0 and ' = 0, which is true if and only if r
is constant. Thus any a € R* is a basis of null D, and so dimnull D = 1. By
the Fundamental Theorem of Linear Maps, we have

dimrange D = dim P, 41 (R) — dimnull D,
and hence
dimrangeD = (n+2)—1=n+1.

Since the only subspace of P, (R) with dimension n + 1 is the space itself, D is
surjective, as desired. O

Problem 29
Suppose ¢ € L(V,F). Suppose u € V is not in null p. Prove that

V=nully® {au | a € F}.

Proof. First note that since v € V' — null ¢, there exists some nonzero ¢(u) €
range ¢ and hence dimrange ¢ > 1. But since rangep C F, and dimF = 1, we
must have dimrange ¢ = 1. Thus, letting n = dim V, it follows

dimnullp = dim V' — dim range ¢
=n-—1

Let vy, ...,v,—1 be a basis for nullp. We claim vy, ...,v,_1,u is an extension
of this basis to a basis of V', which would then imply V =nullo & {au | a € F},
as desired.

To show vy, ...,v,_1,u is a basis of V, it suffices to show linearly indepen-
dence (since it has length n = dim V). So suppose a1,...,a, € F are such
that

av1 + -+ ap_19y-1 + ayu = 0.

We may write
apU = —a1V1 — *+* — Ap—-1Un—1,

which implies a,u € nullp. By hypothesis, u ¢ null p, and thus we must

have a, = 0. But now each of the ai,...,a,-1 must be 0 as well (since
V1,-..,Un_1 form a basis of null p and thus are linearly independent). Therefore,
V1,-.-,Un_1,% is indeed linearly independent, proving our claim. O

15



Problem 31

Give an example of two linear maps T} and T from R® to R? that have
the same null space but are such that 73 is not a scalar multiple of T5.

Proof. Let ey, ...,es be the standard basis of R®. We define Ty, T, € L(R® R?)
by their behavior on the basis (using the standard basis for R? as well)

Tlel = e9

Tleg =e

Tiep :=0 for k= 3,4,5
and

T261 =e1

T2€2 = €9

Toer :=0 for k = 3,4,5.

Clearly null 77 = null T5. We claim 75 is not a scalar multiple of T7. To see this,
suppose not. Then there exists a € R such that T} = aT%. In particular, this
implies Tie; = alse;. But this is absurd, since Tie; = ey and The; = eq, and of
course e1, es is linearly independent. Thus no such a can exist, and Ty, T> are
as desired. O

C: DMatrices

Problem 1

Suppose V and W are finite-dimensional and 7' € L(V, W). Show that
with respect to each choice of bases of V' and W, the matrix of T" has at
least dimrange T’ nonzero entries.

Proof. Let vy,...,v, be a basis of V, let wy,...,w,, be a basis of W, let
r = dimrange T, and let s = dimnull7. Then there are s basis vectors of V'
which map to zero and r basis vectors of V' with nontrivial representation as linear
combinations of wy, ..., wy,. That is, suppose Tvy # 0, where k € {1,...,n}.
Then there exist ay,...,a,, € F, not all zero, such that

Tv, = awy + -+ + AWy

The coefficients form column k of M(T'), and there are r such vectors in the
basis of V. Hence there are r columns of M(T) with at least one nonzero entry,
as was to be shown. O

16



Problem 3

Suppose V and W are finite-dimensional and T' € L(V, W). Prove that
there exist a basis of V' and a basis of W such that with respect to these
bases, all entries of M(T) are 0 except the entries in row j, column j,
equal 1 for 1 < j < dimrangeT.

Proof. Let R be the subspace of V' such that
V=R®nulT,

let r1,...,7, be a basis of R (where m = dimrangeT), and let vy,...,v, be
a basis of nullT (where n = dimnullT’). Then r1,..., 7y, v1,...,0, is a basis
of V. It follows that Try,...,Tr,, is a basis of rangeT’, and hence there is an
extension of this list to a basis of W. Suppose Tr1,...,Trm,wi,...,w, is such
an extension (where p = dim W — m). Then, for j = 1,...m, we have

m P
Tr; = Z 0i5-Tre | + Z 0-wg |,
i=1 k=1

where §; ; is the Kronecker delta function. Thus, column j of M(T) is has an
entry of 1 in row j and 0’s elsewhere, where j ranges over 1 to m = dimrangeT.
Since Tvy = - -- = T'vy, = 0, the remaining columns of M(T') are all zero. Thus
M(T) has the desired form. O

Problem 5

Suppose w1, ..., w, is a basis of W and V is finite-dimensional. Suppose
T € L(V,W). Prove that there exists a basis vy, ..., v, of V such that all
the entries in the first row of M(T') (with respect to the bases vy, ..., v,
and wy, ..., w,) are 0 except for possibly a 1 in the first row, first column.

Proof. First note that if range T C span(ws, ..., wy,), the first row of M(T') will
be all zeros regardless of choice of basis for V.

So suppose range T ¢ span(ws, ..., w,) and let u; € V be such that Tu; ¢
span(ws, ..., wy). There exist ay,...,a, € F such that

Tuy = aywy + -+ - + apwy,

and notice a; # 0 since Tu; ¢ span(ws, ..., w,). Hence we may define
1
Z1 = —Uq.
ai
It follows s a
Tle’LUl—I—*UJg-i—""‘riUhp (3)
ai aq

17



Now extend z; to a basis z1,...,2, of V. Then for k = 2,...,m, there exist
Aik, ..., Ap i € F such that

Tz, = A pwi + -+ Ap W,
and notice

T(Zk — ALkzl) = Tzk — Al,szl

a a
= (Al,kwl +--+ An,kwn) — A (wl + *2102 + -+ nwn)
aq aq
as G,
= (Ao — A1) —wa+ -+ (Anp — A1 k) —wn. (4)
a1 ai
Now we define a new list in V' by
Vg = A
2z — A1 kz1 otherwise
for k = 1,...,m. We claim vq,...,v,, is a basis. To see this, it suffices to

prove the list is linearly independent, since its length equals dim V. So suppose
by,...,b, € F are such that

bivy + - + byv, = 0.
By definition of the vy, it follows
bizi +ba(20 — Ay pz1) + - + b (2m — A1 k21) = 0.

But since z1, ..., 2, is a basis of V', the expression on the LHS above is simply a
linear combination of vectors in a basis. Thus we must have b; = --- = b,,, =0,
and indeed vy, ..., v,, are linearly independent, as claimed.

Finally, notice (3) tells us the first column of M(T, v, wy) is all 0’s except a
1 in the first entry, and (4) tells us the remaining columns have a 0 in the first
entry. Thus M (T, vy, wy) has the desired form, completing the proof. O

Problem 7
Suppose S, T € L(V,W). Prove that M(S +T) = M(S) + M(T). ]

Proof. Let vy,...,v,, be a basis of V and let w1, ..., w, be a basis of W. Also,
let A= M(S) and B = M(T) be the matrices of these linear transformations
with respect to these bases. It follows

(S + T)Uk = Svp, + Ty,
= (A pwy + - + Appwy) + (Brgwr + -+ - 4 By pwy)
= (A1 + Big)wr + -+ (Apk + Bpk)Wn.

Hence M(S+T); 1, = Aj r+Bj , and indeed we have M(S+T) = M(S)+M(T),
as desired. 0O
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,_l Problem 9

C1
Suppose A is an m-by-n matrix and ¢ = is an m-by-1 matrix.
Cn
Prove that
Ac=clA 1+ - +c,A .
Proof. By definition, it follows
A1,1 A1,2 Al,n C1
A1 Ago As o
Ac = . . .
Am,l Am,2 Amyn Cn
Arqcn +Aroco+ -+ A ey
Az ici + Agoco+ -+ A nen
Am,lcl + Am,202 + -+ Am,ncn
A A Aip
A271 A272 A2,n
=ca | 4| [+t .
Am,l Am,2 Am,n
= CIA-,I +-+ an Rex)
as desired.
Problem 11
Suppose a = (ay, . ..,a,) is a 1-by-n matrix and C' is an n-by-p matrix.

Prove that
aC =a1Ci,. + -+ a,Ch,.
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Proof. By definition, it follows

01)1 01}2 - Cl,p

02,1 02,2 o Og,p
aC = (ay,...,an) ) )

Cni Cha ... Chyp

n n n
= E aka,hE akck,Za-”aE arChp
k=1 k=1 k=1

— Z (akck’l, ey aka,p)

as desired. O

,—l Problem 13 N

Prove that the distributive property holds for matrix addition and matrix
multiplication. In other words, suppose A, B,C, D, E, and F are matrices
whose sizes are such that A(B+C) and (D + E)F make sense. Prove that
AB+ AC and DF + EF both make sense and that A(B+C) = AB+ AC
and (D + E)F = DF + EF.

. v

Proof. First note that if A(B 4 C) makes sense, then the number of columns of
A must equal the number of rows of B+ C. But the sum of two matrices is only
defined if their dimensions are equal, and hence the number of rows of both B
and C' must equal the number of columns of A. Thus AB 4+ AC makes sense.
So suppose A € F"™™ and B,C € F™P. It follows

(AB+0)), . =Y A (B+ Oy

r=1

= Z Aj,r(Br,k + Cr,k)

r=1

- Z (Aj,rBr,k: + Aj,rcnk)
r=1

= Z Aj77nB7«7k + Z Aj,rcr,k
r=1 r=1

= (AB)jx + (AC)j &,
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proving the first distributive property.

Now note that if (D + E)F makes sense, then the number of columns of
D + E must equal the number of rows of F. Hence the number of columns of
both D and E must equal the number of rows of F', and thus DF + EF makes
sense as well. So suppose D, E € F™™ and I’ € F™P. It follows

NE

(D+EB)F),;, =

gk (D+E)jﬂ“F7“7k

ﬁ
I
—

I
NE

(Djr + Ejr)Fri

ﬁ
Il
_

I
NE

Dj,'r'Fr,k + Ej,rFr,k

1
Il
-

NE

Dj,'r‘Fr,k: + Z Ej,rF'r,k
1 r=1

—~ =

DF)jx+ (EF)jk,

proving the second distributive property. O

,_l Problem 15

Suppose A is an n-by-n matrix and 1 < j, k < n. show that the entry in
row j, column k, of A% (which is defined to mean AAA) is

Z Z Aj,pAp,'rAr,k:

p=1r=1

Proof. For 1 < p,k < n, we have

(A%)pk =D AprAr.

r=1

Thus, for 1 < j, k < n, it follows

(A% =D Ay (A

1

S
Il

I
NIE

n
Aj,p E AZDJ’ATJC
r=1

1

]
Il

I
M=
M=

Aijp,TAnkv

r=1

™
Il
—

as desired. 0O



D: Invertibility and Isomorphic Vector Spaces

Problem 1

Suppose T' € L(U,V) and S € L(V, W) are both invertible linear maps.
Prove that ST € L(U, W) is invertible and that (ST)~! = T-15~1.

Proof. For all u € U, we have

(T71S71ST)(u) =

and hence T7'S~! is a right inverse of ST. Therefore, ST is invertible, as
desired. 0

Problem 3

Suppose V is finite-dimensional, U is a subspace of V', and S € L(U, V).
Prove there exists an invertible operator T' € L(V') such that Tu = Su
for every u € U if and only if S is injective.

Proof. (<) Suppose S is injective, and let W be the subspace of V' such that
V=U&W. Let uy,...,un, be a basis of U and let wy,...,w, be a basis of W,
so that uq, ..., Un, w1, ..., w, is a basis of V. Define T' € L(V') by its behavior
on this basis of V'

Tuy, := Suy,
Tw; = w;
for k=1,...,mand j=1,...,n. Since S is injective, so too is T. And since V'

is finite-dimensional, this implies that 7" is invertible, as desired.

(=) Suppose there exists an invertible operator T' € £(V') such that Tu = Su
for every u € U. Since T is invertible, it is also injective. And since T is injective,
so to is S =T |y, completing the proof. O

22



Problem 5

Suppose V is finite-dimensional and T7,75 € L(V,W). Prove that
range 17 = rangeTs if and only if there exists an invertible operator
S € L(V) such that T) = T, S.

Proof. (=) Suppose rangeT; = range T := R, so that null7y = nullT, := N as
well. Let @ be the unique subspace of V' such that

V=Na&Q,

and let uq,...,u, be a basis of N and vy,...,v, be a basis of Q. We claim
there exists a unique ¢ € Q such that Toqr = Thvg for k =1,...,n. To see this,
suppose ¢, g, € @ are such that Togy = Toq), = Thvk. Then Tor(gx — q},) = 0,
and hence g, — ¢;, € N. But since N N Q = {0}, this implies g; — ¢;, = 0 and
thus gx = ¢j,. And so the choice of g, is indeed unique. We now define S € L(V)
by its behavior on the basis

Sup =up fork=1,...,m

Svj=gq;forj=1,...,n.
Let v € V, so that there exist aq,...,am,b1,...,b, € F such that
V=aily] + -+ Gy + b1v1 + - + bpvy,.
It follows

(T28)(v) = Ta(S(arug + « -+ + amUm + brvr + -+ + byvy))
=To(a1Su1 + - -+ + am Sty + b1.Sv1 + - - - + b, Svy,)
=To(arur + -+ + Gmm +b1q1 + -+ + bngn)
=a1Touy + -+ + apToum + b1T2q1 + -+ + bpTaqn

=b;Thv1 + -+ b, Thv,.

Similarly, we have

Tiv=Ti(a1ur + - + amUm + br1vr + -+ + bpvy,)
= (11T1U1 + -4 amTlum + b1T1U1 + -+ bnTwn
=biTivy + -+ b, 11 v,

and so indeed 77 = T5S. To see that S is invertible, it suffices to prove it is
injective. So let v € V' be as before, and suppose Sv = 0. It follows

Sv=8(a1u + -+ + @l + b1v1 + - + bpvy)
= (a1ur + - + ) + (b1Sv1 + -+ + b, Svy,)
=0.
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By the proof of Theorem 3.22, Svq,...,Sv, is a basis of R, and thus the list
ULy evey U, SU1,..., SV, is a basis of V, and each of the a’s and b’s must be zero.
Therefore S is indeed injective, completing the proof in this direction.

(<) Suppose there exists an invertible operator S € £(V') such that T; = T5S.
If w € range Ty, then there exists v € V such that Thv = w, and hence (T25)(v) =
T5(S(v)) = w, so that w € range T» and we have range T} C range T,. Conversely,
suppose w’ € range T, so that there exists v' € V such that Thv' = w’. Then,
since Tp = T1S7!, we have (T1S71)(v') = Ty(S71(v')) = w/, so that w' €
range T7. Thus rangeT5 C range T}, and we have shown range 77 = range 15, as
desired. O

,_l Problem 7

Suppose V and W are finite-dimensional. Let v € V. Let

E={T e L(V,W) | Tv = 0}.
(a) Show that F is a subspace of L(V,W).
(b) Suppose v # 0. What is dim E?

Proof. (a) First note that the zero map is clearly an element of E, and hence
E contains the additive identity of £(V,W). Now suppose 11,T» € E.
Then

(T +T)(w)=Thv+Tov=0

and hence T1 +7T5 € FE, so that E is closed under addition. Finally, suppose
T e Fand A € F. Then

(AT)(v) = AXTwv = X0 =0,
and so F is closed under scalar multiplication as well. Thus E is indeed a
subspace of L(V,W).

(b) Suppose v # 0, and let dimV = m and dim W = n. Extend v to a basis
v, V32, ..., Uy of V, and endow W with any basis. Let £ denote the subspace
of F™™ of matrices whose first column is all zero.

We claim T € FE if and only if M(T) € &, so that M : E — &£ is an
isomorphism. Clearly if T' € E (so that Tv = 0), then M(T). ; is all zero,
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and hence T € £. Conversely, suppose M(T') € €. It follows

M(Tw) = M(T)M(v)

0 ALQ Al,n 1
0 A272 Agm 0
0 Apms ... Ama/ \0
0
0
0

and thus we must have Tv = 0 so that T' € E, proving our claim. So
indeed F = £.

Now note that £ has as a basis the set of all matrices with a single 1 in
a column besides the first, and zeros everywhere else. There are mn —n
such matrices, and hence dim & = mn —n. Thus we have dim F = mn —n
as well, as desired. O

Problem 9

Suppose V is finite-dimensional and S,T° € L(V). Prove that ST is
invertible if and only if both S and T are invertible.

Proof. (<) Suppose S and T are both invertible. Then by Problem 1, ST is
invertible.

(=) Suppose ST is invertible. We will show T is injective and S is surjective.
Since V is finite-dimensional, this implies that both S and T are invertible. So
suppose v1,v2 € V are such that Tv; = Tve. Then (ST)(v1) = (ST)(v2), and
since ST is invertible (and hence injective), we must have vy = vq, so that T
is injective. Next, suppose v € V. Since T~ ! is surjective, there exists w € V
such that T~'w = v. And since ST is surjective, there exists p € V such that
(ST)(p) = w. It follows that (STT~1)(p) = T~!(w), and hence Sp = v. Thus S
is surjective, completing the proof. O

Problem 11

Suppose V is finite-dimensional and S,T,U € L(V) and STU = I. Show
that T is invertible and that T-! = US.

Proof. Notice STU is invertible since STU = I and [ is invertible. By Problem
9, we have that (ST)U is invertible if and only if ST and U are invertible. By
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a second application of the result, ST is invertible if and only if S and T are
invertible. Thus S, T, and U are all invertible. To see that T~ = US, notice
US=(T7'T\US
=TS8 TUS
=715 (sTU)S
=T7'57's
=71

as desired. O

Problem 13

Suppose V is a finite-dimensional vector space and R, S,T € L(V) are
such that RST is surjective. Prove that S is injective.

Proof. Since V is finite-dimensional and RST is surjective, RST is also invertible.
By Problem 9, we have that (RS)T is invertible if and only if RS and T are
invertible. By a second application of the result, RS is invertible if and only if
R and S are invertible. Thus R, S, and T are all invertible, and hence injective.
In particular, S is injective, as desired. O

Problem 15

Prove that every linear map from F™! to F"™! is given by a matrix
multiplication. In other words, prove that if T € L(F™! F™1!), then
there exists an m-by-n matrix A such that Tx = Az for every x € F™1,

Proof. Endow both F™! and F™! with the standard basis, and let T €
L(F™L F™L), Let A = M(T) with respect to these bases, and note that if
xr € F™1 then M(x) = x (and similarly if y € F™! then M(y) = y). Hence

Tx = M(Tx)
= M(T)M(zx)
= Ax,

as desired. 0O

Problem 16

Suppose V is finite-dimensional and T € £(V'). Prove that T is a scalar
multiple of the identity if and only if ST = T'S for every S € L(V).
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Proof. (=) Suppose T = AI for some A € F, and let S € £(V) be arbitrary. For
any v € V, we have STv = S(AI)v = ASv and T'Sv = (AI)Sv = ASv, and hence
ST =TS. Since S was arbitrary, we have the desired result.

(<) Suppose ST = TS for every S € L(V), and let v € V be arbitrary.
Consider the list v, Tv. We claim it is linearly dependent. To see this, suppose
not. Then v,Tv can be extended to a basis v,Tv,u1,...,u, of V. Define
S e L(V) by

S(av+ BTv+y1ur + -+ + Ynuy) = B,

where «, 3,71, ...,V are the unique coefficients of our basis for the given input
vector. In particular, notice S(Tw) = v and Sv = 0. Thus STv = T'Sv implies
v =T(0) = 0, contradicting our assumption that v, TV is linearly independent.
So v, Tv must be linearly dependent, and so for for all v € V' there exists A, € F
such that Tv = A\yv (where )y can be any nonzero element of F, since T0 = 0).
We claim )\, is independent of the choice of v for v € V — {0}, hence Tv = Mv
for all v € V' (including v = 0) and some A € F, and thus T' = AI.

So suppose w, z € V — {0} are arbitrary. We want to show A\, = A,. If w and
z are linearly dependent, then there exists a € F such that w = az. It follows

Apw = Tw
=T (az)
=alz
= a2
=\ (az)

=\ w.

Since w # 0, this implies A, = A,. Next suppose w and z are linearly independent.
Then we have

Awtz(w+2) =T (w+ 2)
=Tw+ Tz
= AW + A2,

and hence
Atz — A)w + (At — Ay)z =0.

