
Chapter 1: Vector Spaces

Linear Algebra Done Right, by Sheldon Axler

A: R and C
Problem 1

Suppose a and b are real numbers, not both 0. Find real numbers c and
d such that

1

a+ bi
= c+ di

Proof. We have

1

a+ bi
=

a− bi
a2 + b2

=
a

a2 + b2
− b

a2 + b2
i,

and hence let

c =
a

a2 + b2
, d = − b

a2 + b2
,

and we’re done.

Problem 3

Find two distinct square roots of i.

Proof. Suppose a, b ∈ R are such that (a+ bi)2 = i. Then

(a2 − b2) + (2ab)i = i.

Since the real and imaginary part of both sides must be equal, respectively, we
have a system of two equations in two variables

a2 − b2 = 0

ab =
1

2
.

The first equation implies b = ±a. Plugging b = −a into the second equation
would imply −a2 = 1/2, which is impossible, and hence we must have a = b.
But this in turn tells us a = ±1/

√
2, and hence our two roots are

±
(

1√
2

)
(1 + i),

as desired.
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Problem 5

Show that (α+ β) + λ = α+ (β + λ) for all α, β, λ ∈ C.

Proof. Suppose α = a1 + a2i, β = b1 + b2i, and λ = c1 + c2i for ak, bk, ck ∈ R,
where k = 1, 2. Then

(α+ β) + λ =
[
(a1 + a2i) + (b1 + b2i)

]
+ (c1 + c2i)

=
[
(a1 + b1) + (a2 + b2)i

]
+ (c1 + c2i)

=
[
(a1 + b1) + c1

]
+
[
(a2 + b2) + c2

]
i

=
[
a1 + (b1 + c1)

]
+
[
a2 + (b2 + c2)

]
i

= (a1 + a2i) +
[
(b1 + c1) + (b2 + c2)i

]
= (a1 + a2i) +

[
(b1 + b2i) + (c1 + c2)i

]
= α+ (β + λ),

as desired.

Problem 7

Show that for every α ∈ C, there exists a unique β ∈ C such that
α+ β = 0.

Proof. Suppose α = a1 + a2i for some a1, a2 ∈ R, and define β = −a1 − a2i.
Then

α+ β = (a1 + a2i) + (−a1 − a2i)
= (a1 − a1) + (a2 − a2)i

= 0 + 0i

= 0,

proving existence. To see that β is unique, suppose λ ∈ C such that α+ λ = 0.
Then

λ = λ+ (α+ β) = (λ+ α) + β = 0 + β = β,

and thus β is unique.

Problem 9

Show that λ(α+ β) = λα+ λβ for all λ, α, β ∈ C.
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Proof. Suppose α = a1 + a2i, β = b1 + b2i, and λ = c1 + c2i for ak, bk, ck ∈ R,
where k = 1, 2. Then

λ(α+ β) = (c1 + c2i)
[
(a1 + a2i) + (b1 + b2i)

]
= (c1 + c2i)

[
(a1 + b1) + (a2 + b2)i

]
=
[
c1(a1 + b1)− c2(a2 + b2)

]
+
[
c1(a2 + b2) + c2(a1 + b1)

]
i

=
[
(c1a1 + c1b1)− (c2a2 + c2b2)

]
+
[
(c1a2 + c1b2) + (c2a1 + c2b1)

]
i

=
[
(c1a1 − c2a2) + (c1b1 − c2b2)

]
+
[
(c1a2 + c2a1) + (c1b2 + c2b1)

]
i

=
[
(c1a1 − c2a2) + (c1a2 + c2a1)i

]
+
[
(c1b1 − c2b2) + (c1b2 + c2b1)i

]
= (c1 + c2i)(a1 + a2i) + (c1 + c2i)(b1 + b2i)

= λα+ λβ,

as desired.

Problem 11

Explain why there does not exist λ ∈ C such that

λ(2− 3i, 5 + 4i,−6 + 7i) = (12− 5i, 7 + 22i,−32− 9i).

Proof. Suppose such a λ ∈ C exists, say λ = a+ bi for some a, b ∈ R. Then

(a+ bi)(2− 3i) = 12− 5i

(a+ bi)(5 + 4i) = 7 + 22i

(a+ bi)(−6 + 7i) = −32− 9i,

which is equivalent to

(2a+ 3b) + (−3a+ 2b)i = 12− 5i (1)

(5a− 4b) + (4a+ 5b)i = 7 + 22i (2)

(−6a− 7b) + (7a− 6b)i = −32− 9i. (3)

For each equation above, the real part of the LHS must equal the real part of
the RHS, and similarly for their imaginary parts. In particular, the following
two equations hold by comparing the real parts of Equations (1) and (3)

2a+ 3b = 12

−6a− 7b = −32.

Multiplying the first equation by 3 and adding it to the second, we find b = 2.
Substituting this value back into the first equation yields a = 2. However,
comparing the imaginary parts of Equation (3) tells us we must have

7a− 6b = −9,

a contradiction, since a = 3 and b = 2 yields 7a− 6b = 9. Thus no such λ ∈ C
exists, as was to be shown.
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Problem 13

Show that (ab)x = a(bx) for all x ∈ Fn and all a, b ∈ F.