Since w and z are assumed to be linearly independent, we have Ay, = A, and
Aw+z = Az, and hence again we have A\, = A, completing the proof. O

Problem 17

Suppose V is finite-dimensional and £ is a subspace of £(V') such that
ST e&and TS €& forall S e L(V)andall T € E. Prove that £ = {0}
or & =L(V).
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Proof. If £ = {0}, we’re done. So suppose & # {0}. If dimV = n, then
L(V) =2 F»", and so there exists an isomorphic subspace € := M(E) C F™"
with the property that AB € € and BA € € for all A € F™" and all B € €. It
suffices to show & = F™".

Define E%J to be the matrix which is 1 in row i and column j and 0 everywhere
else, and let A € F™"™ be nonzero. Then there exists some 1 < j, k < n such
that A;r # 0. Notice for 1 < 4,j,7,5s < n, we have EHiA € & and hence
EHIAE™® € €. This product has the form

EWAEM = Aj ) - BV
In other words, E*J AE®* takes A, and puts it in the i*" row and ¢** column
of a matrix which is 0 everywhere else. Since € is closed under addition, this
implies

EYAERY 4+ E2IAER? ... £ E™IAER" = Aj - T € €.

But since € is closed under scalar multiplication, and A; ; # 0, we have

1
oA r=1ce
(Aj,k j7k> €¢

Since € contains I, by our characterization of € it must also contain every
element of F™". Thus € = F™"  and since € = £, we must have & = L(V), as
desired. O

,_l Problem 19

Suppose T' € L(P(R)) is such that T is injective and deg Tp < degp for
every nonzero polynomial p € P(R).

(a) Prove that T is surjective.

(b) Prove that degTp = degp for every nonzero p € P(R).

\ v

Proof.  (a) Let ¢ € P(R), and suppose degq = n. Let T, = T |p, (r), 50
that T, is the restriction of T to a linear operator on P,(R). Since T
is injective, so is T,,. And since T,, is an injective linear operator over a
finite-dimensional vector space, T;, is surjective as well. Thus there exists
r € P,(R) such that T,,r = ¢, and so we have Tr = ¢ as well. Therefore T
is surjective.

(b) We induct on the degree of the restriction maps T, € L(P,(R)), each of
which is bijective by (a). Let P(k) be the statement: deg Typ = k for every
nonzero p € Pi(R).

Base case: Suppose p € Py(R) is nonzero. Since Ty is a bijective , Top = 0
iff p = 0 (the zero polynomial), which is the only polynomial with degree
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< 0. Since p is nonzero by hypothesis, we must have degTop = 0. Hence
P(0) is true.

Inductive step: Let n € Z*, and suppose P(k) is true for all 0 < k < n.
Let p € P,(R) be nonzero. If degT,p < n, then for some k < n there
exists ¢ € Px(R) and T} € P(R) such that Trq = p (since T}, is surjective).
Hence T'q = T'p, a contradiction since degp # degq and T is injective.
Thus we must have deg T,,p = n, and P(n) is true.

By the principle of mathematical induction, P(k) is true for all k € Zx¢.
Hence degTp = degp for all nonzero p € P(R), since Tp = Typ for
k = degp. O

E: Products and Quotients of Vector Spaces

,—l Problem 1 ! ~

Suppose T is a function from V' to W. The graph of T is the subset of
V x W defined by

graph of T = {(v,Tv) e V. x W |v e V'}.

Prove that T is a linear map if and only if the graph of 7" is a subspace
of VxW.

Proof. Define G := {(v,Tv) e Vx W |v eV}
(=) Suppose T is a linear map. Since T is linear, T0 = 0, and hence (0,0) € G,
so that G contains the additive identity. Next, let (v1,Tv1), (ve, Tv2) € G. Then

(vl,Tvl) + (’UQ,T’UQ) = (1}1 + vy, Ty + TUQ) = (1)1 + Ug,T(Ul + 1}2)) € G,
and G is closed under addition. Lastly, let A € F and (v,Tv) € G. Tt follows
Av, Tv) = (A\v, XTv) = (M, T(\v)) € G,

and G is closed under scalar multiplication. Thus G is a subspace of V' x W.
(<) Suppose G is a subspace of V' x W, and let (v1,Tv1), (ve,Tvg) € G.
Since G is closed under addition, it follows

(1]1 + vy, Ty + T’UQ) € G,

and hence we must have T'vy +Tvy = T'(v1 +v2), so that T is additive. And since
G is closed under scalar multiplication, for A € F and (v, Tv) € G, it follows

(v, \Tw) € G,

and hence we must have A\Tv = T'(\v), so that T is homogeneous. Therefore, T'
is a linear map, as desired. O
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Problem 3

Give an example of a vector space V' and subspaces Uy, Uy of V' such that
Uy x Us is isomorphic to Uy + Us but Uy + U, is not a direct sum.

Proof. Define the following two subspaces of P(R)

Uy :=P(R)
U2 = R,

so that U; N Uz = R and the sum U; + Uz = P(R) is not direct. Endow P(R)
and R with their standard bases, and define ¢ by its behavior on the basis of
U1 X U2

p: Uy xUy = U +Us
(X*,0) o xHH1
(0,1) — 1.
We claim ¢ is an isomorphism. To see that ¢ is injective, suppose
(ao+ar X+ +anX" a),(bo+ 0 X+ - +b,X",5) € U x Uy

and
(a0 + a1 X + -+ anX™, a) # (bg + b1 X +--- + 0, X", 3).

We have
olag+a X 4+ +an,X™ a)=a+aX +a X+ +a, X" (5)
and
o+ X+ +b, X" B)=B+bX +by X2+ -+ b, X" (6)

Since aw # B, this implies (5) does not equal (6) and hence ¢ is injective. To see
that ¢ is surjective, suppose cg + c1X +--- 4+ ¢, X? € Uy + Uz. Then

so(cl +02X+--~+ch”*1,CO) =cotca X+ +pXP
and ¢ is indeed surjective.

Since ¢ an injective and surjective linear map, it is an isomorphism. Thus
Ui x Uy 2 Uy 4+ U,y, as was to be shown. O

Problem 5

Suppose W1, ..., W, are vector spaces. Prove that L(V, W7 X -+ x W)
and L(V, W) x --- x L(V,W,,) are isomorphic vector spaces.
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Proof. Define the projection map 7 for kK =1,...,m by

7TkZW1X"'><Wm4)Wk

(W1, W) > W
Clearly 7y is linear. Now define

e LV, Wy X oo x W) = LIV, W) X -+ - x L(V, W)
T (mT,...,7T).

To see that ¢ is linear, let Ty, Ts € L(V, Wy x -+ x Wp,,). Tt follows

gO(Tl-l-TQ) 7T1(T1 +T2),...,7Tm(T1 +T2))

=

= (7T1T1 + 7T1T2, e ,7TmT1 +7TmT2)

= (7T1T1,. .. ,T(mTl) + (7T1T2, ‘e ,7TmT2)
= p(T1) + ¢(T2),

and hence ¢ is additive. Now for A € F and T € L(V, W} x --- x W},,), we have

p(A\T) = (m (AT, ..., (AT))
(A(

A 7'['1T>7 . .,)\(ﬂ'mT>)
XmiT,...,mT),

and thus ¢ is homogenous. Therefore, ¢ is linear.
We now show ¢ is an isomorphism. To see that it is injective, suppose
TeL(V,W) x---x W) and ¢(T) = 0. Then

(mT,...,mnT)=(0,...,0)

which is true iff T" is the zero map. Thus ¢ is injective. To see that ¢ is surjective,
suppose (S1,...,5m) € L(V,W7) x -+ x L(V,W,,,). Define

S: VoW x---xW,
v (S1v,..., Smv),

so that ¢S = S for k =1,...,m. Then

©(S) = (m1 S, ..., ™mS)
= (S1,...,5)

and S is indeed surjective. Therefore, ¢ is an isomorphism, and we have
LV,Wy X oo x W) 2 LV, W) X -0 x L(V, W),

as desired. O
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Problem 7

Suppose v,z are vectors in V and U, W are subspaces of V' such that
v+ U =x+ W. Prove that U = W.

Proof. First note that since v+ 0 = v € v+ U, there exists wy € W such that
v = x + wp, and hence v —x = wy € W. Similarly, there exists ug € U such that
r—v=ug€eU.

Suppose u € U. Then there exists w € W such that v4+wu = x4+ w, and hence

u=(r—v)+w=—-wy+wewW,

and we have U C W. Conversely, suppose w’ € W. Then there exists v’ € U
such that x +w’ = v + v/, and hence

w=@w-x)+u =—-uy+u €U,

and we have W C U. Therefore U = W, as desired. O

Problem 8

Prove that a nonempty subset A of V' is an affine subset of V' if and only
if \v+ (1—XNw e Aforallv,w e A and all A € F.

Proof. (=) Suppose A C V is an affine subset of V. Then there exists z € V
and a subspace U C V such that A = z + U. Suppose v,w € A. Then there
exist u1,us € U such that v = 2 + u; and w = x + us. Thus, for all A € F, we
have

WA (1 =Nw=Az+u)+ (1 - (z+uz)
=z + dug + (1 — Nue.
Since Aug + (1 — A)ug € U, this implies v + (1 — N)w € z + U = A, as desired.
(<) Suppose Ao+ (1 —ANw € Afor all v,w € A and all A € F. Choose a € A

and define
U:=—a+ A.

We claim U is a subspace of V. Clearly 0 € U since a € A. Let z € U, so that
T = —a+ ag for some ag € A, and let A € F. It follows

Aag+(1—-Na€eA=-da+dag+a€ A= A—-a+ag) € —a+A=U,

and thus Az = M(—a+ag) € U, and U is closed under scalar multiplication. Now
let z,y € U. Then there exist a;,as € A such that x = —a+ay and y = —a+ as.
Notice

1 1 1 1
2a1+(1—2>02:2a1+2a2€A7
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and hence

1 1
—a+§a1+§a2 S U

It follows
T+y=—-2a+a+a
1 1
=2 <a+ §a1 + 2a2> eU,
using the fact that U has already been shown to be closed under scalar multipli-

cation. Thus U is also closed under addition, and so U is a subspace of V. Now,
since A = a + U, we have that A is indeed an affine subset of V', as desired. [

Problem 9

Suppose A; and As are affine subsets of V. Prove that the intersection
A; N A, is either an affine subset of V' or the empty set.

Proof. If Ay N Ay = (), we’re done, so suppose A; N A, is nonempty and let
v € A1 N Ay. Then we may write

Ai=v+U; and Ay =v+ U

for some subspaces Uy, Us C V.

We claim A; N Ay = v+ (U; N Us), which is an affine subset of V. To
see this, suppose & € v+ (U; N Usz). Then there exists u € Uy N Uy such that
x =v+wu. Since u € Uy, we have x € v+ U; = A;. And since u € Us, we have
x€v+Uy=As. Thusxz € Ay N Ay and v+ (U3 NU;) C Ay N As. Conversely,
suppose y € A1 N As. Then there exist u; € Uy and us € Us such that y = v+uy
and y = v 4+ ue. But this implies u; = u2, and hence u; = us € Uy N Us, thus
y € v+ (U NUsz). Therefore Ay N Ay C v+ (U; NUs), and hence we have
A1 NAy =v+ (U NU;), as claimed. O

,—l Problem 11 \

Suppose v1,...,v, € V. Let

A={ v+ +Ap0m | A,y Adm €Fand Ay + -+ A\, = 1}
(a) Prove that A is an affine subset of V.

(b) Prove that every affine subset of V' that contains v, ...,v,, also
contains A.

(c) Prove that A = v+ U for some v € V' and some subspace U of V
with dimU < m — 1.
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Proof.  (a) Let v,w € A, so that there exist a1,...,q,, € Fand f1,...,8, €F
such that
V=a1V1 + -+ O Um
w = Bv1 + -+ Bnm,

where Y ap =1and Y S, =1. Given A € F, it follows

)\v—&-(l—/\w—)\Zakvk—i- (1-2X Zﬁkvk

Z /\Ozk;-i- 1— )ﬁk} Ve
k=1
But notice

d P+ 1 =NB] =A+(1-N)=1,
k=1

and hence A\v 4+ (1 — M)w € A by the way we defined A. By Problem 8,
this implies that A is an affine subset of V', as was to be shown.

(b) We induct on m.
Base case: When m = 1, the statement is trivially true, since A = {v;},
and hence any affine subset of V' that contains v; of course contains A.
Inductive step: Let k € Z%, and suppose the statement is true for
m = k. Suppose A’ is an affine subset of V' that contains v1,...,vk11, and
let € A. Then there exist A1,..., A\gp1 € F such that Zj A; =1 and

T = A1+ App1 V41

Now, if Ag+1 = 1, then © = vg; € A’. Otherwise, we have

1=kt 1= Agy1

and hence by our inductive hypothesis, this implies

)\1 )\k /
— L e —CE e AL
1= Apyr L — Akt

By Problem 8, we know

A A
Ly bt g ) Atk € A
1= pt1

(1= e (

1= Aot
But after simplifying, this tells us

Avr + e+ /\k+1vk+1 =zxeA.
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Hence A C A’, and the statement is true for m = k + 1.

By the principal of mathematical induction, the statement is true for all
m € ZT. Thus any affine subset of V that contains v1, ..., v,, also contains
A, as was to be shown.

Define U := span(ves — v1,...,0;, — v1). Let € A, so that there exist
Ay ooy Am € F with Y7, Ay = 1 such that

T = MU+ "+ AU
Notice

v1+)\2(vg7v1)+~-~+)\m(vm7v1): 172)\]@ U1+>\2’02+"'+)\m’0m
k=2

and hence x € vy + U, so that A C vy + U. Next suppose y € v + U, so
that there exist ay,...,a,,_1 € F such that

y=uvi+ar(va—v1)+ -+ am1(vm —v1).
Expanding the RHS yields

m—1

y=1|1- Zak v +a1vs + -+ Ap—1Um.-
k=1

But since
m—1 m—1

I—Zak —&—Zak:l,
k=1 k=1

this implies y € A, and hence v;1 + U C A. Therefore A = v; + U, and

since dim U < m — 1, we have the desired result. O
Problem 13
Suppose U is a subspace of V and v1 + U, ..., vy, + U is a basis of V/U
and uq,...,u, is a basis of U. Prove that vy,..., v, u1,...,u, is a basis
of V.

Proof. Since

dimV =dimV/U + dim U

=m+n,
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it suffices to show vy,...,Um,u1,...,u, spans V. Suppose v € V. Then there
exist aq,...,a,, € F such that

v+U=a1(nr1 +U)+ -+ am(vm + U).

But then
v+ U= (v1v1 4+ -+ amvm) + U

and hence
v— (11 + -+ apoy) € U.

Thus there exist f1,..., 8, € U such that
v— (v + -+ QpUy) = Prug + -+ + Brtin,

and we have
V=t QU + frun 4 Bt

so that indeed vy, ..., vy, u1,..., U, spans V. O

Problem 15

Suppose ¢ € L(V,F) and ¢ # 0. Prove that dim V/(null¢) = 1.

Proof. Since ¢ # 0, we must have dimrange ¢ = 1, so that range ¢ = F. Since
V/(null ) = range ¢, this implies V/(null ¢) = F, and hence dim V/(null p) = 1,
as desired. ]

Problem 17

Suppose U is a subspace of V such that V/U is finite-dimensional. Prove
that there exists a subspace W of V such that dim W = dim V/U and
V=UoW.

Proof. Suppose dimV/U = n, and let v; + U,...,v, + U be a basis of V/U.
Define W := span(vy,...,v,). We claim vy, ..., v, must be linearly independent,
so that vq,...,v, is a basis of W. To see this, suppose aq,...,qa, € F are such
that

avr + -+ -+ apv, = 0.

Then
(aqvr + 4 apvp) + U =a1(v1 + U) + - + an (v, + U),

and hence we must have a; = --- = a,, = 0. Thus vy,...,v, is indeed linearly
independent, as claimed.

We now claim V =U & W. To see that V =U + W, suppose v € V. Then
there exist 31,..., 5, € F such that

U+U:51(’Ul+U)+"‘+ﬁn(7}n+U).
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It follows N
v — Z 6k'Uk eU,
k=1

and hence
v="v=Y B | + | D Brvw
k=1 k=1

Since first term in parentheses is in U and the second term in parentheses is in
W, we have v € U + W, and hence V C U + W. Clearly U + W C V|, since U
and W are each subspaces of V', and hence V = U 4+ W. To see that the sum
is direct, suppose w € U N W. Since w € W, there exist A1,..., A, such that
w = A\v1 + -+ + A\vn, and hence

w+U=ANvi+-+A\o,)+U
=M1 +0)+ -+ A (v, + 0).

Since w € U, we have w +U = 0+ U. Thus \; = --- = A\, = 0, which implies
w = 0. Since U N W = {0}, the sum is indeed direct. Thus V = U & W, with
dimW =n = dimV/U, as desired. O

Problem 19

Find a correct statement analogous to 3.78 that is applicable to finite
sets, with unions analogous to sums of subspaces and disjoint unions
analogous to direct sums.

Theorem. Suppose |V| < oo and Uy, ..., U, CV. ThenUy,...,U, are pairwise
disjoint if and only if

|U1U"'UU7L|:|U1‘+"'+|U"|'

Proof. We induct on n.

Base case: Let n = 2. Since |U; U Us| = |Ui| + |Uz| — |Ur N Us|, we have
U1 n U2 = @ lﬁ |U1 U U2| = |U1| + |U2‘

Inductive hypothesis: Let k € Z>5, and suppose the statement is true for
n==k. Let Uy,y1 C V. Then

Uy U UUgq1| = U1 U+ UUg| + |Ugt1l

iff U1 N(UU---UUL) = 0 by our base case. Combining this with our inductive
hypothesis, we have

Uy U UUgy1| = [Ur]| + -+ - + |Ug| + [Ug1]

ift Uy, ..., Uiy are pairwise disjoint, and the statement is true for n = k + 1.
By the principal of mathematical induction, the statement is true for all
n e Z22. O
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F: Duality

Problem 1

Explain why every linear functional is either surjective or the zero map. ]

Proof. Since dimF = 1, the only subspaces of F are F itself and {0}. Let V be
a vector space (not necessarily finite-dimensional) and suppose ¢ € V'. Since
range @ is a subspace of F, it must be either F itself (in which case ¢ is surjective)
or {0} (in which case ¢ is the zero map). O

Problem 3

Suppose V is finite-dimensional and U is a subspace of V such that
U # V. Prove that there exists ¢ € V' such that p(u) = 0 for every
u € U but ¢ # 0.

Proof. Suppose dimU = m and dim V' = n for some m,n € ZT such that m < n.

Let u1,...,u; be a basis of U. Expand this to a basis w1, ..., Umn, Umt1, .-, Un
of V, and let 1, ..., ¢, be the corresponding dual basis of V'. For any u € U,
there exist aq, ..., a,, such that u = ajuy + - - - + @ uy,. Now notice

Om+1(1) = @myr(@rur + -+ + )
= al(ﬂm-&-l(ul) + -+ Oém,@m+1(um)

but ©mi1(Umy1) = 1. Thus @m,11(u) = 0 for every w € U but ¢,,41 # 0, as
desired. 0

Problem 5

Suppose Vi, ..., V,, are vector spaces. Prove that (V3 x --- x V;;,)" and
Vi x -+ x V! are isomorphic vector spaces.

Proof. Fori=1,...,m, let

& Vio Vix o x Vi
’Uil—>(0,...,vi,...70).

Now define

T:(Vix-xVy) =V x--xV,
o (poly,...,pobm).
We claim T is an isomorphism. We must show three things: (1) that T is a

linear map; (2) that T is injective; and (3) that T is surjective.
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To see that T is a linear map, first suppose ¢1,02 € (V3 X -+ x V). Tt
follows

(( 1+ @2)0i, ..., (p1+g2)o0 §m)

=(pro&1+p20&1,...,010&n +p20&m)

=(p10&1,-- 01 08&m) + (p2081,...,020&m)
=T(p1) + T(p2),

T(p1 + @2)

thus T is additive. To see that it is also homogeneous, suppose A € F and
pe (Vi x-xVy,). We have

T(\ 0&i,..., (A )O§M)

= (O
( 90051) (Lpogm))
>‘(<p0517~'-a<pof77L)
AT (),

and thus 7' is homogeneous as well and therefore it is a linear map.