Proof. We may write x = (x1, . . . , xn) for x1, . . . , xn ∈ F. It follows

(ab)x =
(
(ab)x1, . . . , (ab)xn

)
=
(
a(bx1), . . . , a(bxn)

)
= a (bx1, . . . , bxn)

= a(bx),

as desired.

Problem 15

Show that λ(x+ y) = λx+ λy for all λ ∈ F and all x, y ∈ Fn.

Proof. We may write x = (x1, . . . , xn) and y = (y1, . . . , yn) for xk, yk ∈ Fn,
where k = 1, . . . , n. It follows

λ(x+ y) = λ((x1, . . . , xn) + (y1, . . . , yn))

= λ((x1 + y1) + · · ·+ (xn + yn))

= (λ(x1 + y1) + · · ·+ λ(xn + yn))

= ((λx1 + λy1) + · · ·+ (λxn + λyn))

= (λx1 + · · ·+ λxn) + (λy1 + · · ·+ λyn)

= λx+ λy,

as desired.

B: Definition of a Vector Space

Problem 1

Prove that −(−v) = v for every v ∈ V .

Proof. We wish to show that v is the additive inverse of (−v). We have

(−v) + v = (−1)v + 1v = (−1 + 1)v = 0v = 0,

as desired.

Problem 3

Suppose v, w ∈ V . Explain why there exists a unique x ∈ V such that
v + 3x = w.
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Proof. First we prove existence. Define x ∈ V by

x =
1

3
(w − v).

Then

v + 3x = v + 3

(
1

3
(w − v)

)
= v +

(
3 · 1

3

)
(w − v)

= v + (w − v)

= w,

and so such an x exists. To see that it’s unique, suppose y ∈ V such that
v + 3y = w. Then

v + 3y = v + 3x ⇐⇒ 3y = 3x ⇐⇒ y = x,

proving uniqueness.

Problem 5

Show that in the definition of a vector space (1.19), the additive inverse
condition can be replaced with the condition that

0v = 0 for all v ∈ V.

Here the 0 on the left side is the number 0, and the 0 on the right side is
the additive identity of V . (The phrase “a condition can be replaced” in
a definition means that the collection of objection satisfying the definition
is unchanged if the original condition is replaced with the new definition.)

Proof. We show that the two statements are equivalent.
First suppose that every v ∈ V has an additive inverse. Since we have

0v + 0v = (0 + 0)v = 0v,

adding the additive inverse to both sides yields 0v = 0.
Conversely, suppose that 0v = 0 for all v ∈ V . Then

v + (−1)v = (1 + (−1))v = 0v = 0,

and hence every element has an additive inverse, as desired.
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C: Subspaces

Problem 1

For each of the following subsets of F3, determine whether it is a subspace
of F3:

1. {(x1, x2, x3) ∈ F3 | x1 + 2x2 + 3x3 = 0}

2. {(x1, x2, x3) ∈ F3 | x1 + 2x2 + 3x3 = 4}

3. {(x1, x2, x3) ∈ F3 | x1x2x3 = 0}

4. {(x1, x2, x3) ∈ F3 | x1 = 5x3}

Proof. (a) Let S denote the specified subset. We claim S is a subspace. To
see this, note that 0 + 2 · 0 + 3 · 0 = 0, and hence 0 ∈ S. Now suppose
x = (x1, x2, x3) ∈ S and y = (y1, y2, y3) ∈ S. Then

x1 + 2x2 + 3x3 = 0 and y1 + 2y2 + 3y3 = 0,

and hence

(x1 + 2x2 + 3x3) + (y1 + 2y2 + 3y3) = (x1 + y1) + 2(x2 + y2) + 3(x3 + y3)

= 0,

and so x+ y ∈ S and S is closed under addition. Now letting a ∈ F, we
have

a(x1 + 2x2 + 3x3) = ax1 + 2(ax2) + 3(ax3) = 0,

and hence ax ∈ S as well, and so S is closed under scalar multiplication,
thus proving S is a subspace, as claimed.

(b) Let S denote the specified subset. Then S is not a subspace, for 0 + 2 · 0 +
3 · 0 = 0, and hence S does not contain the additive identity.

(c) Let S denote the specified subset. We claim S is not a subspace since it is
not closed under addition. To see this, let x = (1, 0, 0) and y = (0, 1, 1).
Then x, y ∈ S, but x+ y = (1, 1, 1) 6∈ S since (x1 + y1)(x2 + y2)(x3 + y3) =
1 · 1 · 1 6= 0.