To see that T is injective, suppose ¢,9 € (V3 x --- x Vi) but ¢ # .
Then there exists some (v1,...,0y,) € Vi X -+ X Vp, such that ¢(vy,...,vn) #
Y(v1, ..., vy). Since ¢ and ¢ are linear, this means that there exists some index
k € {1,...,m} such that ¢(0,...,vg,...,0) # ¥(0,...,vk,...,0). But then
po & # ok, and hence T'(v) # T(v), so that T is injective.

To see that T is surjective, suppose (¢1,...,©m) € V{ x -+- x V' and define

0:Vix---xV, =>F

m

(V1.5 0m) ngk(vk).

k=1

We claim T'(6) = (¢1,-.-,9m). To see this, let £ € {1,...,m}. We will show
that the map in the k-th component of T'(0) is equal to . Given vy € Vi, we
have

T(0)r(vi) = (0 0 &) (vk)
= 0(&k(vr))
29(0,...,Uk,...,0)
=©1(0) + -+ + onr(vr) + -+ om(0)
= i (vk),

as desired. Thus T'(0) = (¢1,...,pm), and T is indeed surjective. Since T is
both injective and surjective, it’s an isomorphism. O
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Problem 7

Suppose m is a positive integer. Show that the dual basis of the basis
1,...,2™ of Pn(R) is o, ¥1,.-.,Pm, where ;(p) = %. Here pU)
denotes the j*' derivative of p, with the understanding that the O
derivative of p is p.

Proof. For j =0,...,m, we have by direct computation of the j-th derivative

( k) 1 ifj=k
(2R =
7 0 otherwise,

so that ¢g, @1, .., ©m is indeed the dual basis of 1, ..., z". Note the uniqueness
of the dual basis follows by uniqueness of a linear map (including the linear
functionals in the dual basis) whose values on a basis are specified. 0

Problem 9

Suppose v1,...,v, is a basis of V and ¢1, ..., ¢, is the corresponding
dual basis of V. Suppose ¢ € V'. Prove that

Y =9(v1)p1 + - + P(vn)Pn.

Proof. Let aq,...,a, € F be such that
1/J:0¢1<P1+"'+Oén<,0n-
For k=1,...,n, we have

Y(vk) = arp1(ve) + -+ + appr(ve) + -+ + anpn(v)
=a;- 0+ --+ap- 1+ +a,-0
= 0.
Thus we have
Y =1(v1)er + - 4 (vn)pn,
as desired O

Problem 11

Suppose A is an m-by-n matrix with A # 0. Prove that the rank of A is
1 if and only if there exist (c1,...,¢n) € F™ and (dy,...,d,) € F” such
that A;, = cjdy for every j =1,...,m and every k =1,...,n.
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Proof. (=) Suppose the rank of A is 1. By the assumption that A # 0, there

exists a nonzero entry A, ; for some i € {1,...,m} and j € {1,...,n}. Thus
span{A.1,..., A ,} = span{A. ;}, and hence there exist aq,...,a, € F such
that A. . = a.A. j for c=1,...,n. Expanding out each out these columns, we
have
Are = Ay (7)
for r = 1,...,m. Similarly for the rows, we have span{A4; ., ..., 4.} =
span{A4; .}, and hence there exist fi,..., 08, € F such that A,,. = 8,4, for
r’ =1,...,m. Expanding out each of these rows, we have
AT’,C’ - /BT’/Ai,C/ (8)

for ¢ =1,...,n. Now by replacing the A, ; term in (7) according to (8), we
have A, ; = 5,4, ;, and hence (7) may be rewritten

Ar,c = acﬂrAi,j y

and the result follows by defining ¢, = §,4; ; and d. = a. for r =1,...,m and
c=1,...,n.

(<) Suppose there exist (c1,...,¢y) € F™ and (dy,...,d,) € F™ such that
Aj, = cjdy for every j =1,...,m and every k = 1,...,n. Then each of the
columns is a scalar multiple of (dy,...,d,)! € F™! and the column rank is 1.
Since the rank of a matrix equals its column rank, the rank of A is 1 as well. O

,_l Problem 13 ~

Define T : R?® — R? by T'(z,y,2) = (4r + 5y + 62, Tz + 8y + 92). Suppose
1, P2 denotes the dual basis of the standard basis of R? and 91,2, 3
denotes the dual basis of the standard basis of R3.

(a) Describe the linear functionals T"(¢1) and T"(p2).

(b) Write T"(1) and T"(yp2) as a linear combination of 1, 12, 3.

\ 7

Proof. (a) Endowing R® and R? with their respective standard basis, we have

(T'(p1))(@,y,2) = (1o T)(z,y,2)
= ¢1(T(z,y,2))
= p1(4dx + 5y + 6z, 7Tz + 8y + 92)
=4z + 5y + 62

and similarly
(T'(02))(@,y, 2) = pa(dx + by + 62,7 + 8y + 92)
=Txr+ 8y + 9z.
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(b) Notice

(41/)1 + 511)2 + 61/)3)(.’B, Y, Z) = 41/)1(377% Z) + 51/)2(3773/3 Z) + 61/)3(%% Z)
=4z + 5y + 62
= T/((pl)(x7y?z)
and
(71/)1 + 87?2 + 977[}3)('%, Y, Z) = 77/)1(9371% Z) + 81/)2(5072% Z) =+ 97?3(507% Z)

=Txr+8y+9z
= T/(QD?)(:I‘" Y, Z),

as desired. O

Problem 15

Suppose W is finite-dimensional and T' € L£(V, W). Prove that 7" = 0 if
and only if T'= 0.

Proof. (=) Suppose T = 0. Let ¢ € W’ and v € V be arbitrary. We have

0= (T"(¢))(v) = ¢(Tv).

Since @ is arbitrary, we must have Tv = 0. But now since v is arbitrary, this
implies T' = 0 as well.
(<) Suppose T = 0. Again let o € W’ and v € V be arbitrary. We have

(T'(¢))(v) = p(Tv) = p(0) = 0,

and hence T" = 0 as well. O

Problem 17
Suppose U C V. Explain why U° = {¢p € V' | U C null }. ]

Proof. Tt suffices to show that, for arbitrary ¢ € V', we have U C null p if and
only if p(u) = 0 for all w € U. So suppose U C null p. Then for all u € U, we
have ¢(u) = 0 (simply by definition of null ). Conversely, suppose p(u) = 0
for all w € U. Then if ' € U, we must have v’ € null p. That is, U C null ¢,
completing the proof. O

Problem 19

Suppose V is finite-dimensional and U is a subspace of V. Show that
U =V if and only if U° = {0}.
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Proof. (=) Suppose U = V. Then

Ul={peV'|UCnully}
={peV'|V Cnully}
= {0},

since only the zero functional can have all of V' in its null space.
(<) Suppose U° = {0}. It follows

dimV = dimU + dim U°
=dimU + 0
= dim U.

Since the only subspace of V' with dimension dim V" is V itself, we have U =V,
as desired. O

Problem 20
Suppose U and W are subsets of V with U C W. Prove that W% C U°. ]

Proof. Suppose ¢ € WP, Then ¢(w) = 0 for all w € W. If ¢ ¢ U°, then there
exists some u € U such that p(u) # 0. But since U C W, w € W. This is absurd,
hence we must have ¢ € U%. Thus W% C U°, as desired. O

Problem 21

Suppose V is finite-dimensional and U and W are subspaces of V' with
W9 C U°. Prove that U C W.

Proof. Suppose not. Then there exists a nonzero vector u € U such that u & W.
There exists some basis of U containing u. Define ¢ € V' such that, for any
vector v in this basis, we have

@(U)Z{l ifo=u

0 otherwise.

By construction, ¢ € W9, and hence ¢ € U°. But this implies p(u) = 0, a
contradiction. O

Problem 22

Suppose U, W are subspaces of V. Show that (U + W)? = U° n WV,

e/
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Proof. Since U C U+ W and W C U + W, Problem 20 tells us that (U +W)? C
U° and (U + W)° € WO Thus (U + W)? C U° N WP. Conversely, suppose
peU’NWO Let x € U+ W. Then there exist v € U and w € W such that
x=U+ W. Then

p(x) = p(u+w)
= p(u) + p(w)
=0,

where the second equality follows since ¢ € U° and ¢ € W° by assumption.
Hence ¢ € (U + W) and we have U° + W C (U + W)°. Thus (U + W)°? =
U N WO, as desired. O

Problem 23

Suppose V is finite-dimensional and U and W are subspaces of V. Prove
that (UNW)° =U° + WPO.

Proof. Since UNW C U and UNW C W, Problem 20 tells us that U° C (UNW)°
and W% C (UN W) Thus U° + W° C (UNW)°. Now, notice (using Problem
22 to deduce the second equality)

dim(U° + W°) = dim(U°) + dim(W?°) — dim(U° n W)
= dim(U°) + dim(W?°) — dim((U 4+ W)°)
= (dimV —dimU) 4 (dim V — dim W) — [dim V — dim(U + W)]
=dimV —dimU — dim W + dim(U + W)
=dimV — [dim U + dim W — dim(U + W))
= dimV — dim(U N W)
= dim((U N W)?).

Hence we must have U° + W% = (U NW)", as desired. O

Problem 25

Suppose V is finite-dimensional and U is a subspace of V. Show that

U={veV|ep) =0 for every ¢ € U°}.

Proof. Let A = {v €V | p(v) = 0 for every p € U°}. Suppose u € U. Then
@(u) =0 for all p € UY, and hence u € A, showing U C A.

Conversely, suppose v € A but v € U. Since 0 € U, we must have v # 0.
Thus there exists a basis u1,...,Um,v,v1,...,0, of V such that uy,...,u,, is a
basis of U. Let ¥1,...,%m, ¢, @1, .., ¢n be the dual basis of V', and consider
for a moment the functional . Clearly we have both ¢ € U° and ¢p(v) =1 by

44



construction, but this is a contradiction, since we assumed v € A. Thus A C U,
and we conclude U = A, as was to be shown. O

Problem 27

Suppose T € L(P5(R), P5(R)) and nullT” = span(yp), where ¢ is the
linear functional on P5(R) defined by ¢(p) = p(8). Prove that range T =
{p € P5(R) | p(8) = 0}.

Proof. By Theorem 3.107, we know null 7” = (range T')°, and hence (range T)" =
{ap | « € R}. Tt follows by Problem 25

range T = {p € P5(R) | ¥(p) = 0 for all ¢ € (rangeT)°}
={p e Ps(R) | (a)(p) =0 for all a € R}
={p e Ps(R) | ¢(p) = 0}
= {p e Ps(R) [ p(8) = 0},
as desired. ]

Problem 29

Suppose V and W are finite-dimensional, T' € L(V, W), and there exists
© € V' such that range T” = span(y). Prove that null7 = null ¢.

Proof. By Theorem 3.107, we know range7” = (null7)°, and hence (null7)° =
{ap | a € R}. Tt follows by Problem 25

nullT = {v € V| ¢(v) = 0 for all ¢ € (null T)°}
={veV|ap(w)=0forall a € F}
={veV|g() =0}

= null ¢,
as desired. ]
Problem 31
Suppose V is finite-dimensional and ¢1,...,y, is a basis of V’. Show
that there exists a basis of V' whose dual basis is 1, ..., @,.

Proof. To prove this, we will first show V' = V. We will then take an existing
basis of V', map it to its dual basis in V", and then use the inverse of the
isomorphism to take this basis of V" to a basis in V. This basis of V' will have
the known basis of V' as its dual.

So, for any v € V, define E, € V' by E,(p) = ¢(v). We claim the map
*:V — V" given by © = E, is an isomorphism. To do so, it suffices to show it to
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be both linear and injective, since dim(V") = dim((V’)") = dim(V’) = dim(V).
We first show * is linear. So suppose u,v € V. Then for any ¢ € V', we have

—

(u+v)(p) = Euto(p)
= p(u+v)
= ¢(u) + ¢(v)
= Eu(‘P) + Ey(p)
= t(p) + 0(p)

so that * is indeed linear. Next we show it to be homogeneous. So suppose \ € I,
and again let v € V. Then for any ¢ € V', we have

(A0)(g) = Exu ()
= (v
= Ap(v
= \E,(p)
= A0,

so that * is homogenous as well. Being both linear and homogenous, it is a linear

map.
Next we show * is injective. So suppose v = 0 for some v € V. We want to
show v = 0. Let vq,...,v, be a basis of V. Then there exist aq,...,a, € F

such that v = a1v1 + -+ + a,v,. Then, for all ¢ € V’, we have

=0 = (a1 + -+ apv,)" =0
= a1+ +a,v, =0
= (101 + -+ @nUn) () =0
= a101(@) + - + antn(p) =0
= a1p(v1) + -+ anen(v,) =0.

Since this last equation holds for all ¢ € V', it holds in particular for each
element of the dual basis ¢1,...,¢,. That is, for kK =1,...,n, we have

a1k (v1) + -+ aror(vr) + -+ anr(vn) =0 = ap =0,

and therefore v = 0-v1 +---+0-v, = 0, as desired. Thus * is indeed an
isomorphism.

We now prove the main result. Suppose ¢1,..., @, is a basis of V/, and let
®q,..., P, be the dual basis in V. For each ®y, let vy be the inverse of ®y
under the isomorphism . Since the inverse of an isomorphism is an isomorphism,
and isomorphisms take bases to bases, v1,...,v, is a basis of V. Let us now
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check that its dual basis is ¢1,...,¢,. For j,k=1,...,n, we have

vj(vk) = vk (p5)

= & (p))
)1 ifk=
~]o otherwise,
so indeed there exists a basis of V' whose dual basis is ¢1, ..., ¢,, as was to be
shown. 0
,_l Problem 32
Suppose T € L(V) and uy,...,u, and v1,...,v, are bases of V. Prove

that the following are equivalent:
(a) T is invertible.
(b) The columns of M(T) are linearly independent in F™1.
(
(d
(e) The rows of M(T) span F".

)
)
¢) The columns of M(T) span F™1.
) The rows of M(T) are linearly independent in F!:™.
)

Here M(T') means M(T, (uy, ..., up), (v1,...,05)).

Proof. We prove the following: (a) <= (b)) < (¢) <= (e) <= (d).
(a) <= (b). Suppose T is invertible. That is, for any w € V, there exists a
unique x € V such that w = Tz. It follows

M(w) = M(Tz)
M(T)M(z)
= M(z) M(T). 1+ -+ M(z)y M(T). .

s

That is, every vector in F1'™ can be exhibited as a unique linear combination
of the columns of M(T'). This is true if and only if the columns of M(T') are
linearly independent.

(b) < (c). Suppose the columns of M(T') are linearly independent in F™.
Since they form a linearly independent list of length dim(F™1), they are a basis.
But this is true if and only if they span F™! as well.

(¢) <= (e). Suppose the columns of M(T) span F™!, so that the column
rank is n. Since the row rank equals the column rank, so too must the rows of
M(T) span FLm.

(¢) < (d). Suppose the rows of M(T) span F1". Since they form a
spanning list of length dim(IF*"), they are a basis. But this is true if and only if
they are linearly independent in F1'™ as well. O
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Problem 33

Suppose m and n are positive integers. Prove that the function that
takes A to A? is a linear map from F™" to F™™. Furthermore, prove
that this linear map is invertible.

Proof. We first show taking the transpose is linear. So suppose A, B € F"™™ and
let j=1,...,nand k=1,...,m. It follows

(A+B)j, = (A+ Bk,
= Ay + By
== A;’,k + B;,k’
so that taking the transpose is additive. Next, let A € F. It follows
(A = Ak,
=My
= )\A;k,

so that taking the transpose is homogenous. Since it is both additive and
homogeneous, it is a linear map. To see that taking the transpose is invertible,
note that (A")! = A, so that the inverse of the transpose is the transpose
itself. O

,_l Problem 34

The double dual space of V, denoted V", is defined to be the dual
space of V'. In other words, V' = (V’)'. Define A : V — V" by

(Av)(p) = o(v)

forveV and p € V'.
(a) Show that A is a linear map from V to V.
(b) Show that if T'e€ L(V), then T" o A = Ao T, where T" = (T")’.

(c¢) Show that if V' is finite-dimensional, then A is an isomorphism from
V onto V.

7

Proof. We proved (a) and (c¢) in Problem 31 (where we defined * in precisely the
same way as A). So it only remains to prove (b). So suppose v € V and ¢ € V'
are arbitrary. Evaluating T" o A, notice

((T" o A)(v)) () = (T" (Av)) ()

= (

= (Av)(T'y)
=(T"p)(v)
= p(Tv),
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where the second and fourth equalities follow by definition of the dual map, and
the third equality follows by definition of A. And evaluating A o T, we have

(Ao T)())(p) = (A(Tv))(#)

= (p(T?)),
so that the two expressions evaluate to the same thing. Since the choice of both
v and ¢ was arbitrary, we have T o A = A o T', as desired. O

Problem 35

Show that (P(R))" and R* are isomorphic.

Proof. For any sequence @ = (ag,aq,...) € R®, let ¢, be the unique linear
functional in (P(R))’ such that ¢, (X*) = ay for all k£ € Z* (note that since
the list 1, X, X2,... is a basis of P(R), this description of ¢,, is sufficient). We
claim

d:R* — (P(R))
o g
is an isomorphism. There are three things to show: that ® is a linear map, that

it’s injective, and that it’s surjective.
We first show @ is linear. Suppose «, 8 € R®. For any k € Z™, it follows

(@(a + B8))(X*) = parp(X")
= (a+ Bk
= ag + Bk
= 0a(X*) + (X"
= (())(X*) + (®(8))(X"),

so that @ is additive. Next suppose A € R. Then we have

®(Aa)(X*) = pra(XF)
= ()\Oz)k
= /\Ozk
= A®(a),

so that ® is homogenous. Being both additive and homogeneous, ® is indeed
linear.

Next, to see that @ is injective, suppose ®(«) = 0 for some « € R*®. Then
0a(Xk) =qp =0 for all k € Z*, and hence a = 0. Thus ® is injective.

Lastly, to see that ® is surjective, suppose ¢ € (P(R))’. Define oy, = p(X*)
for all k € Z* and let a = (ag, 1, ... ). By construction, we have (®(a))(X*) =
ay, for all k € Z*, and hence ®(a) = . Thus @ is surjective.

Since ® is linear, injective, and surjective, it’s an isomorphism, as desired. [
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,_l Problem 37

Suppose U is a subspace of V. Let m : V — V/U be the usual quotient
map. Thus 7’ € L(V/U), V).

(a) Show that 7’ is injective.

(b) Show that ranger’ = U°.

(c) Conclude that 7’ is an isomorphism from (V/U)" onto U°.

Proof. (a) Let ¢ € (V/U)’, and suppose 7'(¢) = 0. Then (¢ o 7m)(v) =

(b)

p(v+U) =0 for all v € V. This is true only if ¢ = 0, and hence 7’ is
indeed injective.

First, suppose ¢ € rangen’. Then there exists ¢ € (V/U)" such that
7' () = ¢. So for all u € U, we have

and thus ¢ € U, showing rangen’ C U°. Conversely, suppose ¢ € U?, so
that ¢(u) = 0 for all w € U. Define ¢ € (V/U)' by ¢(v+ U) = p(v) for
all v € V. Then (7' (¢))(v) = ¥ (7(v)) = (v + U) = p(v), and so indeed
¢ € range ', showing U° C rangen’. Therefore, we have rangen’ = U?,
as desired.

Notice that (b) may be interpreted as saying 7’ : (V/U)" — UY is surjective.
Since 7’ was shown to be injective in (a), we conclude 7’ is an isomorphism
from (V/U)" onto U, as desired. O
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Chapter 4: Polynomials

Linear Algebra Done Right, by Sheldon Axler

Problem 1
Verify all the assertions in 4.5 except the last one. ]

Proof. Suppose w,z € C, and let a,b,c,d € R be such that w = a + bi and
z = c+ di.

e Notice z+Z = (¢ + di) + (¢ — di) = 2¢ = 2R(%).
e We have z — z = (¢ + di) — (c — di) = 2di = 2(2).