(d) Let S denote the specified subset. We claim S is a subspace. To see this,
note that 0 = 5 · 0, and hence 0 ∈ S. Now suppose x = (x1, x2, x3) ∈ S
and y = (y1, y2, y3) ∈ S. Then

x1 = 5x3 and y1 = 5y3,

and hence

(x1 + y1) = 5x3 + 5y3 = 5(x3 + y3),
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and so x+ y ∈ S and S is closed under addition. Now letting a ∈ F, we
have

a(x1) = a(5x3)

and thus

(ax1) = 5(ax3),

showing ax ∈ S as well. Therefore S is closed under scalar multiplication
as well, proving S is a subspace, as claimed.

Problem 3

Show that the set of differentiable real-valued functions f on the interval
(−4, 4) such that f ′(−1) = 3f(2) is a subspace of R(−4,4).

Proof. Let S denote the set of differentiable real-valued functions f on the
interval (−4, 4) such that f ′(−1) = 3f(2) . Denote the zero-function (the
additive identity of R(−4,4)) by f0. Then f ′0 = f0 and f ′0(−1) = 0, and hence
f ′0(−1) = 3f0(2) — both sides are 0 — showing f0 ∈ S. Now suppose f, g ∈ S.
Then

(f + g)′ = f ′ + g′,

and hence

(f + g)′(−1) = f ′(−1) + g′(−1)

= 3f(2) + 3g(2)

= 3(f(2) + g(2))

= 3(f + g)(2),

showing (f + g) ∈ S and S is closed under addition. Now letting a ∈ R, we have

a(f ′(−1)) = a(3f(2)) =⇒ (af ′)(−1) = 3(af)(2),

and hence (af) ∈ S as well, and S is closed under scalar multiplication. Therefore,
S is a subspace.

Problem 5

Is R2 a subspace of the complex vector space C2?

Proof. The set R2 is not a subspace of C2 over the field C since R2 is not
closed under scalar multiplication. In particular, we have ix 6∈ R2 for all
x ∈ R2 − {0}.
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Problem 7

Give an example of a nonempty subset U of R2 such that U is closed
under addition and taking additive inverses (meaning −u ∈ U whenever
u ∈ U), but U is not a subspace of R2.

Proof. Consider the set Z× Z. Then for all (a, b) ∈ Z× Z, we have (−a,−b) ∈
Z×Z, and so it’s closed under additive inverses. Similarly, for any (c, d) ∈ Z×Z,
we have (a, b) + (c, d) = (a+ c, b+ d) ∈ Z× Z, and so it’s closed under addition.
But Z×Z is not a subspace of R2, since it is not closed under scalar multiplication.
In particular, 1

2 (1, 1) =
(
1
2 ,

1
2

)
6∈ Z× Z.

Problem 9

A function f : R→ R is called periodic if there exists a positive number
p such that f(x) = f(x+ p) for all x ∈ R. Is the set of periodic functions
from R to R a subspace of RR? Explain.

Proof. Let P denote the set of periodic functions from R to R. We claim P is
not a subspace of RR, since it is not closed under addition. To see this, define

f(x) = cos

(
2π√

2
x

)
and g(x) = cos(2πx).

Then

f(x+
√

2) = cos

(
2π√

2
(x+

√
2)

)
= cos

(
2π√

2
x+ 2π

)
= cos

(
2π√

2
x

)
= f(x),

and so f has period
√

2, and

g(x+ 1) = cos(2π(x+ 1)) = cos(2πx+ 2π) = cos(2πx) = g(x),

so that g has period 1.
Suppose by way of contradiction that f + g were periodic with respect to

some p ∈ R+. Then, since

(f + g)(0) = cos

(
2π√

2
· 0
)

+ cos(2π · 0) = cos(0) + cos(0) = 2,
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by periodicity of f + g we must also have

(f + g)(p) = cos

(
2π√

2
p

)
+ cos(2πp) = 2.

The maximum of cosine is 1, and hence both f and g must have maxima at p.
But the maxima of cosine occur at the integer multiples of 2π, and hence we
must have

2π√
2
p = 2πn and 2πp = 2πm

for some n,m ∈ Z+. But this implies

p =
√

2n and p = m.

In other words,

m

n
=
√

2,

a contradiction since
√

2 is irrational. Thus f + g cannot be periodic, and indeed
P is not closed under addition, as claimed.

Problem 11

Prove that the intersection of every collection of subspaces of V is a
subspace of V .

Proof. Let C denote a collection of subspaces of V , and let

U =
⋂

W∈C

W.

Then, since 0 ∈W for all W ∈ C, we have 0 ∈ U and so U contains the additive
identity. Now suppose u, v ∈ U . Then u, v ∈ W for all W ∈ C, and hence
u+ v ∈W for all W ∈ C. Therefore, u+ v ∈ U and U is closed under addition.
Next let a ∈ F. Then au ∈ W for all W ∈ C, and hence au ∈ U , showing U is
closed under scalar multiplication. Therefore, U is indeed a subspace of V .

Problem 12

Prove that the union of two subspaces of V is a subspace of V if and only
if one of the subspaces is contained in the other.