2
e Notice 27 = (c+di)(c — di) = ? + d* = (\/02 +d2) = |2

e We have w+ 2z = (a+c¢)+ (b+d)i = (a — bi) + (¢ — di) = w+Z. Also,
wz = (ac — bd) + (ad + be)i = (ac—bd) — (ad+bc)i and WZ = (a — bi)(c—
di) = (ac — bd) — (ad + be)i, so that Wz = wWz.

e Noticez=c—di=c+di = z.

e We have |R(z)| = |c| = Ve <@+ d2 = |z|, and similarly |Sz| = |d| =
Va2 < Ve +d? = |z

e Notice [z]| = [c — di| = /2 + (—d)2 = V2 + d% = |2|.

e We have

lwz| = |(ac — bd) + (ad + be)i|
= /(ac — bd)? + (ad + bc)?
= Va2c + a2d? + b2c2 + b2d2
— @I PRET D)

=Va2 + b2/ + &2

= [w] |z,

as desired. O

Problem 3

Is the set
{0} U{p € P(F) | degp is even}

a subspace of P(IF)?




Proof. Let E = {0} U{p € P(F) | degp is even}. Then E is not a subspace of
P(F). To see this, notice p(z) = 2?> + z € E and ¢(z) = —2*> + z € E, but
p+q=2x ¢ FE, sothat F is not closed under addition. O

,_l Problem 5

Suppose m is a nonnegative integer, 21, ..., 2m+1 are distinct elements of
F, and wy,...,w,t+1 € F. Prove that there exists a unique polynomial
P € P (F) such that

p(z;) = w;
forj=1,...,m+1.

Proof. Define

T : P, (F) — FmH!
p= (p(zl)a s 7p(zm+1))'
It suffices to show that 7" is an isomorphism, since injectivity implies uniqueness
of such a p € P, (F), and surjectivity implies its existence. So we first show that
T is a linear map. Suppose p,q € Py, (F). Then
T(p+aq) = (p+a)(),--- (0 + ) (zm+1))

= (p(z1) + q(z1), -, P(Zmt1) + @(Zm+1))

= (p(zl)7 e 7p(Zm+1)) + (Q(Zl)a cee 7Q(Zm+1))

=Tp+Tq,
so that T is additive. Next suppose A\ € F. Then

T(Ap) = ((Ap)(21); - -+, (M) (2m41))
= (Ap(21), -+ Ap(2m+1))
= (p(zl), . ,p(zm+1))
= ATp),

so that T is also homogenous. Hence T is a linear map. To see that T is an
isomorphism, it’s enough to show 7T is injective. So suppose T'p = 0 for some
P € P (F). Then

Tp = (p(zl),...,p(zm+1)) =(0,...,0),

and hence p has m + 1 zeros. Since it has degree at most m, p must therefore be
the zero polynomial, completing the proof. O

Problem 7

Prove that every polynomial of odd degree with real coefficients has a
real zero.




Proof. Suppose not. Then there exists some p € P(R) of odd degree with no
real zeros. By Theorem 4.17, p must be of the form

p(z) = c(z? +byx +c1)--- (22 + by + cpr),

where ¢, by,...,by,c1,...,cr € R and M € Z*. But then p has even degree, a
contradiction. Thus every polynomial of odd degree with real coefficients must
indeed have a real zero. O

Problem 9

Suppose p € P(C). Define ¢ : C — C by

q(z) = p(2) p(2) -

Prove that ¢ is a polynomial with real coefficients.

Proof. Suppose p has degree n. Then there exist ¢, A1,..., A\, € C such that
p(2) = c(z1 = A1) -+ (20 — An)-

Thus we have

q(z) =clz1 — A1) (2n — An) c(Z1 — A1) - (B0 — An)
= cc(z1 — A1) (21 —/\71> o (zn = An) (Zn *X)
—|ef? (212 —OR(A)2 + |>\1|2) (z,f —2R(\n)2n + |)\n|2) ,

so that g(z) is the product of polynomials with real coefficients. Thus ¢ is itself
a polynomial with real coefficients, as was to be shown. O

Problem 11
Suppose p € P(F) with p # 0. Let U = {pq | ¢ € P(F)}.

(a) Show that dim P(FF)/U = degp

(b) Find a basis of P(F)/U.

Proof. Suppose dimp = n for some n € Z™T.
(a) Consider the map
T :P(F) — Pp_1(F)
fer(f),

where 7(f) is the unique remainder when f is divided by p. We will show
that T is linear, null T = U, and range T' = P,,_1(F), so that V/U = P, _4.



Since P,—1(F) 2 F" and dim F™ = n = degp, this gives the desired result.

First we show T is a linear map. To see this, suppose f,g € P(F). Then
there exist unique g1, g2 € P(F) such that f = ¢1p+r(f) and g = gap+7(g).
But then f4+g = (g1 +q2)p+r(f)+7(g), and hence r(f +g) = r(f)+r(g).
Thus

T(f+9)=r(f)+r(9) =T()+T(9),

and so T is additive. To see that T is also homogenous, suppose A € F.
Then Af = (Aq1)p + Ar(f), and since both the quotient and remainder are
unique, we must have A\r(f) = r(Af). Therefore

T(Af) = Ar(f) = AT,

and so T is homogeneous. Thus 7T is a linear map, as claimed.

Next we show nullT = U. Suppose f € nullT. Then T f = 0, and hence
r(f) = 0. That is, there exists g1 € P(F) such that f = pg;, and thus
f € U. Conversely, if g € U, then there exists g € P(FF) such that g = pgs.
But then r(g) = 0, and hence Tg = 0 and g € null 7.

Lastly we show rangeT = P, _1. Of course rangeT C P,,_1. So suppose
r € Pp—1. Then r = Op + r (where 0 denotes the zero polynomial), and
hence T'r = r. Thus rangeT = U.

We claim 1 + U,z + U,...,z"~! + U is a basis of P(F)/U. Notice none of
these vectors is the zero vector since all elements of U have degree at least
n. Clearly the list is linearly independent. Since it has the right length,
it’s indeed a basis. O



Chapter 5: Eigenvalues, Eigenvectors, and
Invariant Subspaces

Linear Algebra Done Right, by Sheldon Axler

A: Invariant Subspaces

Problem 1
Suppose T' € L(V) and U is a subspace of V.

(a) Prove that if U C null T, then U is invariant under 7.

(b) Prove that if range T C U, then U is invariant under 7.

Proof. (a) Suppose u € U. Since U C null T, we must have Tu = 0. And since
0 € U, this implies Tw € U, and so U is indeed invariant under 7.

(b) Suppose u € U. Since Tu € rangeT (by definition of rangeT) and
range T C U, we have Tu € U. Thus U is invariant under 7. O

Problem 3

Suppose S, T € L(V) are such that ST = T'S. Prove that range S is
invariant under 7.

Proof. Suppose w € range S. Then there exists v € V' such that

Sv = w.
It follows
Tw=TSv=STv,
and thus Tw € range .S, so that range S is indeed invariant under 7. O

Problem 5

Suppose T € L(V). Prove that the intersection of every collection of
subspaces of V invariant under 7' is invariant under 7.

Proof. Let 4 be a collection of subspaces of V' invariant under T, and let

W= U

Ueid



By Problem 11 of Section 1.C, W is a subspace of V. Assume u € W. Then
u € U for every U € 4. Since each such U is invariant under 7', we have Tu € U
for all U € 4 as well. This implies Tu € W, and hence W is invariant under T'
also, as desired. O

Problem 7

Suppose T € L£(R?) is defined by T'(x,y) = (—3y, ). Find the eigenvalues
of T.

Proof. Suppose T(z,y) = A(x,y), where (z,y) € R? is nonzero and A € F. Then
-3y =Xz (1)
T = Ay. (2)
Substituting the value for x given by the Equation 2 into Equation 1 gives
-3y = )\2y.

Now, y cannot be 0, for otherwise z = 0 (by Equation 2), contrary to our
assumption that (x,y) is nonzero. Hence —3 = A\2. Thus, if F = C, T two
eigenvalues: A = £1/3i. If F = R, T has no eigenvalues. O

Problem 9
Define T' € L (IF3) by

T(Zla 22, Z?)) — (2227 O, 52’3)

Proof. Suppose T'(z1, 22, 23) = A(z1, 22, 23), where (21, 22,23) € F? is nonzero
and A € F. Then

222 = /\2’1 (3)
52’3 = )\23. (5)

First notice that A = 0 satisfies the above equations if either z; or z3 is nonzero,
and thus 0 is an eigenvalue with corresponding eigenvectors

{(s,0,t) | s,t € F,s and ¢ are not both 0}.

If A # 0, then we must have zo = 0 by Equation 4, and hence z; = 0 by Equation
3. Since (21, 22, 23) # (0,0,0), we conclude z3 must be nonzero. Thus Equation
5 implies A = 5 is the only other eigenvalue with corresponding eigenvectors

{(0707t> ‘ teF— {O}}v

and we’re done. O



Problem 11

Define T : P(R) — P(R) by Tp = p’. Find all eigenvalues and eigenvec-
tors of T'.

Proof. Let p € P(R) be nonzero and suppose Tp = Ap for some A € R. Note
that degp must be 0, for otherwise, since degp = deg(Tp) = degp’, we have a
contradiction. Thus the only eigenvalue of T is A = 0, and the corresponding
eigenvectors are the constant, nonzero polynomials in P(R). O

Problem 13

Suppose V is finite-dimensional, T € L(V), and A € F. Prove that there
exists a € F such that |0 — A| < 1555 and T — o is invertible.

Proof. Suppose not. Then for any « € F such that |a — \| < Tloo’ T —al is
not invertible. But then, by Theorem 5.6, « is an eigenvalue of T'. This is a
contradiction, since there are infinitely many such «, but 7' can have at most

dim V' eigenvalues by Theorem 5.13. O

,-' Problem 15 \

Suppose T' € L(V'). Suppose S € L(V) is invertible.

(a) Prove that T and S~!T'S have the same eigenvalues.

(b) What is the relationship between the eigenvectors of T' and the
eigenvectors of S~1TS?

Proof. (a) Suppose A € F is an eigenvalue of S~!T'S. Then there exists a
nonzero v € V such that (S7!7S)v = Av. This equation is true if and
only if T'Sv = A(Sw), which is in turn true if and only if Tw = Aw, where
w = Sv. Note that since S is invertible, w # 0. Thus 7 and S~'T'S indeed
have the same eigenvalues.

(b) As shown in the proof of (a), v € V is an eigenvector of S~1T'S if and only
if Sv is an eigenvector of T O

Problem 17

Give an example of an operator T € L(R*) such that T has no (real)
eigenvalues.




Proof. Consider the following operator
T:R* - R
(xla €2,I3, x4) = (_'r47 Z1,T2, l‘3)-

We claim T has no real eigenvalues. To see this, suppose T'(z1, T2, 23, 24) =
(@1, 22,23, 74) for some A € R and nonzero (x1,r2,23,24) € R Tt follows

(—x4,$17$2,x3) = )\(xlvx27 ‘r37x4)7

and hence
—Ty4 = )\$1 (6)
T = )\{EQ (7)
T = Al'g (8)
Tr3 = /\1‘4. (9)

This implies —x4 = A*x4. Notice A cannot be 0, for otherwise (1,29, 23,24) is
the zero vector, a contradiction. Hence we must have x4 = 0. But then Equation
6 implies x1 = 0, which in turn implies x5 = 0 by Equation 7, and which thus
implies 23 = 0 by Equation 8. But now we have that (z1, z2, x5, 24) is the zero
vector, another contradiction. So we conclude T indeed has no real eigenvalues,
as claimed. O

,_l Problem 19

Suppose n is a positive integer and T € L(F") is defined by

T(x1,...,Zn) = (14 +Zpyo. o, @1+ -+ Zp);

in other words, T is the operator whose matrix (with respect to the
standard basis) consists of all 1’s. Find all eigenvalues and eigenvectors
of T.

Proof. Suppose T(x1,...,2,) = A(x1,...,2,) for some XA € F and some nonzero
(1,...,2Zpn) € F". Then

(14 FTpyoeyz1+ -t zp) =A@, T).
It follows

1+, = A

Ty + -+ Xy = Alp.
Thus, our first eigenvalue is A = 0 with corresponding eigenvectors

{(x1,...,2p) € F* = {0} | 1 +--- + 2, = 0}



Next, if A # 0, notice the equations above imply Axy; = -+ = Ax,, and thus
1 = -++ = . Denote the common value of the x;’s by y. Then any of the
above equations is now equivalent to ny = Ay. Thus our second eigenvalue is
A = n with corresponding eigenvectors

{(x1,...,2p) EF" {0} |21 = =2},

and we’re done. O

,—l Problem 21

Suppose T' € L(V) is invertible.

(a) Suppose A € F with A\ # 0. Prove that A is an eigenvalue of T if
and only if % is an eigenvalue of 71,

(b) Prove that T and T~! have the same eigenvectors.

Proof. (a) By definition, A # 0 is an eigenvalue of T' if and only if there exists
v € V — {0} such that Tv = M. Since T is invertible, this is true if and
only if v = T~!(\v), which is itself true if and only if (after simplification)
(%) v =T~ !v. Thus A is an eigenvalue of 7T if and only if % is an eigenvalue

of T~1, as was to be shown.

(b) First notice that A = 0 cannot be an eigenvalue of T or T~ since they
are both injective. Now, suppose v is an eigenvector of T' corresponding
to A # 0. By the proof of (a), v is an eigenvector of T—! corresponding
to % Thus all eigenvectors of T are eigenvectors of T~!. Now, reversing
the roles of T and T~' and applying the same argument yields the reverse
inclusion, completing the proof. O

Problem 23

Suppose V is finite-dimensional and S, T € L(V). Prove that ST and
TS have the same eigenvalues.

Proof. Let A € F be an eigenvalue of ST and v € V — {0} be a corresponding
eigenvector, so that STv = Av. First, if Tv #£ 0, it follows

TS(Tv) =T(STv)
=T(\v)
= A(Tw),

so that A is an eigenvalue of T'S. Next, if Tv = 0, then we must have A = 0
(since STv = A\v). Moreover, T is not invertible (since v # 0). Thus T'S is not
invertible (by Problem 9 of Chapter 3.D). Since T'S is not invertible, there exists
a nonzero w € V such that T'Sw = 0, and hence A\ = 0 is an eigenvalue of T'S as



well.

Since A is an eigenvalue of T'S in both cases, we conclude that every eigenvalue
of ST is also an eigenvalue of T'S. Reversing the roles of .S and T and applying
the same argument yields the reverse inclusion, completing the proof. O

Problem 25

Suppose T' € L(V) and u, v are eigenvectors of T' such that u+wv is also an
eigenvector of T'. Prove that w and v are eigenvectors of T corresponding
to the same eigenvalue.

Proof. Suppose A1 is the eigenvalue associated to u, A is the eigenvalue associ-
ated to v, and A3 is the eigenvalue associated to u + v, so that

Tu= Mu (10)
T’U = )\Q'U (11)
T(u+v) = As(u+v). (12)

It follows that
Tu+Tv = \u—+ v,

and hence, by Equation 12, we have
A3l + A3v = Aju + Av.

Thus
()\1 — )\3)U + ()\2 - )\3)1) =0.

Since u and v are both eigenvectors of T, they are linearly independent. Thus
A1 = A3 and Ay = A3, and hence A\; = Ay = A3, showing that v and v indeed
correspond to the same eigenvalue. O

Problem 26

Suppose T' € L(V) is such that every nonzero vector in V' is an eigenvector
of T. Prove that T is a scalar multiple of the identity operator.

Proof. By hypothesis, for all v € V' there exists A\, € F such that Tv = A\v
(where A\g can be any nonzero element of F, since 70 = 0). We claim A, is
independent of the choice of v for v € V — {0}, hence Tv = Av for all v € V
(including v = 0) and some A € F, and thus T'= AI.

So suppose w, z € V — {0} are arbitrary. We want to show A\, = A,. If w and



z are linearly dependent, then there exists a € F such that w = az. It follows

Apw = Tw
=T(az)
=alz
=al,z
=X (az)
=\ w.

Since w # 0, this implies A, = A,. Next suppose w and z are linearly independent.
Then we have

Awtz(w+2) =T(w+ 2)
=Tw+ Tz
= AW + A, 2,

and hence
()\w+z - )\w)w + ()\w+z — )\Z)Z =0.

Since w and z are assumed to be linearly independent, we have Ay, = A, and
Awtz = Az, and hence again we have A\, = A., completing the proof. O

Problem 27

Suppose V is finite-dimensional and T € £(V) is such that every subspace
of V with dimension dim V' — 1 is invariant under 7. Prove that T is a
scalar multiple of the identity operator.

Proof. Suppose not. Then by the contrapositive of Problem 26, there exists
some nonzero v € V which is not an eigenvector of T. Thus the list v,Tv is
linearly independent, and, assuming dimV = n, we may extend it to some
basis v, Tv,u1,...,up—o of V. Let U = span(v,uy,...,Up—2). Since dimU =
dim V —1, U must be invariant under 7". But this is a contradiction, since Tv & U.
Thus T must be a scalar multiple of the identity operator, as desired. O

Problem 29

Suppose T' € L(V') and dimrangeT = k. Prove that T has at most &k + 1
distinct eigenvalues.

Proof. Suppose A1, ..., A\, are distinct eigenvalues of T', and let vy, ..., v,, be
corresponding eigenvectors. For k € {1,...,m}, if Ay # 0, then

1
T (}\kvk) = Vg-



Since at most one of the A\1,..., A, can be 0, at least m — 1 of our eigenvectors
are in rangeT'. Thus, since lists of distinct eigenvectors are linearly independent
by Theorem 5.10, we have

m — 1 < dimrangeT = k,

which implies m < k + 1, as desired. O

Problem 31

Suppose V is finite-dimensional and v, ..., v,, is a list of vectors in V.
Prove that vy, ..., v, is linearly independent if and only if there exists
T € L(V) such that vy,...,v,, are eigenvectors of T' corresponding to
distinct eigenvalues.

Proof. (<) If T € L(V) is such that vy, ..., v, are eigenvectors of T' correspond-
ing to distinct eigenvalues, then vy, ..., v,, is linearly independent by Theorem
5.10.

(=) Suppose vy, ...,y is a linearly independent list of vectors in V. Define
T € L(V) by Tv,, = kv, for k = 1,...,m. The existence (and uniqueness) of
T is guaranteed by Theorem 3.5, and clearly vq,...,v,, are eigenvectors of T’
corresponding to distinct eigenvalues. O

Problem 33
Suppose T' € L(V'). Prove that T'/(rangeT) = 0. ]

Proof. Let v+ rangeT € V/(rangeT'). Then

(T/(rangeT))(v + rangeT) = Tv + range T’
=0+ rangeT.

Thus T'/(rangeT') is indeed the zero map, as was to be shown. O

Problem 35

Suppose V is finite-dimensional, T' € £(V'), and U is invariant under 7.
Prove that each eigenvalue of T/U is an eigenvalue of T

Proof. Suppose A € F is an eigenvalue of T'/U. Then there exists some nonzero
v+ U € V/U such that

(T/U)(w+U) =AMv+U),
which implies

Tv+U=M+U,



and hence Tv — Av € U. If A is an eigenvalue of T'|y, we're done. So suppose
not. Then, since V is finite-dimensional, Theorem 5.6 tells us T'|y — A\ : U — U
is invertible. Hence there exists some u € U such that (T|y — AI)(u) = Tv — Av,
and thus

Tu— Au=Tv— .

Simplifying, we have T'(u — v) = A(u — v). Since v ¢ U by assumption, this

implies © — v # 0 and hence X is an eigenvalue of T', completing the proof. [

B: Eigenvectors and Upper-Triangular Matrices
,_l Problem 1

Suppose T' € L(V) and there exists a positive integer n such that T™ = 0.

(a) Prove that I — T is invertible and that

I-T)'=I+T+---+T" "

(b) Explain how you would guess the formula above.