Proof. Let U1, U2 be subspaces of V .
First suppose that one of the subspaces is contained in the other. Then either

U1 ∪ U2 = U1 or U1 ∪ U2 = U2, and in both cases U1 ∪ U2 is indeed a subspace
of V .
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Conversely, suppose by way of contradiction that U1 ∪ U2 is a subspace of
V , but neither subspace is contained in the other. That is, the sets U1 \ U2 and
U2 \U1 are both nonempty. Let x ∈ U1 \U2 and y ∈ U2 \U1. We claim x+y 6∈ U1

and x+ y 6∈ U2, so that U1 ∪U2 is not closed under addition, a contradiction. To
see this, suppose x+ y ∈ U1. Then (x+ y)− x ∈ U1 by closure of addition in U1,
but this is absurd since this implies y ∈ U1, contrary to assumption. Similarly,
suppose x + y ∈ U2. Then (x + y) − y ∈ U2, which is also absurd since this
implies x ∈ U2. Therefore U1 ∪ U2 is not closed under addition, producing a
contradiction as claimed. Thus we must have one of the subspaces contained in
the other, as desired.

Problem 13

Prove that the union of three subspaces of V is a subspace of V if and
only if one of the subspaces contains the other two.

Proof. Let U1, U2, U3 be subspaces of V .
(⇐) Suppose that one of the subspaces contains the other two. Without loss

of generality, assume U1 ⊆ U3 and U2 ⊆ U3. Then U1 ∪ U2 ∪ U3 = U3, and so
U1 ∪ U2 ∪ U3 is indeed a subspace of V .

(⇒) Now suppose U1∪U2∪U3 is a subspace. If U2 contains U3 (or conversely),
let W = U2 ∪U3. Then applying Problem 12 to the union U1 ∪W , we have that
either U1 contains W or W contains U1, showing that one of the three subspaces
contains the other two, as desired. So assume U2 and U3 are such that neither
contains the other. Let

x ∈ U2 \ U3 and y ∈ U3 \ U2,

and choose a, b ∈ F \ {0} such that a− b = 1 (such a, b exist since we assume F
is not finite).

We claim that ax+ y and bx+ y are both in U1. To see that ax+ y ∈ U1,
suppose not. Then either ax + y ∈ U2 or ax + y ∈ U3. If ax + y ∈ U2, then
we have (ax+ y)− ax = y ∈ U2, a contradiction. And if ax+ y ∈ U3, we have
(ax + y) − y = ax ∈ U3, another contradiction, and so ax + y ∈ U1. Similarly
for bx+ y, suppose bx+ y ∈ U2. Then (bx+ y)− bx = y ∈ U2, a contradiction.
And if bx + y ∈ U3, then (bx + y) − y = bx ∈ U3, also a contradiction. Thus
bx+ y ∈ U1 as well. Therefore

(ax+ y)− (bx+ y) = (a− b)x = x ∈ U1.

Now, since x ∈ U2\U3 implies x ∈ U1, we have U2\U3 ⊆ U1. A similar argument
shows that x+ ay and x+ by must be in U1 as well, and hence

(x+ ay)− (x+ by) = (a− b)y = y ∈ U1,

and therefore U3 \ U2 ⊆ U1. If U2 ∩ U3 = ∅, we’re done, so assume otherwise.
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Now for any u ∈ U2 ∩ U3, choose v ∈ U3 \ U2 ⊆ U1. Then u+ v 6∈ U2 ∩ U3,
for otherwise (u+ v)− u = v ∈ U2, a contradiction. But this implies u+ v must
be in U1, and hence so is (u+ v)− v = u. In other words, if u ∈ U2 ∩ U3, then
u ∈ U1, and hence U2 ∩ U3 ⊆ U1, as was to be shown.

Problem 15

Suppose U is a subspace of V . What is U + V ?

Proof. We claim U + V = V . First suppose x ∈ V . Then x = 0 + x ∈ U + V ,
and hence V ⊆ U + V . Now suppose y ∈ U + V . Then there exist u ∈ U and
v ∈ V such that y = u+ v. But since U is a subspace of V , we have u ∈ V , and
hence u+ v ∈ V . Therefore U + V ⊆ V , proving the claim.

Problem 17

Is the operation of addition on the subspaces of V associative? In other
words, if U1, U2, U3 are subspaces of V , is

(U1 + U2) + U3 = U1 + (U2 + U3)?

Proof. Let U1, U2, U3 be subspaces of V , and let V1 = U1 +U2 and V2 = U2 +U3.
We claim

V1 + U3 = U1 + V2.

To see this, suppose x ∈ V1 + U3. Then there exist v1 ∈ V1 and u3 ∈ U3 such
that x = v1 + u3. But since v1 ∈ V1 = U1 +U2, there exist u1 ∈ U1 and u2 ∈ U2

such that v1 = u1 +u2. Then x = u1 +u2 +u3, and since u2 +u3 ∈ U2 +U3 = V2,
we have x ∈ U1 + V2 and hence V1 + U3 ⊆ U1 + V2. Now suppose y ∈ U1 + V2.
Then there exist u′1 ∈ U1 and v2 ∈ V2 such that y = u′1 + v2. But since
v2 ∈ V2 = U2 + U3, there exist u′2 ∈ U2 and u′3 ∈ U3 such that v2 = u′2 + u′3.
Then y = u′1 + u′2 + u′3, and since u′1 + u′2 ∈ U1 +U2 = V1, have y ∈ V1 +U3 and
hence U1 + V2 ⊆ V1 + U3. Thus V1 + U3 = U1 + V2, as claimed.

Problem 19

Prove or give a counterexample: if U1, U2,W are subspaces of V such
that

U1 +W = U2 +W,

then U1 = U2.

Proof. The statement is false. To see this, let V = U1 = W = R2 and U2 =
R× {0}. Then U1 +W = R2 and U2 +W = R2, but clearly U1 6= U2.
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Problem 21

Suppose
U = {(x, y, x+ y, x− y, 2x) ∈ F5 | x, y ∈ F}.

Find a subspace W of F5 such that F5 = U ⊕W .

Proof. Let v1 = (1, 0, 1, 1, 2, ), v2 = (0, 1, 1,−1, 0), so that we may instead write
V as

V = {α1v1 + α2v2 ∈ F5 | α1, α2 ∈ F}.

Now let w1 = (0, 0, 1, 0, 0), w2 = (0, 0, 0, 1, 0), w3 = (0, 0, 0, 0, 1) and define

W = {α1w1 + α2w2 + α3w3 ∈ F5 | α1, α2, α3 ∈ F}.

We claim U ⊕W = F5. There are three things to prove: (1) W is a subspace of
F5, (2) U +W = F5, and (3) this sum is direct.

To see that W is a subspace of F5, note that 0 ·w1 + 0 ·w2 + 0 ·w3 = 0, and
hence 0 ∈W . Next suppose a, b ∈W . Then there exist some αk, βk ∈ F, where
k = 1, 2, 3, such that a = α1w1 + α2w2 + α3w3 and b = β1w1 + β2w2 + β3w3.
But then a + b = (α1 + β1)w1 + (α2 + β2)w2 + (α3 + β3)w3, which is again
in W , and hence W is closed under addition. Finally, let γ ∈ F. Then γa =
γ(α1w1 + α2w2 + α3w3) = (γα1)w1 + (γα2)w2 + (γα3)w3 which is again in W ,
and hence W is closed under scalar multiplication. So W is indeed a subspace.

We next show that U+W = F5. First notice that U+W ⊆ F5 since U,W are
both subspaces of F5. To see the that F5 ⊆ U+W , let a = (a1, a2, a3, a4, a5) ∈ F5.
Recalling our definition of the vectors v1, v2, w1, w2, w3, consider the linear
combination

(a1v1 + a2v2) +
[
(a3 − a1 − a2)w1 + (a4 − a1 + a2)w2 + (a5 − 2a1)w3

]
.

Note that the sum above is an element of U +W . And after reducing, we find
that the sum above equals (a1, a2, a3, a4, a5), and hence a ∈ U + W and so in
fact F5 = U +W .

Lastly we show that the sum is direct. Every element of U +W has the form
α1v1 +α2v2 +α3v3 +α4v4 +α5v5 for some αk ∈ F with k = 1, . . . , 5, so suppose
0 = α1v1 + α2v2 + α3v3 + α4v4 + α5v5. Simplifying yields

(α1, α2, α1 + α2 + α3, α1 − α2 + α4, 2α1 + α5) = 0.

Clearly α1 = α2 = 0. But now this equation simplifies to

(0, 0, α3, α4, α5) = 0,

and so α3 = α4 = α5 = 0 as well, and hence the sum is indeed direct.
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Problem 23

Prove or give a counterexample: if U1, U2,W are subspaces of V such
that

V = U1 ⊕W and V = U2 ⊕W,

then U1 = U2.

Proof. The statement is false. Let V = R2, W = R× {0}, U1 = {0} × R, and
U2 = {(x, x) ∈ R2 | x ∈ R}. Then clearly

V = U1 +W = U2 +W.

Moreover, U1 ∩W = {0} and U2 ∩W = {0}, and hence the sums are direct.
That is,

V = U1 ⊕W = U2 ⊕W,

but U1 6= U2.
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Chapter 2: Finite-Dimensional Vector Spaces

Linear Algebra Done Right, by Sheldon Axler

A: Span and Linear Independence

Problem 1

Suppose v1, v2, v3, v4 spans V . Prove that the list

v1 − v2, v2 − v3, v3 − v4, v4

also spans V .

Proof. Let w ∈ V . Then there exist a1, a2, a3, a4 ∈ F such that

w = a1v1 + a2v2 + a3v3 + a4v4.

We wish to find b1, b2, b3, b4 ∈ F such that

b1(v1 − v2) + b2(v2 − v3) + b3(v3 − v4) + b4v4 = a1v1 + a2v2 + a3v3 + a4v4.