. 7

Proof.  (a) We will show that S: =1+ T +---4T"" ! is both a left and right
inverse of I —T. Suppose v € V. We have

(I-T)Sv=(I—-T) (v+Tu+-~-+T"*1v)
= (U+Tv+--~+Tnflv>—T<U+Tv+~--+T"711))
:v—i-(Tv+~-~+T"_1U—TU—T2v—~-~—T"_1)+T”U
=
and
S(I—T) = (v+Tv+~-~+T”*1v> (I-T)
= (v+Tu+-~~+T"*1v>— (TU+T21)+--~—|—T”U)

:v—i-(Tv+~-~+T”_1U—TU—T2U—~-~—T”_1)+T"U

=w.
Thus I — T is indeed invertible, and S is its inverse.

(b) Recall the power series expansion for (1 — z)~! when |z| < 1:

1—2z)t= ixk
k=

0



Substituting 7" for z and supposing T* = 0 for k > n, we have the formula
from (a). O

Problem 3

Suppose T' € L(V) and T? = I and —1 is not an eigenvalue of T'. Prove
that T' = 1.

Proof. Since —1 is not an eigenvalue of T', Theorem 5.6 implies T+ I is invertible.
Hence for all w € V, there exists v € V such that (T'+ I)v = w. Thus

Tv+v=uw. (13)
Since T2 = I, applying T to both sides yields
v+ Tv=Tuw. (14)

Combining Equations 13 and 14, we see Tw = w. Therefore it must be that
T = I, as was to be shown. O

Problem 4
Suppose P € L(V) and P? = P. Prove that V = null P @ range P. ]

Proof. First notice 0 = P2— P = P(P—1), hence (P—1I)v € null P for allv € V.
Next notice we can write v = Pv — (P — I)v. Since of course Pv € range P, this
yields

V = null P 4 range P.

To see this sum is direct, suppose w € null P Nrange P. Then Pw = 0 (since
w € null P) and there exists u € V such that w = Pu (since w € range P).
Combining these two equations with the hypothesis that P? = P, we now have

w = Pu = P?>u = P(Pu) = Pw =0,

and thus the sum is indeed direct, as desired. O

Problem 5

Suppose S, T € L(V) and S is invertible. Suppose p € P(F) is a polyno-
mial. Prove that

p (STs-l) = Sp(T)S~ L.

10



Proof. For k € Z™, notice
k
(sTs71) = sThs7
Since p € P(F), there exist n € Z* and ay,...,a, € F such that

p(Z) =qp+ar1z+---+ anzn-

It follows
p(T)=apl + 1T+ -+, T",

and hence
Sp(T) = apS + a1 ST + -+ - + @, ST",

and thus we have
Sp(T)S™ = apl + a1 STS ™ + -+ + 4, ST"S ™' = p (STS*I) ,

as was to be shown. O

Problem 7

Suppose T € L(V). Prove that 9 is an eigenvalue of T2 if and only if 3
or —3 is an eigenvalue of 7'

Proof. (<) Suppose 3 or —3 is an eigenvalue of T. Then there exists a nonzero
v € V such that either

Tv=3v or Tv=-—3v.

In the former case, we have T?v = 3Tv = 9v, and in the latter we have
T? = —3Tv = 9v. In both cases, 9 is an eigenvalue of T2.

(=) If 9 is an eigenvalue of T2, then there exists a nonzero w € V such that
T?w = 9w. Hence T? — 91 is not invertible, whereby (T' — 3I)(T + 3I) is not
invertible. Thus, by Problem 9 of Section 3.D, either T'— 31 or T + 31 is not
invertible. This implies either 3 or —3 is an eigenvalue of T', as desired. O

Problem 9

Suppose V is finite-dimensional, T € L(V), and v € V with v # 0. Let p
be a nonzero polynomial of smallest degree such that p(T)v = 0. Prove
that every zero of p is an eigenvalue of T'.

Proof. Suppose A € F is a zero of p. Then there exists ¢ € P(F) with degq =
degp — 1 such that
p(X) = (X = A)g(X).

Then, since p(T)v = 0 by hypothesis, we have
(T — XDq(T)v = 0.
Since deg g < degp, ¢(T)v # 0, and hence A is indeed an eigenvalue of 7. [

11



Problem 11

Suppose F=C, T € L(V), p € P(C) is a nonconstant polynomial, and
a € C. Prove that « is an eigenvalue of p(T) if and only if a = p(X) for
some eigenvalue A of T

Proof. (=) Suppose « is an eigenvalue of p(T). Then p(T') — ol is not injective.
By the Fundamental Theorem of Algebra, there exist ¢, A1,..., A, € C such
that

p(z)—a=clz=A1)...(z = Am)-

If ¢ = 0, then p(z) = « and p is constant, a contradiction. So we must have
c # 0. By the above equation, we have

p(T)—al =c(T — MI)... (T = A,I).

Since p(T') — o is not injective, there exists j € {1,...,m} such that T — \;I
is not injective. In other words, A; is an eigenvalue of T'. Moreover, notice
p(A;) —a =0, and hence o = p()\;), as desired.

(<) Suppose a = p(\) for some eigenvalue A of T. Let v € V — {0} be a
corresponding eigenvector, and let ag, ..., a, € C be such that

p(z)=ap+ar1z+ -+ ayz™.
Notice T*v = Ao for any k € ZT. It follows

ag + oA+ -+ a N = q,

and hence
p(Tyv=apv+a1Tv+ -+ a,T™
= oV + a1 v + - - + ap A"
=(ap+at A+ +a,A")v
= aw.
Thus « is an eigenvalue of p(T'), completing the proof. O

Problem 13

Suppose W is a complex vector space and T € L(W) has no eigenvalues.
Prove that every subspace of W invariant under T is either {0} or infinite-
dimensional.

Proof. Suppose U C W is invariant under T. If U = {0} the result holds, so
suppose otherwise. Now, if U were finite-dimensional, then T'|;y would have
an eigenvalue by Theorem 5.21. Thus T would have an eigenvalue as well, a
contradiction. So U must be infinite-dimensional. O

12



Problem 14

Give an example of an operator whose matrix with respect to some basis
contains only 0’s on the diagonal, but the operator is invertible.

Proof. Consider the operator
T:R* - R?
(z,y) = (y,2).

With respect to the standard basis, we have

M(T) = ﬁ (ﬂ .

Clearly T is invertible (it’s its own inverse), but its matrix with respect to the
standard basis has only 0’s on the diagonal. O

Problem 15

Give an example of an operator whose matrix with respect to some basis
contains only nonzero numbers on the diagonal, but the operator is not
invertible.

Proof. Consider the operator

T:R? > R?
(r,y) = (z+y,x+y).

With respect to the standard basis, we have

1 1
= 1.
Notice that T is not invertible, since T(0,0) = (0,0) = T(—1,1), and yet
its matrix with respect to the standard basis has only nonzero numbers on
the diagonal. Combining this result with Problem 14, we see that Theorem
5.30 fails without the hypothesis that an upper-triangular matrix is under
consideration. O

Problem 17

Rewrite the proof of 5.21 using the linear map that sends p € P,,2(C) to
p(T) € L(V) (and use 3.23).

13



Proof. We will show that every operator on a finite-dimensional, nonzero, com-
plex vector space has an eigenvalue. Suppose V' is a complex vector space with
dimension n > 0 and T' € £(V). Consider the linear map

M :P,2(C) — L(V)
p = p(T).
Since dim (P,2(C)) = n?+1 but dim (£(V)) = n?, M is not injective by Theorem

3.23. Thus there exists a nonzero p € P,2(C) such that Mp = p(T) = 0. By the
Fundamental Theorem of Algebra, p has a factorization

p(z)=clz—=A)...(z = An),

where c is a nonzero complex number, each A; is in C, and the equation holds
for all z € C. Now choose any v € V — {0}. It follows

0=p(T)v
=c(T—MI)...(T=X\p1)v.

Since v # 0, T' — A; is not injective for at least one j. In other words, 1" has an
eigenvalue. O

Problem 19

Suppose V is finite-dimensional with dimV > 1 and T' € £L(V). Prove
that

{p(T) |p € P(F)} # L(V).

Proof. Let U = {p(T) | p € P(F)}, and suppose by way of contradiction
that U = L(V). Let p € P(F), and let ag,...,a, € F be such that p(z) =
ag + a1z + a,z™ for all z € F. Notice
Tp(T) =T (aol + ;T + -+ + @, T")
= agT + OqT2 + -+ OénTnJrl
= (Ozo[ + o T+ -+ anT") T
=p(T)T,
so that T" commutes with all elements of U. By Problem 16 of Chapter 3.D, this
implies T' = AI for some A € F. It follows
U={p(T) |p e PE))
={p(A) | p € P(F)}
= {aOIJral()\I) + -+ a(AN)" | ag,a1,...,a, EFand n € Z*}
={p(N)I|pePEF)}
={al |a € F},
and thus dim/ = 1. Since dim £(V) = (dim V)? and dim V > 1 by hypothesis,

we have dim £(V) > 1, a contradiction. Thus our assumption that & = L(V)
must be false, as was to be shown. O

14



C: Eigenspaces and Diagonal Matrices

Problem 1
Suppose T € L(V) is diagonalizable. Prove that V = nullT & range T'. ]

Proof. By Theorem 5.41, there exists a basis v, ..., v, of V consisting of eigen-
vectors of T'. Let Aq,..., )\, € F be corresponding eigenvalues, respectively. Let
m denote the number of eigenvalues A; such that A; = 0. After relabeling, we
may assume A\; =0 for j=1,...,mand A\; #0 for j =m +1,...,n. It follows

V =span(vi, ..., ) @ span(vVmii, ..., Un)-

Note that if m = 0, the left hand term in the direct sum becomes the span of
the empty list, which is defined to be {0}. We claim null T' = span(vy, ..., vm)
and range T’ = span(vy,+1, - . - , Uy ), which provides the desired result.

First we prove null T = span(vy, . .., ¥y, ). This result is trivially true if m = 0,
so suppose otherwise. Since each of vy, ..., v, is an eigenvector corresponding to
0, we have vy,...,v, € E(0,T), and hence span(vy,...,v,) C E(0,T) =nullT.
For the reverse inclusion, suppose v € nullT. Let ay,...,qa, € F be such that
v = QiU + -+ a,v,. It follows

0=Twv
=aTvy + -+ a,Tv,
= am+1Tvm+1 + -+ oo,

= (am+1>\m+1)vm+1 + -+ (OénAn)Un~

Since Ap41,..., A, are all nonzero, the linear independence of vy, 41,...,v,
implies opy1 = -+ = a, = 0. Thus v = aqv1 + -+ + AUy, and indeed
v € span{vy, ..., vy }. We conclude null T = span(vy, ..., vm).

Now we prove rangeT = span(vm41,-.-,Un). Clearly we have
U1, -+, 0n € range T, since T(vg/A;) = vg for Kk =m +1,...,n, and hence
span(Vm1, .- -,vn) C rangeT. For the reverse inclusion, suppose w € rangeT.

Then there exists z € V such that Tz = w. Let f1,...,8, € F be such that
z=f1o1 + - + Bnvy. Tt follows

w="Tz
=T+ -+ BT,
= (6m+1)\m+1)vm+1 +- 4+ (ﬁnAn)vn

Thus w € span(vymt1,---,0y), and we conclude range T = span (V41 .-, Un),
completing the proof of our claim. O

15



,_l Problem 3

Suppose V is finite-dimensional and T' € £L(V'). Prove that the following
are equivalent:

(a) V =nullT @ rangeT.
(b) V =nullT + rangeT.
(¢) nullT NrangeT = {0}.

Proof. Let N =nullT and R = rangeT.
(a=0b)IfV =N®R, then V = N + R by the definition of direct sum.
(b = ¢) Suppose V = N + R. By Theorem 2.43, we know

dim(N + R) = dim N 4+ dim R — dim(N N R), (15)
and by hypothesis, the LHS of Equation 15 equals dim V. Hence we have
dimV = dim N 4+ dim R — dim(N N R). (16)
Now, by the Fundamental Theorem of Linear Maps, we have
dimV =dim N + dim R. (17)

Combining Equations 16 and 17 yields dim(N N R) = 0, and hence NN R = {0}.
(¢ = a) Suppose N N R = {0}. Again by Theorem 2.43, we have

dim(N + R) = dim N + dim R — dim(N N R).
By hypothesis, dim(N N R) = 0. Thus
dim(N + R) = dim N + dim R. (18)

By another application of the Fundamental Theorem of Linear Maps, the RHS of
Equation 18 equals dim V. Hence we have dim V' = dim(N + R), and therefore
V =N+ R. Since NN R = {0} by hypothesis, this sum is direct. O

,_l Problem 5

Suppose V is a finite-dimensional complex vector space and T' € L(V).
Prove that T is diagonalizable if and only if

V =null(T — AI) @ range(T — \I)

for every A € C.

16



Proof. (=) Suppose T is diagonalizable. Then there exists a basis such that
M(T) is diagonal. Letting A € C, it follows

M(T = M) = M(T) — IM(I)
=M(T) - M,
where we abuse notation and use I to denote both the identity operator on V" and
the identity matrix in FdimV:dimV Gince AT is diagonal, so too is M(T) — A,
and hence T'— AI is diagonalizable. The desired result now follows by Problem

1.
(<) Conversely, suppose

V =null(T — A\I) @ range(T — AI)

for every A € C. We induct on n = dim V. If n = 1, the result clearly holds, since
every matrix in F1! is diagonal. Now assume n € Z*1 and that the assertion
holds for all vector spaces of dimension k < n. Let A\; € C be an eigenvalue of T'
(such an eigenvalue must exist by Theorem 5.21). By hypothesis, we have

V =E(\,T)®range(T — A\ 1). (19)
Let R = range(T — A I). We claim
R =null(T|g — M) @ range(T|g — M)

for all A € C. By Problem 3c, it suffices to show null(T|g—AI)Nrange(T|g—AI) =
{0}. Notice

null(T|g — AI) Coull(T — AI)  and  range(T|gr — AI) C range(T — AI).
It follows
null(T|g — M) Nrange(T|r — AI) C null(T — AI) Nrange(T — AI) = {0},

proving our claim. Now, let vy,...,vx be a basis of E(A,T). Since T|g is
diagonalizable, R has a basis of eigenvectors by Theorem 5.41. Call them
Uk41,---,Un. By Equation 19, the list v1,...,v, is a basis of V' consisting of
eigenvectors of T. By another application of Theorem 5.41, this implies T is
diagonalizable, as desired. O

Problem 7

Suppose T € L(V) has a diagonal matrix A with respect to some basis of
V and that A € F. Prove that A appears on the diagonal of A precisely
dim E(\,T') times.

17



Proof. Let A1,..., A\ € F be the distinct eigenvalues of T, let vy,...,v, be a
basis consisting of eigenvectors of T' (such a basis is guaranteed by Theorem 5.41),
and let A = M(T) with respect to this basis. Denote by sj the number of our
basis vectors contained in E (A, T) for k € {1,...,m}, so that the eigenvalue A
appears on the diagonal of A exactly si times. We will show s, = dim E(\g, T').

Since any subset of the basis contained in E(MA;,T) is of course linearly
independent, we first note s, < dim E(Ag, T). So we have

$14 -+ 8m <dimE\,T) + - - + dim(\p,, T)

=n.

Since E(A;, T) N E(A;,T) = {0} for ¢ # j, each element of our basis is contained
in at most one E(Ag,T'). Hence the LHS of the equation above equals n as well,
and the inequality is in fact an equality. This implies

s1 —dim(Ey,T) = (dim E(A\g, T) — s2) + - -+ + (dim E(A\p,, T) — S )-

Each term in parentheses on the RHS is nonnegative, and hence s; —dim(E,,T) >
0, which implies s; > dim(FE;,T). Since we’ve already shown s; < dim(E;,T),
we conclude s; = dim(Eq,T). An analogous argument shows sy = E(Ag, T) for
all £ € {2,...,m}.

Therefore, if A € C is an eigenvalue of 7', then A\ indeed appears on the
diagonal of A precisely dim E(A,T') times. And if A is not an eigenvalue of T,
then it appears on the diagonal zero times, which also equals dim E(A,T"). In
both cases, the desired result holds, completing the proof. O

Problem 9

Suppose T € L(V) is invertible. Prove that E(A\,T) = F (%,T‘l) for
every A € F with A # 0.

Proof. Let A € F — {0}, and suppose v € E(\,T). Then
Tv=M = v=T""0w)

1
= —V = 1_1
)\’U v

— veE(/l\,T‘1>7

and thus E(\,T) C F (%,T‘l). Conversely, suppose w € E (§7T_1). It follows

N

1 1
71wzxw — w-T()\w)

= w=Tw
= we EW\T),

and so E (%,T‘l) C E(\,T). Therefore, we conclude E(A\,T) = E (%,T‘l), as
was to be shown. O
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Problem 11
Verify the assertion in Example 5.40. ]

Proof. Define T € L(R?) by
T(z,y) = (41z + Ty, =20z + T4y).

Example 5.40 asserts that T is diagonalizable, because the matrix of T with
respect to the basis (1,4), (7,5) is

69 0

0 46|

T(1,4) = (69, 276)
=69-(1,4)+0-(7,5),

To see this, first notice

and so the first column of the matrix is correct. Next notice

T(7,5) = (322,230)
=0-(1,4)+46 - (7,5),

and so the second column of the matrix is correct as well. O

Problem 12

Suppose R, T € L(IF3) each have 2,6, 7 as eigenvalues. Prove that there
exists an invertible operator S € £(F?) such that R = S~!T'S.

Proof. Since R and T each have 3 eigenvalues and dim[F? = 3, they are both
diagonalizable by Theorem 5.44. Letting Ay = 2, Ao = 6, and A3 = 7, there exist
(again by Theorem 5.44) bases vy, vs,v3 and wy, ws, w3 of F? such that

Rvup = A\, and  Twg = A\pwg
for k = 1,2,3. Define the operator S € L(F?) by its behavior on the vy’s
Sv, = wy.
Since S takes one basis to another basis, it’s invertible. Now notice
STITSv, = S Twy,
= 57 (wy)
= A\peS wy

= AUk
= Rvk,

and thus R = S™1TS5, as desired. O
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Problem 13

Find R, T € L(F*) such that R and T each have 2,6, 7 as eigenvalues, R
and T have no other eigenvalues, and there does not exist an invertible
operator S € L(F*) such that R = S~1TS.

Proof. For x = (z1, 22,73, 74) € F4, define R, T € L(F*) by
2 0 0 0f |z 2 1 1 1] |x
o2 0 o] |z o2 11 |
Be=10 0 6 of |a5] ™ 7= 00 0 6 1| |
0 0 0 7| |xg 0 0 0 7| |24

By Theorem 5.32, R and T each have precisely 2,6,7 as eigenvalues and no
others. We claim T is diagonalizable, and we will use this fact to derive a
contradiction from which the result will follow. To see this, first notice

01 11
001 1
T*21_0041
000 5

Since T — 27 is in echelon form and has three pivots, dimrange(T — 2T) = 3,
and thus dim F(2,T) = dimnull(7 — 27) = 1. Similarly, we have

-4 1 1 1
0 —4 1 1

T=6I=\y o o 1]
0 0 0 1

so that 7' — 61 has three pivots as well and hence dim F(6,T) = 1. Lastly, notice

-5 1 1 1
0 -5 1 1

T=m=1y o -1 1|
0 0 0 0

and T — 61 also has three pivots and so dim E(7,T) = 1. Since dim E(2,T) +
dim E(6,T) + dim E(7,T) < dimF*, T is not diagonalizable by Theorem 5.41.

Now, by way of contradiction, suppose there exists an invertible S € £(F*)
such that R = S™'T'S. Then the list Sey,..., Se4 is a basis of F4. Notice

T(S’el) = S(Rel)
= 5(261)
= 2561,

and similarly we have

T(Sey) = 2Ses, T(Ses) =6Se3, and T(Ses) = T7Sey.
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Thus M (T, (Se1y..., 5’64)) is diagonal, a contradiction. Therefore, no such §
exists, and R and T are operators of the desired form. O

Problem 15

Suppose T € £(C3) is such that 6 and 7 are eigenvalues of T'. Furthermore,
suppose T does not have a diagonal matrix with respect to any basis
of C3. Prove that there exists (z,y,z) € C® such that T(z,y,z2) =
(17 + 8z, /5 + 8y, 21 + 8z).