Simplifying the LHS, we have

b1v1 + (b2 − b1)v2 + (b3 − b2)v3 + (b4 − b3)v4 = a1v1 + a2v2 + a3v3 + a4v4.

Hence we may choose

b1 = a1

b2 = a1 + a2

b3 = a1 + a2 + a3

b4 = a1 + a2 + a3 + a4,

so that w is given as a linear combination of the list v1 − v2, v2 − v3, v3 − v4, v4,
and thus the list spans V as well.

Problem 3

Find a number t such that

(3, 1, 4), (2,−3, 5), (5, 9, t)

is not linearly independent in R3.
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Proof. Let t = 2. Then

3(3, 1, 4)− 2(2,−3, 5) = (5, 9, 2),

and hence the vectors are not linearly independent since one of the vectors can
be written as a linear combination of the other two.

Problem 5

(a) Show that if we think of C as a vector space over R, then the list
(1 + i, 1− i) is linearly independent.

(b) Show that if we think of C as a vector space over C, then the list
(1 + i, 1− i) is linearly dependent.

Proof. (a) Suppose

a(1 + i) + b(1− i) = 0

for some a, b ∈ R. Then

(a + b) + (a− b)i = 0.

Comparing imaginary parts, this implies a− b = 0 and hence a = b. But
now substituting for b and comparing real parts, this implies 2a = 0, and
hence a = b = 0. Thus the vectors are linearly independent over R.

(b) Note that

−i(1 + i) = 1− i,

so that 1− i is a scalar multiple of 1 + i and hence the vectors are linearly
dependent over C.

Problem 7

Prove or give a counterexample: If v1, v2, . . . , vm is a linearly independent
list of vectors in V , then

5v1 − 4v2, v2, v3, . . . , vm

is linearly independent.

Proof. Let u = 5v1− 4v2. We claim the list u, v2, . . . , vm is linearly independent.
To see this, suppose not. Then there exists some j ∈ {2, . . . ,m} such that
vj ∈ span(u, v2, . . . , vj−1). But then vj is also in span(v1, v2, . . . , vj−1), since
u = 5v1 − 4v2 is a linear combination of v1 and v2, a contradiction.
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Problem 9

Prove or give a counterexample: If v1, . . . , vm and w1, . . . , wm are linearly
independent lists of vectors in V , then v1 + w1, . . . , vm + wm is linearly
independent.

Proof. The statement is false. To see this, let wk = −vk for k = 1, . . . ,m. Then
w1, . . . , wm are also linearly independent, but v1 +w1 = · · · = vm +wm = 0.

Problem 11

Suppose v1, . . . , vm is linearly independent in V and w ∈ V . Show that
v1, . . . , vm, w is linearly independent if and only if

w 6∈ span(v1, . . . , vm).

Proof. (⇒) First suppose v1, . . . , vm, w is linearly independent. If w ∈
span(v1, . . . , vm), then there exist a1, . . . , am ∈ F such that

w = a1v1 + · · ·+ amvm.

But then

−w + a1v1 + · · ·+ amvm = 0,

a contradiction. Therefore we must have w 6∈ span(v1, . . . , vm).
(⇐) Now suppose w 6∈ span(v1, . . . , vm) and consider the list v1, . . . , vm, w.

Suppose the list were linearly dependent. Then there exists a vector in the
list which is in the span of its predecessors. Since this vector cannot be w by
assumption, there exists some j ∈ {1, . . . ,m} such that vj ∈ span(v1, . . . , vj−1),
contradicting the hypothesis that v1, . . . , vm is linearly independent (and hence
all sublists are). Thus v1, . . . , vm, w must be linearly independent.

Problem 13

Explain why no list of four polynomials spans P4(F).

Proof. Note that the list 1, z, . . . , z4 spans P4(F), is linearly independent, and
has length 5. Since the length of every spanning list must be at least as long as
every linearly independent list, there exist no spanning lists of vectors in P(F)
of length less than 5.

Problem 14

Prove that V is infinite-dimensional if and only if there is a sequence
v1, v2, . . . of vectors in V such that v1, . . . , vm is linearly independent for
every positive integer m.
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Proof. (⇒) First suppose V is infinite-dimensional. We will prove by induction
that there exists a sequence v1, v2, . . . of vectors in V such that for every m ∈ Z+,
the first m vectors are linearly independent.

Base Case: Since V is infinite-dimensional, V contains some nonzero vector
v1. The list containing only this vector is clearly linearly independent.

Inductive Step: Suppose the list of vectors v1, . . . , vk is linearly independent
for some k ∈ Z+. Since V is infinite-dimensional, these vectors cannot span V ,
and hence there exists some vk+1 ∈ V \ span(v1, . . . , vk). In particular, note that
vk+1 6= 0. But then v1, . . . , vk, vk+1 is linearly independent by the Linear Depen-
dence Lemma (for if it were linearly dependent, the Lemma guarantees there
would exist a vector in the list which could be written as a linear combination of
its predecessors, which is impossible by our construction).

By induction, we have shown there exists a list v1, v2, . . . such that v1, . . . , vm
is linearly independent for every m ∈ Z+.