Proof. By hypothesis, T is not diagonalizable. Hence by Theorem 5.44, 6 and 7
are the only eigenvalues of T'. In particular, 8 is not an eigenvalue. Thus

dim F(8,T) = dimnull(7T" — 81) = 0,

and hence T — 81 is surjective. So there exists (z,y,z) € C? such that (T —
81)(x,y,2) = (17,v/5,27). It follows

T(x,y,z) = (17,V5,27) + 8(z,y, 2)
= (17 + 82,5 + 8y, 21 + 82),

as was to be shown. O
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Chapter 6: Inner Product Spaces

Linear Algebra Done Right, by Sheldon Axler

A: Inner Products and Norms

Problem 1

Show that the function that takes ((z1,2), (y1,¥2)) € R2xXR? to |z1y1]+
|7292| is not an inner product on R2.

Proof. Suppose it were. First notice

<(17 1) + (_17 _1)7 (17 1)> = <(070)7 (17 1)>
=10-1]+|0-1]
= 0.

Next, since inner products are additive in the first slot, we also have

<(17 1) + (_1a _1)7 (1a 1)> = <(1a 1)7 (17 1)> + <<_1a _1)7 (L 1)>
=11+ -1+ (1) - 1+ [(=1) - 1]
=4.

But this implies 0 = 4, a contradiction. Hence we must conclude that the
function does not in fact define an inner product. O

,—l Problem 3 \

Suppose F = R and V' # {0}. Replace the positivity condition (which
states that (v,v) > 0 for all v € V) in the definition of an inner product
(6.3) with the condition that (v,v) > 0 for some v € V. Show that this
change in the definition does not change the set of functions from V x V
to R that are inner products on V.

Proof. Let V be a nontrivial vector space over R, let A denote the set of functions
V x V — R that are inner products on V' in the standard definition, and let B
denote the set of functions V' x V' — R under the modified definition. We will
show A = B.

Suppose (-,-); € A. Since V' # {0}, there exists v € V' —{0}. Then (v,v), > 0,
and so (-,-); € B. Thus A C B.

Conversely, suppose (-,-), € B. Then there exists some v € V such that



(v',v"), > 0. Suppose by way of contradiction there exists u € V' is such that
(u,u)y < 0. Define w = au + (1 — a)v’ for a € R. It follows

(w,w), = (au+ (1 — a)v’,au+ (1 — a)v'),
= (au, au), + 2(au, (1 — a)v’), + (1 — a)v’, (1 — a)v'),
= a®{u,u)y + 2a(1 — a){u,v')y + (1 — a)*(W', '),

Notice the final expression is a polynomial in the indeterminate «, call it p.
Since p(0) = (v',v"), > 0 and p(1) = (u,u), < 0, by Bolzano’s theorem there
exists o € (0,1) such that p(ag) = 0. That is, if w = agu + (1 — ap)v’, then
(w,w), = 0. In particular, notice o # 0, for otherwise w = v’, a contradiction
since (v’,v’), > 0. Now, since (w,w), = 0 iff w = 0 (by the definiteness condition
of an inner product), it follows

Qg — 1

Qo

Letting t = O‘g—gl, we now have

(u,u)y = (tv', 1),
= (' U/>2
>0,
where the inequality follows since ¢ € (—1,0) and (v’,v"), > 0. This contradicts

our assumption that (u,u), < 0, and so we have (-,-), € A. Therefore, B C A.
Since we’ve already shown A C B, this implies A = B, as desired. O

Problem 5

Let V be finite-dimensional. Suppose T € L(V) is such that ||Tv|| < ||v||
for every v € V. Prove that T — v/21 is invertible.

Proof. Let v € null(T — v/2I), and suppose by way of contradiction that v # 0.
Then
Tov—vV20=0 = Tv=V2
= [[V2v] < |||
= V2 [lof| < o]l
— V2<1,
a contradiction. Hence v = 0 and null(T — v/2I) = {0}, so that T — /21 is

injective. Since V is finite-dimensional, this implies T — /21 is invertible, as
desired. 0



Problem 7

Suppose u,v € V. Prove that |lau + bv|| = ||bu + av|| for all a,b € R if
and only if [|ul| = ||v]|.

Proof. (=) Suppose ||au + bv|| = ||bu + av|| for all a,b € R. Then this equation
holds when @ = 1 and b = 0. But then we must have |Ju|| = ||v||, as desired.
(«<=) Conversely, suppose ||u| = ||v]|. Let a,b € R be arbitrary, and notice

llaw + bv|| = {au + bv, au + bv)
= {au, au) + (au, bv) + (bv, au) + (bv, bv)
= a?||u))* + ab ((u,v) + (v, u)) + b*||v]|*. (1)
Also, we have

|bu + av|| = (bu + av, bu + av)
= (bu, bu) + {(bu, av) + (av, bu) + {av, av)

= 0%|ull* + ab ((u,v) + (v,u)) + a®|o]|*. (2)
Since ||u|| = ||v||, (1) equals (2), and hence |lau + bv|| = ||bu + av||. Since a,b
were arbitrary, the result follows. O

Problem 9
Suppose u,v € V and |lu|]| <1 and ||v|| < 1. Prove that

V1= elP /1= o] < 1= {u,0)].

Proof. By the Cauchy-Schwarz Inequality, we have [(u,v)| < |ju||||v||. Since
Jull <1 and [jv]| <1, this implies

0<1—ullllofl <1 —[{u,v)l,
and hence it’s enough to show

2 2
V1= TulPy/1 = ol < 1= Jullllo].

Squaring both sides, it suffices to prove

(1= 1l®) (1= el®) < (1 = el o

Notice
2
(= Julliel)* = (1= lul®) (1= o)) = Jull® = 2ol + o]
2
= (lull = o]}
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and hence inequality (3) holds, completing the proof. O



Problem 11

Prove that

1 1 1 1
16§w+b+c+@<a+b+c+d)

for all positive numbers a, b, ¢, d.

Proof. Define

v = (Va,Vb,vevd) and y= (ﬂﬁﬁﬂ)

Then the Cauchy-Schwarz Inequality implies

(a+b+c+d)< +b+ Ly ) (f\[+f\f+\f\[+f\f>

I+14+1+ 1
= 16,
as desired. O

,-' Problem 13 <

Suppose u, v are nonzero vectors in R%. Prove that

(u,v) = [lul[[[v]| cos 0,

where 6 is the angle between v and v (thinking of u and v as arrows with
initial point at the origin).

. v

Proof. Let A denote the line segment from the origin to u, let B denote the line
segment from the origin to v, and let C' denote the line segment from v to u.
Then A has length ||u|, B has length ||v|| and C has length ||u — v||. Letting
denote the angle between A and B, by the Law of Cosines we have

C? = A% + B> — 2BC cos¥,

or equivalently

lu = o]|* = [lu)® + [o]|* = 2[[ull|v]| cos6.
It follows
2/[ul[[v]| cos & = [[ul]* + [|v]|* = [lu - v||*
= (u,u) + {(v,v) — (u —v,u — V)
= (u,u) + (v,v) — ((u,u) — 2(u,v) + (v,v))
= 2(u, v).
Dividing both sides by 2 gives the desired result. O



,_l Problem 15

Prove that )

n n n b'2
doaiby | <D ga® ) | D02
j=1 J=1 =17

for all real numbers aq,...,a, and by, ..., b,.
Proof. Let

1 1
u:(al,ﬁag,...,\/ﬁan) and v = (bl’\/ibg""’\/ﬁb")'

Since (u,v) = > p_, arby, the Cauchy-Schwarz Inequality yields

(arbs + -+ + anbn)” < [lul? o]

by” b,
:<a12+2a22+~-~+nan2) b12—|—7—|—-~-—|— :L ,

as desired. O

Problem 17

Prove or disprove: there is an inner product on R? such that the associated
norm is given by

1(z; y)|| = max{]|z|, [y|}
for all (z,y) € R2.

Proof. Suppose such an inner product existed. Then by the Parallelogram
Equality, it follows

1(1,0) + (0, II* + [1(1,0) = (0, 1)[|* = 2 (II(LO)II2 +11(0, 1)II2) -

After simplification, this implies 2 = 4, a contradiction. Hence no such inner
product exists. O

,-' Problem 19 <

Suppose V is a real inner product space. Prove that

2 2
[+ 0" = flu =]

<ua ’U> = 4

for all u,v € V.




Proof. Suppose V is a real inner product space and let u,v € V. It follows

2 2 2 2
ol — fu—of? (el + 260+ 1ol”) = (ell® = 26, 0) + o))

4 4
4{u,v)
4
— (u,v),

as desired.

,—l Problem 20

Suppose V is a complex inner product space. Prove that

s+ 0* = llw = ol|* + [} + iv]|*i = |lu — év]|*

<U, U> = 4

for all u,v € V.

Proof. Notice we have

l +v]* = {u+ v,u+v)
2 2
= [lull” + {w, v) + (v, u) + [v]]

and

—Ju — v||2 =—(u—v,u—v)
= —[lull® + (u, v) + (v, u) — [Jv]*.
Also, we have
w4 iv||%i = i ((u+ v, u + iv))
—i (||u||2 + (uy i) + (v, ) + <iv,iv>)
= i (Il = ifus, v} + i, w) + o))
= iflul® + (u,v) = (v, u) + i[|]|?
and
—|Ju — iv||*i = —i ((u — v, u — iv))
= =i ([l = (w,iv) = (iv,u) + (iv,iv)
= =i (Jlul® + i, 0) = (v, ) + lo]))

Q2 2
= —iflull” + (u,v) = (v, u) —df|o]".



Thus it follows
o+ ol* = [Ju—ol* + [Ju+ )% — [Ju— iv]|* = 4{u, v).

Dividing both sides by 4 yields the desired result. O

Problem 23
Suppose Vi, ..., V,, are inner product spaces. Show that the equation

((ugy .oy tm)y (V1,0 Um)) = (U1, 01) + -+ + (U, V)

defines an inner product on V; X - -+ X V,,,.

Proof. We prove that this definition satisfies each property of an inner product
in turn.

Positivity: Let (v1,...,v,,) € Vi X ... V,,. Since (vg, vg) is an inner product
on Vj, for k=1,...,m, we have (v, v;) > 0. Thus

((v1y. e yvm), (U1, oy om)) = (v1,v1) + - + (U, Um) > 0.

Definiteness: First suppose ((vi,...,vm), (V1,...,vn)) =0 for (v1,...,vm) €
Vi x---xV,. Then
(v1,01) 4+« + (U, V) = 0.

By positivity of each inner product on Vi (for k = 1,...,m), we must have
(vg,vg)y > 0. Thus the equation above holds only if (v, v;) = 0 for each k,
which is true iff vy = 0 (by definiteness of the inner product on V). Hence
(v1,...,0m) = (0,...,0). Conversely, suppose (v1,...,v,) = (0,...,0). Then

<(U17 s 7UWL)7 (Ula s ,'Um)> = <U17U1> +oeeet <UWL7U?TL>
=(0,0) +---+(0,0)
=0+---4+0
=0,
where the third equality follows from definiteness of the inner product on each

Vi, respectively.
Additivity in first slot: Let

(U, -y Um), (U1, oy Om), (W1 ooy W) € VD X oo X V.
It follows
(1, -y tg)+ (1, om), (Wi, W)
= ((u1 + V1, U+ Um)y (W1, oy W)
(ur + v, wi) + -+ (U + Vi, Win)
(ur,wi) + (vi,w1) + -+ (U Win) + (V) W)
({ U

(Uty ey Um), (W1, ey W) + (V1 Om), (W1, W),



where the third equality follows from additivity in the first slot of each inner
product on Vj, respectively.
Homogeneity in the first slot: Let A € F and

(Ury. ey Um), (V1o Om) €V X oo X Vi
It follows

(Aug, .o Au), (v, .., o))

Aug,v1) + -+ (A, U
AMug,v1) + -+ AU, V)

= A((u1,v1) + -+ + (Um; V)
A

(U1, -y Um), (V1,5 V)Y,

Mut, oy tm), (V1,0 om)) =

where the third equality follows from homogeneity in the first slot of each inner
product on Vj, respectively.
Conjugate symmetry: Again let

(U1, Um), (V1o Om) €V X oo X Vi

It follows

((U1y ooy tm), (V15 0m)) = (ug,v1) (U, V)

+...+
U17U1>+"'+ <Um7um>
+..._|_

(U, Um)

(
(u1,v1)
(

(U1, 0m), (UL, - s Um)),

where the second equality follows from conjugate symmetry of each inner product
on Vi, respectively. O

Problem 24

Suppose S € L(V) is an injective operator on V. Define (-,-); by
(u,v); = (Su, Sv)

for u,v € V. Show that (-,-); is an inner product on V.

Proof. We prove that this definition satisfies each property of an inner product
in turn.

Positivity: Let v € V. Then (v,v); = (Sv, Sv) > 0.

Definiteness: Suppose (v,v) = 0 for some v € V. This is true iff (Sv, Sv) =0
(by definition) which is true iff Sv = 0 (by definiteness of (-,-)), which is true iff



v =0 (since S is injective).
Additivity in first slot: Let u,v,w € V. Then

(u+v,w); = (S(u+v), Sw)
= (Su + Sv, Sw)
= (Su, Sw) + (Sv, Sw)
= (u,

w); + (v, w),;.

Homogeneity in first slot: Let A € F and u,v € V. Then

Problem 25

Suppose S € L(V) is not injective. Define (-,-); as in the exercise above.
Explain why (-,-); is not an inner product on V.

Proof. If S is not injective, then (-,-), fails the definiteness requirement in the
definition of an inner product. In particular, there exists v # 0 such that Sv = 0.
Hence (v,v); = (Sv, Sv) = 0 for a nonzero v. O

Problem 27
Suppose u,v,w € V. Prove that

2 2 2 2
_Nw =" +lw —of"  flu— v

2 4

1
Hw - §(u + )




Proof. We have

2
1( +) 2 w— U + w—v
w——(u+v)|| =
2 2 2
2
_2w—u2+2 w—vl|? w—1u w—v
B 2 2 2 2
_w—uf® +fw—o* ||—uto]?
B 2 2
2 2 2
_Nw—ull” +w =" fu =]
2 4 7
where the second equality follows by the Parallelogram Equality. O

The next problem requires some extra work to prove. We first include a
definition and prove a theorem.

Definition. Suppose ||-||; and||-||, are norms on vector space V. We say||-||;
and ||-||, are equivalent if there exist 0 < Cy < Cy such that

Cillolly <llolly < Callvly
forallveV.
Theorem. Any two norms on a finite-dimensional vector space are equivalent.

Proof. Let V be finite-dimensional with basis ey, ..., e,. It suffices to prove that
every norm on V' is equivalent to the ¢;-style norm ||-||; defined by

[olly =lea]+ -+

for all v = ayeq + -+ ape, € V.

Let ||-|| be a norm on V. We wish to show Ci|v|; <|v|| < Cslv|, for all
v € V and some choice of Cy,Cs. Since this is trivially true for v = 0, we need
only consider v # 0, in which case we have

Cr <[lu]| < G, ()
where u = v/||v||;. Thus it suffices to consider only vectors v € V such that
lvll, = 1.

We will now show that ||-|| is continuous under [|-||; and apply the Extreme

Value Theorem to deduce the desired result. So let ¢ > 0 and define M =
max{ller]|,...,[len]|} and

€
5—M.

It follows that if u,v € V are such that |ju — v||; <6, then
llull =llvll| <[l — vl
< Mfju =l
< M§

:67
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and ||-|| is indeed continuous under the topology induced by ||-||;. Let S = {u €
V' |||lull; = 1} (the unit sphere with respect to ||-||;). Since S is compact and ||-||
is continuous on it, by the Extreme Value Theorem we may define

Cy = minjju|| and Cy = max||u].
u€S ueS

But now C; and Cs satisfy (*), completing the proof. O

,_l Problem 29

For u,v € V, define d(u,v) =|lu — v||.

(a) Show that d is a metric on V.

(b) Show that if V is finite-dimensional, then d is a complete metric on
V' (meaning that every Cauchy sequence converges).

(¢) Show that every finite-dimensional subspace of V' is a closed subset
of V' (with respect to the metric d).

Proof. (a) We show that d satisfies each property of the definition of a metric
in turn.
Identity of indiscernibles: Let u,v € V. It follows

d(u,v) =0 <= /(u—v,u—v) =0
— (u—v,u—v,=)0
<~ u—v=20
= u=wv.

Symmetry: Let u,v € V. We have

d(u,v) =|lu— ]|

=[|(=D(—2)|
=lv—ull
=d(v,u).

Triangle inequality: Let u,v,w € V. Notice

d(u,v) + d(v,w) =|u—v| +|v - w]|
<[ =)+ (v -w)
= lu, w|
= d(u,w).

(b) Suppose V is a p-dimensional vector space with basis eq,...,e,. Assume
{vg}72, is Cauchy. Then for € > 0, there exists N € Z* such that

11



(c)

,_l Problem 31

Use inner products to prove Apollonius’s Identity: In a triangle with
sides of length a, b, and ¢, let d be the length of the line segment from
the midpoint of the side of length ¢ to the opposite vertex. Then

|vm — v || < € whenever m,n > N. Given any v; in our Cauchy sequence,
we adopt the notation that «; 1,...,a; ), € F are always defined such that

v = ai,lel + -4 aiypep.

By our previous theorem, ||-|| is equivalent to ||-||; (where ||-||; is defined in
that theorem’s proof). Thus there exists some ¢ > 0 such that, whenever
m,n > N, we have

cljvm — ”nH1 <lom —vall <,

and hence
p
c E ‘am,i - aw—‘ <e.
i=1

This implies that {as ;}7°, is Cauchy in R for each ¢ = 1,...,p. Since R
is complete, these sequences converge. So let o; = limy_,o o ; for each 4,
and define v = a1e1 + - - + apep. It follows

|lv; — v|| =||(aj,1 — Br)er + -+ + (s — Bpley||

<laji —anlllexll + - +|ajp — apl|lep]| -

Since aj; — «; for ¢ = 1,...,p, the RHS can be made arbitrarily small by
choosing sufficiently large M € Z* and considering j > M. Thus {v;}72
converges to v, and V' is indeed complete with respect to||-||.

Suppose U is a finite-dimensional subspace of V', and suppose {ux}32, C U
is Cauchy. By (b), limg_o ux € U, hence U contains all its limit points.
Thus U is closed. O

1
a’>+ v = 502 + 242,

Proof. Consider a triangle formed by vectors v, w € R? and the origin such that
|lw|| = a, |v]| = ¢, and ||w — v|| = b. The identity follows by applying Problem 27
with v = 0. O

12



B: Orthonormal Bases

Problem 1

(a) Suppose § € R. Show that (cosf,sind), (—sinf,cosd) and
(cos@,sinf), (sin @, — cosf) are orthonormal bases of R2.

(b) Show that each orthonormal basis of R? is of the form given by one
of the two possibilities of part (a).

Proof.  (a) Notice
((cosB,sinB), (—sin b, cosh)) = —sinf cos f 4 sinf cos§ = 0
and

{(cos8,sinB), (sin @, — cos#)) = sinf cosf —sinf cosf = 0,

hence both lists are orthonormal. Clearly the three distinct vectors
contained in the two lists all have norm 1 (following from the identity
cos? @ +sin? @ = 1). Since both lists have length 2, by Theorem 6.28 both

lists are orthonormal bases.

(b) Suppose ey, ez is an orthonormal basis of R%. Since|le1|| =||ez| = 1, there

exist 6, p € [0,27) such that
e1 = (cosf,sinf) and ey = (cos¢,singp).
Next, since (e1,e2) = 0, we have

cos f cos p + sin O sin p = 0.

Since cos 0 cos ¢ = 3 (cos(0 + ¢) + cos(f — ¢)) and sin §sin ¢ = cos(6 — @) —

cos(f + ), the above implies
cos(f —p) =0

and thus ¢ = 6 + %r — nm, for n € Z. Since 6, € [0,27), this implies

e=0£7%5. If o =0+ 7, then

o (e (5 3) im0+ 7))

= (—sin#,cos ),

and if ¢ = 0 — 7, then

o (oe(-5) (o))

= (sin 6, — cos 9).

Thus all orthonormal bases of R? have one of the two forms from (a).

13



Problem 3

Suppose T € L(R3) has an upper-triangular matrix with respect to
the basis (1,0,0), (1,1,1), (1,1,2). Find an orthonormal basis of R3
(use the usual inner product on R3) with respect to which 7' has an
upper-triangular matrix.

Proof. Let v1 = (1,0,0),v3 = (1,1,1), and v3 = (1,1, 2). By the proof of 6.37, T
has an upper-triangular matrix with respect to the the basis ey, es, e3 generated
by applying the Gram-Schmidt Procedure to vy, ve, vs. Since ||v1]| =1, e1 = v;.
Next, we have

and
_ Uz — (vs,e1)er — (vs,ea)es
€3 =
|vs — (vs, ex)er — (vs, ea)es]|
(17 17 2) - <(17 17 2)a (1707 0)>(1a 070) - <(17 17 2)a (Oa %7 \}g)> (Oa %a %)
(1,1,2) = ((1,1,2),(1,0,0))(1,0,0) — <(1, 1,2), (0, %5, \}5)> (0.45.%) ’
3 1 1
o (17172) - (17070) -2 (Oa V2 ﬁ)
3 1 1
(1,1,2) = (1,0,0) = 3 (0, 45, 35 ) H
_ (0,33
(0,-1.3)|
0 V2 V2
- ) 2 ) 2 9
and we’re done. O
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,_l Problem 4

Suppose n is a positive integer. Prove that

1 cosxz cos2x cosnr sinx sin2x sin nx
m? ﬁ? ﬁ AR ] ﬁ ) ﬁ? ﬁ PR ] ﬁ

is an orthonormal list of vectors in C[—m, 7], the vector space of continuous
real-valued functions on [—, 7] with inner product

(f.9)= [ f@@)da

Proof. First we show that all vectors in the list have norm 1. Notice

And for k € ZT, we have

1
cos( ‘:\// s(kz)2dz
T
B l sm 2k‘x T
=\/z B
N N
Al |2
:17
and
sin(kx)

1 us
=4/= in(kx)2d
’ - / sin(kx)?dx

- 2[5 =)

T

15



so indeed all vectors have norm 1. Now we show them to be pairwise orthogonal.
Suppose j, k € Z are such that j # k. It follows from basic calculus

<Sili§?)’ Siljl;$)> _1 /_: sin(jz) sin(kz)dz

R

[k sin(jz) cos(k;cg) —_i—lZQCOS(jx) Sin(kx)} ’;

Il
o

1 s
;/ sin(jz) cos(kx)dx

1 [ksin(jz)sin k:x) + jcos(jx) cos(kx)]”

77 j2 — k2 .
73 j cos ]7r )cos(km)\  (jcos(—jm)cos(—km)

T 2 k2 72— k2

/ cos(jx) cos(kx)dx

jsin(jz) cos ksc) k cos(jx)sin(kx) "
J? — k2 _ﬂ

l/ sin(jz) cos(jx)dx
™

—T

l_cosQ(ng‘)]7T
5|

16



and

}

- cos( jw)}

sin(jx)
cos(J
0s(j

C

.
-
=

°s~sysp
3 3 3

Thus the list is indeed an orthonormal list in C[—m, 7].

,_l Problem 5

On P5(R), consider the inner product given by

(p,q) :/0 p(x)q(x) de.

Apply the Gram-Schmidt Procedure to the basis 1, z, 22 to produce an
orthonormal basis of Pa(R).

Proof. First notice ||1]| = 1, hence e; = 1. Next notice

Vg — <U1,€1>€1 =T — <l’»1>
1
:x—/ rdx
0
1
2

and

17



and therefore we have

To compute e3, first notice

1 1
1
vy — (vs,e1)e; — (v3, ea)es = 2 —/ 2% dx — [2\/5/ 22 (ac — 2) d;v] e
0 0

xQ—%— 2v/3 01<$3—x;> dx l2\/§<x—;)]

Il

8

(V]

|
w| =

|

—_

)
N
N

|
=
N———
N
=

|
| =
~_

1
2_ p—
=x x+6
and
-+ || = xQ—x—Ffa:Q—x—i—l
6 6’ 6
! 1
= /($2—$+) (xQ—x—i—) dx
0
1
T 1
_ 4 _ 943 224 )4
\//O(x x+3x 3—|—36)x
Y
5 2 9 6 36
1
- /180
_ 1
- 6v5
Thus 1
63—6\/5(x2—x+6),
and we’re done. O
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,_l Problem 7

Find a polynomial ¢ € P2(R) such that

for every p € P2(R).

Proof. Consider the inner product (p,q) = fol p(z)g(x) dr on P2(R). Define

¢ € L(P2(R)) by ¢(p) = p (%) and let ey, e2, e3 be the orthonormal basis found
in Problem 5. By the Riesz Representation Theorem, there exists ¢ € Pa(R)

such that p(p) = (p, q) for all p € Po(R). That is, such that

o(3) = [ ora

Equation 6.43 in the proof of the Riesz Representation Theorem fashions a way
to find ¢. In particular, we have

q(z) = p(e1) e1 + p(e2) e2 + p(e3) e3

1 1 1 1 1
=e1+2\/§<2—2)e2+6\/5<4—2+6>e3
—146v5 (=2 |6v5 (a2 — o+
12 6
3
= —15(22 —2) = =
(@ —o) -5,
as desired. 0

Problem 9

What happens if the Gram-Schmidt Procedure is applied to a list of
vectors that is not linearly independent?

Proof. Suppose vy, ...,v,, are linearly dependent. Let j be the smallest integer
in {1,...,m} such that v; € span(v1,...,v;—1). Then vy,...,v;_; are linearly
independent. The first j — 1 steps of the Gram-Schmidt Procedure will produce
an orthonormal list e1,...,e;_1. At step j, however, notice

vj — (vj,e)er — - — (vj,ej-1)ej-1 = v; — v; =0,

and we are left trying to assign e; to %, which is undefined. Thus the procedure
cannot be applied to a linearly dependent list. O
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Problem 11

Suppose (-,-); and (-, -), are inner products on V such that (v, w); =0
if and only if (v,w), = 0. Prove that there is a positive number ¢ such
that (v, w); = c(v,w), for every v,w € V.

Proof. Let v,w € V be arbitrary. By hypothesis, if v and w are orthogonal
relative to one of the inner products, they’re orthogonal relative to the other.
Hence any choice of ¢ € R would satisfy (v, w); = ¢(v, w),. So suppose v and w
are not orthogonal relative to either inner product. Then both v and w must
be nonzero (by Theorem 6.7, parts b and c, respectively). Thus (v,v),, (w,w),,
(v,v),, and (w,w), are all nonzero as well. It now follows

0= (v,w); —

(v,v),
= (v,w), — (v, w)y v,V
_< ) >2 <U,’U>l< ’ >2
= (v,w), — <U’U>2 v, W
*< ’ >2 <U,U>1< ’ >17




By a similar computation, notice

0= (v,w); = 72—+

= (v,w (v, w), w
<7 >2 <’U),’LU>2< 9 >2
= (v,u); = {2 ),
and thus )
(o), = o), 6

(v,v) <w,w>1-

(v,v)y (w,w),

Since v and w were arbitrary nonzero vectors in V', choosing ¢ = ||u||12 /||u||22
for any w # 0 guarantees (v,w),; = c(v,w), for every v,w € V, as was to be
shown. O

Problem 13

Suppose v1, ...,V is a linearly independent list in V. Show that there
exists w € V such that (w,v;) > 0 for all j € {1,...,m}.

Proof. Let W = span(vy,...,vy). Given v € W, let ay,...,a, € F be such
that v = aqvy + -+ - + @y Uy. Define ¢ € L(W) by

o) =a1+ -+ am.

By the Riesz Representation Theorem, there exists w € W such that ¢(v) =
(v,w) for all v € W. But then p(v;) =1 for j € {1,...,m}, and indeed such a
w € V exists. O
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,_l Problem 15

Suppose Cr([—1, 1]) is the vector space of continuous real-valued functions
on the interval [—1,1] with inner product given by

=/ 11f(x)g(x)dx

]). Let ¢ be the linear functional on Cg([—1,1])

for f7g € C]R([_lal)
= f(0). Show that there does not exist g € Cr([—1,1])

defined by o(f)
such that

e(f) = (f.9)
for every f € Cr([-1,1]).

Proof. Suppose not. Then there exists g € Cr([—1, 1]) such that

o(f) = (f,9)
for every f € Cr([—1,1]). Choose f(z) = z%g(z). Then f(0) = 0, and hence

/ f(@)g(z)dx = /_11 [zg(z))?dx = 0.

Now, let h(x) = xzg(z). Since h is continuous on [—1, 1], there exists an interval
[a,b] € [-1,1] such that h(z) # O for all x € [a,b]. By the Extreme Value
Theorem, h(z)? has a minimum at some m € [a,b]. Thus h(m)? > 0, and we
now conclude

0= /1 h(z)?*dx = /b h(x)?dx > (b— a)h(m)? > 0,

-1
which is absurd. Thus it must be that no such g exists. O

,-' Problem 17 \

For u € V|, let ®,, denote the linear functional on V' defined by

(@) (v) = (v,u)

forveV.

Show that if F = R, then ® is a linear map from V to V’.

Show that @ is injective.

Suppose F =R and V is finite-dimensional. Use parts (a) and (c)
and a dimension-counting argument (but without using 6.42) to
show that ® is an isomorphism from V to V'.

)

b) Show that if F = C and V # {0}, then ® is not a linear map.
)
)
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Proof.  (a) Suppose F =R. Let u,u’ € V and a € R. Then, for all v € V| we
have

By (v) = (v,u+ ) = (0,0) + (0,0) = By (v) + By (v)

and
Do (v) = (v, au) = @(v,u) = alv,u) = ad,(v).

Thus @ is indeed a linear map.

(b) Suppose F = C and V # {0}. Let u € V. Then, given v € V, we have
®;,(v) = (v,iu) = i(v,u),

whereas
1Py (v) = i(v, u).

Thus &;,, # i®,, and indeed ® is not a linear map, since is is not homoge-
neous.

(¢) Suppose u,u’ €V are such that ®,, = ®,,. Then, for all v € V, we have

D, (v) = Py (v)
= (v,u) = (v,u’)
= (v,u) — (v,u') =0

In particular, choosing v = u — u/, the above implies (u — v/, u — u’) = 0,
which is true iff u — v’ = 0. Thus we conclude u = v/, so that ® is indeed
injective.
(d) Suppose F =R and dimV = n. Notice that since ® : V < V', we have
dim V = dimnull ® + dimrange & = dim range ®.

Thus @ is surjective as well, and we have V = V', as was to be shown. [

C: Orthogonal Complements and Minimization
Problems

Problem 1

Suppose v1, . .

., Um € V. Prove that

{o1,. ., vm}t = (span(vr,. .., vm)) "
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Proof. Suppose v € {vy,...,v, . Then (v,v) = 0 for k = 1,...,m. Let
u € span(vy, . .., Uy,) be arbitrary. We want to show (v, u) = 0, since this implies
v € (span(vy,...,v,))T and hence {vy,...,v,}t C (span(vy,...,v,))t. To
see this, notice

(v,u) = (v, 0101 + -+ + QU

= ai1(v,v1) + -+ (v, V)

= O’
as desired. Next suppose v € (span(vy,...,v,))T. Since vq,..., v, are all
clearly elements of span(vi,...,vy), clearly v/ € {vi,...,v,}*, and thus
(span(vy, ..., vm))T € {v1,...,vm . Therefore we conclude {vy,...,v,}+ =
(span(vy, ..., vm))" . O
,—l Problem 3 \
Suppose U is a subspace of V' with basis uq,...,u,, and
UlyeooyUm, W1,y ..., Wn

is a basis of V. Prove that if the Gram-Schmidt Procedure is applied
to the basis of V above, producing a list eq,...,emn, f1,..., fn, then
€1,...,6en is an orthonormal basis of U and fi,..., f, is an orthonormal
basis of U™,

Proof. By 6.31, span(uq,...,uy,) = span(ey,...,ey,). Since ej,..., e, is an
orthonormal list by construction (and linearly independent by 6.26), e, ..., e,
is indeed an orthonormal basis of U. Next, since each of f; is orthogonal to
each e;, so too is each f; orthogonal to any element of U. Thus fy € U~ for
k=1,...,n. Now, since dimU+ = dimV — dimU = n by 6.50, we conclude
fi,-.., fn is an orthonormal list of length dim U+ and hence an orthonormal
basis of UL, O

Problem 5

Suppose V is finite-dimensional and U is a subspace of V. Show that
Py =1 — Py, where [ is the identity operator on V.

Proof. For v € V, write v = u 4+ w, where v € U and w € U+. It follows

Pyi(v) =w
=(u+w)—u
= Iv— Pyv,
and therefore Py = I — Py, as desired. O
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Problem 7

Suppose V is finite-dimensional and P € £(V) is such that P? = P and
every vector in null P is orthogonal to every vector in range P. Prove
that there exists a subspace U of V such that P = Py.

Proof. By Problem 4 of Chapter 5B, we know V = null P @ range P. Let v € V.
Then there exist v € null P and w € range P such that v = u + w and hence

Pv=Pu+w)
= Pu+ Pw
= Pw.

Let U = range P and notice that null P C null P; = U+ by 6.55e. Then
Py = Pw = Py(v), and so U is the desired subpace. O

Problem 9

Suppose T € L(V) and U is a finite-dimensional subspace of V. Prove
that U is invariant under T if and only if PyT Py = TPy.

Proof. (<) Suppose PyT Py = TPy and let u € U. Tt follows
TP, (u) = PyTPy(v)
and thus
Tu = PyTu.

Since range Py = U by 6.55d, this implies Tu € U. Thus U is indeed invariant
under 7.

(=) Now suppose U is invariant under 7" and let v € V. Since Py (v) € U, it
follows that TPy (v) € U. And thus PyT Py (v) = TPy(v), as desired. O

,_l Problem 11

In R?, let

U = span ((1,1,0,0),(1,1,1,2)) .

Find u € U such that Hu — (1,2, 3,4)” is as small as possible.
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Proof We first apply the Gram-Schmidt Procedure to v; = (1,1,0,0) and
= (1,1,1,2). This yields

Y

[[o]]

_ (17 17 Oa O)

(1, 1,0,0)|

- (5 799)

€1 =

and

V2 — <U27 61>61

eg = — 1
|v2 = (v2, ex)en |

(1,1,1,2)< (1,1,1,2),

(1,1,1,2)—< 1,1,1,2),

- (1717172) - % (%a %7070)
(]-7 11 172) - % (%7 %7010) H
_ (0,0,1,2)
1(0,0,1,2)

o5

Now, with our orthonormal basis ej, eq, it follows by 6.55(i) and 6.56 that
Hu - (1,2,3, 4)“ is minimized by the vector

u = PU(1,2,3,4)
= <(1,273,4)761>61 + <(1,27374),62>62

_3<110®+ﬂ@012)
_\/i \/57\/57 I \/ﬁ » 57 5

33 11 22
=(=,-,0,0 0,0, —, —
(2727 ) )+(7 757 5)
_(33u=
S \2'2"575 )
completing the proof. O
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,_l Problem 13

Find p € P5(R) that makes

/ |sin @ —p(a:)‘zdx

—T

as small as possible.

Proof. Let Cg[—m, ] denote the real inner product space of continuous real-
valued functions on [—7, 7| with inner product

(fo)= [ @,

and let U denote the subspace of Cr[—, 7] consisting of the polynomials with
real coefficients and degree at most 5. In this inner product space, observe that

Hsinx —p(x)” = \//_Tr (sinz —p(m))zdm = \//_W |sinx—p(x)|2dx.

Notice also that \/ffﬂ|sinx—p(x)|2dx is minimized if and only if

ffﬂ‘sinx —p(x)‘zda: is minimized. Thus by 6.56, we may conclude p(z) =

Py (sinx) minimizes [7_|sinz — p(x)‘2 dx. To compute Py (sinz), we first find
an orthonormal basis of Cg[—, 7] by applying the Gram-Schmidt Procedure to

the basis 1,2, 22, 2%, 2%, 2° of U. A lengthy computation yields the orthonormal
basis
1
€1 = \/72771_
3q
€2= "3
\/g (71'2 — 3x2)
€= 95/2
\/g (37T2£L' — 5:103)
€4 =" 27 7/2
3 (37* — 307m2a% 4 352%)
€ = 8v/279/2
12—1 (157r4m — 707223 + 63355)
€ =~ Snll/2 :
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Now we compute Py (sinz) using 6.55(i), yielding

_ 105 (1485 — 15372 + 7* 315 (1155 — 12572 + 74
Py (sinz) = ( 6 ) x— ( o ) z3
693 (945 — 10572 + 74)
8710 z,

which is the desired polynomial.
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Chapter 7: Operators on Inner Product Spaces

Linear Algebra Done Right, by Sheldon Axler

A: Self-Adjoint and Normal Operators

Problem 1
Suppose n is a positive integer. Define T' € L(F™) by

T(z1y..oy2n) = (0,21, .., Zn_1)-

Find a formula for 7% (21, ..., zp).

Proof. Fix (y1,...,yn) € F™. Then for all (z1,..., 2,) € F", we have

(1o 2), T (1, - yn)) = (T(21,- -+ 20), (Y1, -5 )
= <(0azl7"~7zn71)7(y1a" 7yn)>
=Z21Y2 + 22Yz + 0+ Zn—1Yn

= <(Zl7 sy Zn—1, ZTL)? (yQa <oy Yn, 0)>
Thus T™* is the left-shift operator. That is, for all (z1,...,2,) € F", we have
T (21, 2n) = (22,...,2,,0),

as desired. 0

Problem 2

Suppose 7' € L(V) and A € F. Prove that A is an eigenvalue of 7' if and
only if A is an eigenvalue of T™.

Proof. Suppose A is an eigenvalue of T. Then there exists v € V such that
Tv = M. It follows
A is not an eigenvalue of T <= T — AI is invertible
— ST -X)=(T-X)S=1I
for some S € L(V)
= ST -AN)"=(T-\)"'S*=1I"
for some S* € L(V)
<= (T — AI)* is invertible
<= T* — Al is invertible
<

X is not an eigenvalue of T*.



Since the first statement and the last statement are equivalent, so too are their
contrapositives. Hence A is an eigenvalue of T' if and only if A is an eigenvalue
of T, as was to be shown. O

Problem 3

Suppose T' € L(V) and U is a subspace of V. Prove that U is invariant
under 7T if and only if U~ is invariant under 7%.

Proof. (=) First suppose U is invariant under T, and let * € U+. For any
u € U, it follows

(T*z,u) = {(x, Tu)
=0,

where the second equality follows since Tu € U (by hypothesis). Thus T*z € U+
for all z € UL. That is, U~ is invariant under T*.

(<) Now suppose U~ is invariant under 7%, and let y € U. For any v/ € U™,
it follows

Ty, = (9, ")
= O7
where the second equality follows since T*u’ € U~ (by hypothesis). Thus Ty € U
for all y € U. That is, U is invariant under 7', completing the proof. O
,_l Problem 5
Prove that

dimnull 7" = dimnull7 4+ dim W — dim V'
and
dimrange T* = dimrange T

for every T € L(V, ).

Proof. Let T € L(V,W). Notice

dimnull T* = dim (range 7)™
=dim W — dimrangeT
=dimW +dimnull T — dim V,



where the first equality follows by 7.7(a), the second equality follows by 6.50,
and the third equality follows by the Fundamental Theorem of Linear Maps.
Next notice

dimrange 7% = dim (null 7)*
=dimV —dimnull T
= dimrange T,

where the first equality follows by 7.7(b), and the second and third equalities
follow again by the same theorems above. U

Problem 7

Suppose S, T € L(V) are self-adjoint. Prove that ST is self-adjoint if and
only if ST =TS.

Proof. (=) Suppose ST is self-adjoint. We have
ST = (ST)*
=T*S*
=TS8,

where the second equality follows by 7.6(e).
(<) Conversely, suppose ST = T'S. Tt follows

(ST)" = (TS)*
= S§*T*,

where the second equality again follows by 7.6(e), completing the proof. O

Problem 9

Suppose V is a complex inner product space with V' 2 {0}. Show that
the set of self-adjoint operators on V' is not a subspace of L(V).