(⇐) Now suppose there is a sequence v1, v2, . . . of vectors in V such that
v1, . . . , vm is linearly independent for every m ∈ Z+. If V were finite-dimensional,
there would exist a list v1, . . . , vn for some n ∈ Z+ such that V = span(v1, . . . , vn).
But then, by our assumption, the list v1, . . . , vn+1 is linearly independent. Since
every linearly independent list must have length no longer than every spanning
list, this is a contradiction. Thus V is infinite-dimensional.

Problem 15

Prove that F∞ is infinite-dimensional.

Proof. For each k ∈ Z, define the vector ek such that it has a 1 in coordinate k
and 0 everywhere else. Then for the sequence e1, e2, . . . , the list e1, . . . , em is
linearly independent for any choice of m ∈ Z+. By Problem 14, F∞ must be
infinite-dimensional.

Problem 17

Suppose p0, p1, . . . , pm are polynomials in Pm(F) such that pj(2) = 0 for
each j. Prove that p0, p1, . . . , pm is not linearly independent in Pm(F).

Proof. Suppose it were. We will show that this implies p0, p1, . . . , pm spans
Pm(F) and that this in turn leads to a contradiction by explicitly constructing a
polynomial that is not in this span.

Note that the list 1, z, . . . , zm+1 spans Pm(F) and has length m + 1,
hence every linearly independent list must have length m + 1 or less. If
span(p0, p1, . . . , pm) 6= Pm(F), there exists some p 6∈ span(p0, p1, . . . , pm), and
thus the list p0, p1, . . . , pm, p is linearly independent and of length m + 2, a
contradiction. And so we must have span(p0, p1, . . . , pm) = Pm(F).
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Now define the polynomial q ≡ 1. Then q ∈ span(p0, p1, . . . , pm), and hence
there exist a0, . . . , am ∈ F such that

q = a0p0 + a1p1 + · · ·+ ampm,

which in turn implies

q(2) = a0p0(2) + a1p1(2) + · · ·+ ampm(2).

But this is absurd, since this implies 1 = 0. Therefore p0, p1, . . . , pm cannot be
linearly independent, as desired.

B: Bases

Problem 1

Find all vector spaces that have exactly one basis.

Proof. We claim that only the trivial vector space has exactly one basis. We
first consider finite-dimensional vector spaces. Let V be a nontrivial vector space
with basis v1, . . . , vn. We claim that for any c ∈ F×, the list cv1, . . . , cvn is a
basis as well. Clearly the list is still linearly independent, and to see that it still
spans V , let u ∈ V . Then, since v1, . . . , vn spans V , there exist a1, . . . , an ∈ F
such that

u = a1v1 + · · ·+ anvn.

But then we have
u =

a1
c

(cv1) + · · ·+ an
c

(cvn)

and so cv1, . . . , cvn span V as well. Thus we have more than one basis for all
finite-dimensional vector spaces.

Essentially the same proof shows the same thing for infinite-dimensional
vector spaces. So let W be an infinite-dimensional vector space with basis
w1, w2, . . . . We claim that for any c ∈ F, the list cw1, cw2, . . . is a basis as well.
Clearly the list is again linearly independent, and to see that it still spans V , let
u ∈ V . Then, since w1, w2, . . . spans W , there exist a1, a2, · · · ∈ F such that

u = a1w1 + a2w2 + . . .

But then we have
u =

a1
c

(cw1) +
a2
c

(cw2) + . . .

and so cw1, cw2, . . . span W as well. Thus we have more than one basis for all
infinite-dimensional vector spaces as well, proving our original claim.
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Problem 3

(a) Let U be the subspace of R5 defined by

U = {(x1, x2, x3, x4, x5) ∈ R5 | x1 = 3x2 and x3 = 7x4}.

Find a basis of U .

(b) Extend the basis in part (a) to a basis of R5.

(c) Find a subspace W of R5 such that R5 = U ⊕W .

Proof. (a) We claim the list of vectors

(3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 0, 1)

is a basis of U . We first show they span U . So let u ∈ U . Then there exist
x1, . . . , x5 ∈ R such that

u = (x1, x2, x3, x4, x5)

and such that x1 = 3x2 and x3 = 7x4. Substitution yields

u = (3x2, x2, 7x4, x4, x5),

and hence we have

u = x2(3, 1, 0, 0, 0) + x4(0, 0, 7, 1, 0) + x5(0, 0, 0, 0, 1)

and indeed they span U . Now suppose a1, a2, a3 ∈ R are such that

a1(3, 1, 0, 0, 0) + a2(0, 0, 7, 1, 0) + a3(0, 0, 0, 0, 1) = 0.

Then we have

(3a1, a1, 0, 0, 0) + (0, 0, 7a2, a2, 0) + (0, 0, 0, 0, a3) = 0

which clearly implies a1 = a2 = a3 = 0. Thus they are also linearly
independent, and hence a basis.