Proof. Let A denote the set of self-adjoint operators on V', and suppose T' €
A. By 7.6(b), notice (iT)* = —iT*, so that A is not closed under scalar
multiplication. Thus A is not a subspace of L(V). O

Problem 11

Suppose P € L(V) is such that P2 = P. Prove that there is a subspace
U of V such that P = Py if and only if P is self-adjoint.




Proof. (=) First suppose there is a subspace U C V such that P = Py, and let
v1,v9 € V. It follows

and thus P = P*.

(<) Conversely, suppose P = P*. Let v € V. Notice P(v—Pv) = Pv—P?v =
0, and hence v — Pv € null P. By 7.7(c), we know null P = (range T*)". By
hypothesis, P is self-adjoint, and hence we have v — Pv € (range T)L. Notice

we may write

v=Pv+ (v— Pv),
where Pv € range P and v — Pv € (range T)L. Let U = range P. Since the
above holds for all v € V', we conclude P = Py, and the proof is complete. [J

Problem 13

Give an example of an operator T' € £(C*) such that T is normal but
not self-adjoint.

Proof. Let T be the operator on C* whose matrix with respect to the standard
basis is

2 -3 00
3 2 00
0 0 0 O
0 0 0 O

We claim T is normal and not self-adjoint. To see that T' is not self-adjoint,
notice that the entry in row 2, column 1 does not equal the complex conjugate
of the entry in row 1 column 2.

Next, notice

2 -3 00 2 3 00 13 0 0 0

oS3 2 0 0 (-3 2 0 0 |0 13 0 0
M(TT") = 0 0 00 0O 0 0 O0f |0 0 0O
0 0 00 0 0 0 O 0 0 0 0



and

2 3 002 =3 00 13 0 0 0

o |3 2 0 0|3 2 0 O0f [0 13 0 O
M(T"T) = 0 00 0|0 O 0O [0 0 0 O’

0 0 0 o0 0O 0 O 0 0 0 O

and hence TT* and T*T have the same matrix. Thus T7T* = T*T, and T is
normal. O

,—l Problem 15

Fix u,z € V. Define T € L(V) by

Tv = (v,u)x
for every v € V.

(a) Suppose F = R. Prove that T is self-adjoint if and only if u, z is
linearly dependent.

(a) Prove that T is normal if and only if u, z is linearly dependent.

Proof. We first derive a useful formula for T* which we’ll use in both (a) and
(b). Let wy,ws € V and notice

and thus T*wy = (wsy,x)u. Since we was arbitrary, we may rewrite this as
T*v = (v,z)u for all v € V.

(a) (=) Suppose T is self-adjoint. Then we have
(v,wyx — (v,x)u=Tv—T*v=0
for all v € V. In particular, we have
(u,uwyx — (u, z)u = 0.

We may assume both u and z are nonzero, for otherwise there is nothing
to prove. Hence (u,u) # 0, which forces (u, z) to be nonzero as well, and
thus the equation above shows u, z is linearly dependent.

(<) Conversely, suppose u,z is linearly dependent. We may again



assume both v and x are nonzero, for otherwise T' = 0, which is self-adjoint.
Thus there exists a nonzero a € R such that u = az. It follows

Tv = (v,u)x

1
= <U,ozx>au

and thus T is self-adjoint, completing the proof.

(b) (=) Suppose T is normal and let v € V. It follows

(v, wyz, xyu = T*({(v, u)x)
=T*Tv
=TT"v

We may assume both u and x are nonzero, for otherwise there is nothing to
prove. Since the above holds for v = u, we may conclude ({v,u)x, z) # 0,
which also forces ((v, x)u,u) # 0. Thus u, x is linearly dependent.

(<) Conversely, suppose u,z is linearly dependent. We may again
assume both v and z are nonzero, for otherwise T' = 0, which is normal.
Thus there exists a nonzero a € R such that v = ax. It follows

TTv =T"({v,u)x)

= ((v,u)x, x)u

1 1
=( {(v,az)—u, —u ) azx
aa

= ((v, x)u, u)x
=T({v,z)u)
=TT v,

and thus 7' is normal, completing the proof. O

Problem 16
Suppose T' € L(V) is normal. Prove that

range T = range T™.




Proof. Suppose T € L(V) is normal. We first prove null7 = null T*. It follows

venllT <= Tv=0
— [T =0
<~ || T*v|]| =0
— T"'v=0
<~ v el T
where the third equivalence follows by 7.20, and indeed we have null T = null T*.

This implies (null7)* = (null 7%)+, and by 7.7(b) and 7.7(c), this is equivalent
to range T* = range T, as desired. O

Problem 17
Suppose T' € L(V) is normal. Prove that

null 7% = null7 and range TF = range T

for every positive integer k.

Proof. To show null T% = null T, we first prove null 7% = null T**! for all k € Z+.
Let m € Z*. If m = 1, there’s nothing to prove, so we may assume m > 1.
Clearly, if v € nullT™, then v € null7™*!, and hence null7™ C null7™+!.
Next, suppose v € null T+, Then T(T™v) = 0, and hence T™v € nullT. By
Problem 16, this implies 7™v € null 7%, and by 7.7(a) we have 7™ € (rangeT)".
Since of course T™v € range T as well, we must have T v = 0. Thus v € null 7™,
and therefore null 7™%! C null7™. Thus null7™ = null7™*!. Since m was
arbitrary, this implies null 7% = null T for all k € ZT, as desired.

Now we will show range 7% = rangeT for all k € ZT. Let n € Z+. If n = 1,
there’s nothing to prove, so we may assume n > 1. Suppose w € rangeT™.
Then there exists v € V such that T"v = w, and hence T(T" v) = w, so that
w € range T as well and we have range T™ C rangeT'. Next, notice

dimrange 7" = dim V — dimnull 7"
=dimV —dimnull T
= dimrangeT,
where the second equality follows from the previous paragraph. Since rangeT™
is a subspace of range T of the same dimension, it must equal range T'. And since

n was arbitrary, we conclude range T% = range T for all k € Z*, completing the
proof. U

Problem 19

Suppose T € L(C?) is normal and T(1,1,1) = (2,2,2). Suppose
(21,22,23) € nullT. Prove that z; + 22 + 23 = 0.




Proof. By Problem 16, null T = null 7%, hence T™*(z1, 22, z3) = 0. Therefore, we
have

2(z1 + 22 + 23) (2,2,2), (21, 22,23))
T(l 1 1), (21, 22, 23))
1,1,1),T* (21, 22, 23))

(
(1,1,1),(0,0,0))

(
=

(
(
0

b
and so z1 + z2 + 23 = 0, as was to be shown. O

,_l Problem 21

Fix a positive integer n. In the inner product space of continuous real-
valued functions on [—7, 7] with inner product

(f.9)= [ f@@)da

let
V = span(1, cos x, cos 2z, . .., cos nx, sinx, sin 2z, . . ., sinnx).

(a) Define D € L(V) by Df = f'. Show that D* = —D. Conclude
that D is normal but not self-adjoint.

(b) Define T' € L(V) by Tf = f”. Show that T is self-adjoint.

. v

Proof. From Problem 4 of 6B, recall that

1 cosxz cos2x cosnr sinx sin2x sinnx
\/%7 ﬁ’ ﬁ PR | ﬁ 9 ﬁ7 ﬁ 9 \/7?

is an orthonormal list, and hence it is an orthonormal basis of V.

(a) For k=1,...,n, define

cos(kx sin(kx
[ \}7? ) and fk = \57? )
Notice
ksin(k k k
Dep = _FSnE2) e and Dy, = FoostEr) o

NG

N



and thus, for any v, w € V, it follows

(v, D*w) = (Dv, w)
1 1 -
- <D (< \/ﬂ> m+kzl v, ex)er + (v flc>fk)) w>

|

:—Zk<1} ek fk, +Zk fk €k, W

M:

(—k(v, ex) fr + kv, fr)ex) ,w>

o~
Il
-

||
M:

k(w, fi){v, ek +Zk w, ex) (v, fi)

k=1 k=1
— k(w ek kafk ’Uek
k=1 k=1
n n
= <U,Zk<w,ek>fk> - <’U,Z (w, fr) >
k=1 k=1
= <U,Z (k(w, ex) fr — k(w fk>ek)>
k=1
={(v,-D <1U, 1> L + i ((w, ex)er + (w, fi) fr)
Ver/ V2
= (v, —Dw),
and thus D* = —D, showing that D is not self-adjoint. Moreover, notice

that this implies
DD*=D(-D)=-DD = (D*)D = D*D,
so that D is normal, completing the proof.
(b) Notice T'= D?, and hence
T* = (DD)* = D*D* = (-D)(-D) = D*=T.

Thus T is self-adjoint. O



B: The Spectral Theorem

Problem 1

True or false (and give a proof of your answer): There exists T € L(R?)
such that T is not self-adjoint (with respect to the usual inner product)
and such that there is a basis of R? consisting of eigenvectors of T'.

Proof. The statement is true. To see this, consider the linear operator T defined
by its action on the basis (1,0, 0),(0,1,0), (0,1,1):

T(1,0,0) = (0,0,0)
T(0,1,0) = (0,0,0)
T(0,1,1) = (0,1,1).

Notice T'(1,0,0) = 0- (1,0,0) and T(0,1,0) = 0- (0,1,0), so that (1,0,0) and
(0,1,0) are eigenvectors with eigenvalue 0. Also, (0,1,1) is an eigenvector
with eigenvalue 1. Thus (1,0,0),(0,1,0), (0,1,1) is a basis of R3 consisting of
eigenvectors of T. That T is not self-adjoint follows from the contrapositive of
7.22, since (0,1,0) and (0,1, 1) correspond to distinct eigenvalues yet they are
not orthogonal. O

Problem 3

Give an example of an operator T' € L£(C?) such that 2 and 3 are the
only eigenvalues of T and T2 — 5T + 61 # 0.

Proof. Define T € L(C?) by its action on the standard basis:

T€1 = 262
Tey = e1 + 2e9
T€3 = 363.
Then
2 1 0
MT) =0 2 0
0 0 3

By 5.32, the only eigenvalues of T are the entries on the diagonal: 2 and 3. Now

10



notice

(T2 — 5T + 61)es = (T — 31)(T — 21 )es
= (T — 31)(Tes — 2¢5)
= (T —3I)(e1 + 2e2 — 2e2)
= (T —-3DNex
=Te — 3ex

= —61’

so that T2 — 5T 4+ 61 # 0. Thus T is an operator of the desired form. O

,_l Problem 5

Suppose F = R and T' € £L(V). Prove that T is self-adjoint if and only
if all pairs of eigenvectors corresponding to distinct eigenvalues of 1" are
orthogonal and

where A1, ..., Ay, denote the distinct eigenvalues of T.

Proof. (<) Suppose all pairs of eigenvectors corresponding to distinct eigenvalues
of T" are orthogonal and

where \1,..., A\, denote the distinct eigenvalues of T. By 5.41, V has a basis
consisting of eigenvectors of T'. Dividing each element of the basis by its norm
produces an orthonormal basis consisting of eigenvectors of T. By the Real
Spectral Theorem, T is self-adjoint, as desired.

(=) Conversely, suppose T is self-adjoint as suppose vy,vy € V are eigen-
vectors of T corresponding to eigenvalues A1, As € R such that A; # Ao. It
follows

0= <TU1, U2> — <U1, TU2>

= (A1, v2) — (v1, A2v2)
= A1 (v1, v2) — Ag{v1, v2)
= )\1<v1, va) — Ag{v1, va)
= (A1 = A2)(v1,v2).

Since A; # Ag, it must be that (vy,v9) = 0. Thus all pairs of eigenvectors
corresponding to distinct eigenvalues of T" are orthogonal. By the Real Spectral
Theorem, since T is self-adjoint, T is diagonalizable. And by 5.34, this implies

V=EM,T)® --®E\,T),

where A1, ..., A\, denote the distinct eigenvalues of T', completing the proof. [

11



Problem 6

Prove that a normal operator on a complex vector space is self-adjoint if
and only if all its eigenvalues are real.

Proof. Let T be a normal operator on a complex vector space, V.

(=) Suppose T is self-adjoint. Then by 7.13, all eigenvalues of T are real.

(<) Conversely, suppose all eigenvalues of T are real. By the Complex
Spectral Theorem, there exists an orthonormal basis vy, ..., v, of V consisting
of eigenvectors of T'. Thus there exist A1,..., A, € R such that Tvy = Apvi for
k=1,...,n. Thus M(T) is diagonal, and all entries along the diagonal are real.
Therefore M(T) equals the conjugate transpose of M(T'). By 7.10, this implies
M(T) = M(T*), and we conclude T' = T*, so that T is indeed self-adjoint. [

Problem 7

Suppose V is a complex inner product space and T' € £(V) is a normal
operator such that 7% = T8. Prove that T is self-adjoint and T2 = T.

Proof. By the Complex Spectral Theorem, since 7" is normal, V' has an orthonor-
mal basis vy, ...,v, consisting of eigenvectors of T. Let A\1,..., A, € C be the
corresponding eigenvalues, so that

T’Uk = >\k'Uk

for k =1,...,n. Repeatedly applying T to both sides of the equation above 8
times yields

Tgvk = ()\k)g’l)k and TS’Uk = ()\k)s’l)k.

Since T? = T®, we conclude (A\;)? = (Ar)® and thus \x € {0,1}. In particular,
all eigenvalues of T are real, hence by Problem 6 we have that T is self-adjoint.
To see that T2 = T, notice

T2’Uk = (>\k)2vk
= )\kvk
= Tvk,

where the second equality follows from the fact that Ax € {0,1}, and the proof
is complete. O

Problem 9

Suppose V is a complex inner product space. Prove that every normal
operator on V has a square root. (An operator S € L(V) is called a
square root of T € L(V) if S2=T.)
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Proof. Suppose T € L(V) is normal. By the Complex Spectral Theorem,

V' has an orthonormal basis vy, ...,v, consisting of eigenvectors of T. Let
A1, .-, Ay € C be the corresponding eigenvalues, so that
Tvk = >\k'Uk

for k=1,...,n. Define S € L(V) by its action on this basis:

Svr = vV Avr,

choosing the complex square root v/Ax by some definite rule. Let v € V. Then
there exist aq,...,a, € C such that v = ajv; + - - - + apv,. It follows

Sy = Sz(alvl + ot o)

=9 (oq VAo 4+ + an\/)\nvn)
= a1 A\v1 + -+ ap AU

= Tvy + -+ a,To,
=T(oqv1+ -+ apoy)

=Tw.

Thus S? = T, and indeed T has a square root, as was to be shown. O

Problem 11

Prove or give a counterexample: every self-adjoint operator on V has a
cube root. (An operator T' € L(V) is called a cube root of T' € L(V) if
S3=T.)

Proof. Suppose T € L(V) is self-adjoint. Regardless of whether F =R or F = R,

both Spectral Theorems imply that V has an orthonormal basis vy,...,v,
consisting of eigenvectors of T. By 7.13, all eigenvalues of T are real. So let
A1, .-, Ap € R be the eigenvalues corresponding to vy, ..., v,, so that

T’Uk = )\kvk

for k=1,...,n. Define S € L(V) by its action on this basis:
S’Uk = ()\k)%’v}€7

Let v € V. Then there exist aq,...,a, € C such that v = ayvi + - + a,v,. It
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follows

SB’U = 53(041111 + -+ anvn)
=5? (oq()\l)%vl +--+ ozn()\n)%vn)
=S (al()\l)%vl 4t an()\n)%vn)
= Avr £ F anAntn
=aTvy + -+ a,Tvu,
=T(a1v1 + -+ apvp)
=Tw.

Thus S = T, and indeed T has a cube root. Thus, all self-adjoint operators on
a finite-dimensional inner product space have a cube root. O

Problem 13

Give an alternative proof of the Complex Spectral Theorem that avoids
Schur’s Theorem and instead follows the pattern of the proof of the Real
Spectral Theorem.

Proof. Suppose (c) holds, so that T has a diagonal matrix with respect to some
orthonormal basis of V. The matrix of T* (with respect to the same basis) is
obtained by taking the conjugate transpose of the matrix of T'; hence T also
has a diagonal matrix. Any two diagonal matrices commute; thus 7" commutes
with 7%, which means that 7" is normal. That is, (a) holds.

We will prove that (a) implies (b) by induction on dim V. For our base case,
suppose dim V' = 1. Since 5.21 guarantees the existence of an eigenvector of T,
clearly (b) is true in this case. Next assume that dim V' > 1 and that (a) implies
(b) for all complex inner product spaces of smaller dimension.

Suppose (a) holds, so that T is normal. Let u be an eigenvector of T' with
|lu]| = 1, and set U = span(u). Clearly U is invariant under 7. By Problem
3 of 7A, this implies that UL is invariant under T* as well. But of course
T* is also normal, and since dim U+ = dimV — 1, our inductive hypothesis
implies that there exists an orthonormal basis of U~ consisting of eigenvectors
of T |y+. Adjoining u to this basis gives an orthonormal basis of V' consisting of
eigenvectors of T, completing the proof that (a) implies (b).

We have proved that (c¢) implies (a) and that (a) implies (b). Clearly (b)
implies (c¢), and the proof is complete. O
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,_l Problem 15

Find the value of  such that the matrix
1 1 0
0 1 1
1 0 =z

is normal.

Proof. Let M be the above matrix. We wish to find z € F such that MM* =
M*M. Notice

1 1 0] (1 0 1
MM =10 1 1 1 1 0
_1 0 2| [0 1 =z
2 1 1
=11 2 T
_1 x 1422
and
1 0 1 1 1 0
M*M=|1 1 01 1
_0 1 z| |1 0 =z
(2 1 T
=11 2 1
K 1 1422
Thus it must be that x = 1. O

C: Positive Operators and Isometries

Problem 1

Prove or give a counterexample: If T € L(V) is self-adjoint and there
exists an orthonormal basis e, ..., e, of V such that (Te;,e;) > 0 for
each j, then T is a positive operator.

Proof. The statement is false. To see this, let eq, es € R? be the standard basis
and consider 7' € £(R?) defined by

T€1 = e

T62 = —€9.
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Then

M=y Y

and since M(T) is diagonal, 7' must be self-adjoint by the Real Spectral Theorem.
But notice that the basis

v = (61 +€2)

V2 = (61 - 62)

Sl Sl

is orthonormal and that
(Tvy,v1) = (vg,v1) =0
and
(Tva,v9) = (v1,v9) = 0.
Thus T is of the desired form, but 7" is not a positive operator, since
(Teg,eq) = (—ea,e0) = —1,

completing the proof. O

Problem 3

Suppose T is a positive operator on V and U is a subspace of V invariant
under T'. Prove that T |y€ L(U) is a positive operator on U.

Proof. That T |y is self-adjoint follows by 7.28. Let u € U. Then, since
(Tl (u),u) = (Tu,u) >0,

T |u is a positive operator on U, as was to be shown. O

Problem 5

Prove that the sum of two positive operators on V' is positive.

Proof. Let S,T € L(V) be positive operators. Notice
(S+T)y =S"+T*=5+T,
hence S + T is self-adjoint. Next, let v € V. It follows

((S+T)v,v) = {(Sv+Tv,v)
= (Sv,v) + (Tv,v)
>0,

and thus S + T is a positive operator as well. O

16



,_l Problem 7

Suppose T is a positive operator on V. Prove that T is invertible if and
only if

(Tv,v) >0

for every v € V with v # 0.

Proof. Let T be a positive operator on V.

(=) Suppose T is invertible and let v € V'\ {0}. Since T is a positive operator,
by 7.35(e) there exists R € £(V) such that T = R2. Since T is invertible, so is
R. In particular, R is injective, and thus Rv # 0. It follows

(Tw,v) = (R*v)
= (Rv, R™v)
= (Rv, Rv)
=||Ro|?
>0,

completing the proof in one direction.

(<) Now suppose (Tw,v) > 0 for every v € V' \ {0}. Assume by way of
contraction that 7' is not invertible, so that there exists w € V' \ {0} such that
Tw = 0. But then (Tw,w) = (0,w) = 0, a contradiction. Thus T must be

invertible, completing the proof. O

Problem 9
Prove or disprove: the identity operator on F2? has infinitely many self-
adjoint square roots.
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