(b) We claim the list

v1 =


3
1
0
0
0

 , v2 =


0
0
7
1
0

 , v3 =


0
0
0
0
1

 , v4 =


1
0
0
0
0

 , v5 =


0
0
1
0
0


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is a basis of R5 expanding the basis from (a). To see that it spans R5, let
u = (u1, u2, u3, u4, u5) ∈ R5. Notice

u2v1 + u4v2 + u5v3 + (u1 − 2u2)v4 + (u3 − 6u4)v5 =
3u2

u2

0
0
0

 +


0
0

7u4

u4

0

 +


0
0
0
0
u5

 +


u1 − 2u2

0
0
0
0

 +


0
0

u3 − 6u4

0
0

 .

Simplifying the RHS, we have
3u2

u2

0
0
0

 +


0
0

7u4

u4

0

 +


0
0
0
0
u5

 +


u1 − 2u2

0
0
0
0

 +


0
0

u3 − 6u4

0
0

 =


u1

u2

u3

u4

u5

 ,

and so indeed v1, . . . , v5 span R5. To see that they are linearly independent,
suppose a1, . . . , a5 ∈ R are such that

a1


3
1
0
0
0

 + a2


0
0
7
1
0

 + a3


0
0
0
0
1

 + a4


1
0
0
0
0

 + a5


0
0
1
0
0

 =


0
0
0
0
0

 .

We have the equivalent system of linear equations

3a1 + a4 = 0

a1 = 0

7a2 + a5 = 0

a2 = 0

a3 = 0,

which clearly implies each of the ak are 0. Hence v1, . . . , v5 are linearly
independent as well, and thus a basis.

(c) Let W = span(v4, v5), where v4 and v5 are defined as in (b). We claim
R5 = U⊕W . To see R5 = U +W , let v ∈ R5. Then, because we’ve already
shown v1, . . . , v5 span R5, there exist a1, . . . , a5 ∈ R such that

u = (a1v1 + a2v2 + a3v3) + (a4v4 + a5v5).

The first term in parentheses is an element of U , and the second is an
element of W , and thus V = U + W .
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To prove the sum is direct, it suffices to show U ∩W = {0}. So suppose
u ∈ U ∩W . Then there exist a1, a2, a3, b1, b2 ∈ R such that

v = a1v1 + a2v2 + a3v3 = b1v4 + b2v5.

Thus
a1v1 + a2v2 + a3v3 − b1v4 − b2v5 = 0.

Since v1, . . . , v5 are linearly independent, this implies each of the a’s and
b’s are 0, and so indeed U ∩W = {0}. Therefore the sum is direct, proving
our claim that R5 = U ⊕W .

Problem 5

Prove or disprove: there exists a basis p0, p1, p2, p3 of P3(F) such that
none of the polynomials p0, p1, p2, p3 has degree 2.

Proof. Consider the list

p0 = 1, p1 = X, p2 = X3 + X2, p3 = X3

which contains no polynomial of degree 2. We claim this list is a basis. First we
prove span(p0, p1, p2, p3) = P3(F). Let q ∈ P3(F). Then there exist a0, . . . , a3 ∈
F (some of which may be 0) such that

q = a0 + a1X + a2X
2 + a3X

3.

But notice

a0p0 + a1p1 + a2p2 + (a3 − a2)p3 = a0 + a1X + a2(X3 + X2) + (a3 − a2)X3

= a0 + a1X + a2X
2 + a3X

3

= q,

and so indeed p0, p1, p2, p3 spans P3(F). To see the list is linearly independent,
suppose b0, . . . , b3 ∈ F are such that

b0p0 + b1p1 + b2p2 + b3p3 = 0.

It follows that

b0 + b1X + b2X
2 + (b2 + b3)X3 = 0

which is true iff all coefficients are zero. Hence we must have b0 = b1 = b2 = b3 =
0, and so p0, . . . , p3 is linearly independent. Thus it is a basis, as claimed.

Problem 7

Prove or give a counterexample: If v1, v2, v3, v4 is a basis of V and U is a
subspace of V such that v1, v2 ∈ U and v3 6∈ U and v4 6∈ U , then v1, v2 is
a basis of U .
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Proof. The statement is false. To see this, let V = R4 and let

v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0), v3 = (0, 0, 1, 0), v4 = (0, 0, 0, 1).

Define

U = {(x1, x2, x3, x4) ∈ R4 | x3 = x4}.

We have v1, v2 ∈ U and v3, v4 6∈ U . But since no linear combination of v1, v2
yields (0, 0, 1, 1), v1, v2 do not span U , and hence they cannot form a basis.

C: Dimension

Problem 1

Suppose V is finite-dimensional and U is a subspace of V such that
dimU = dimV . Prove that U = V .

Proof. Let n = dimU = dimV , and let u1, . . . , un be a basis for U . Since this
list is linearly independent and has length equal to the dimension of V , it must
be a basis for V as well (by Theorem 2.39). Clearly we have U ⊆ V , so it remains
to show V ⊆ U . Let v ∈ V . Then there exist a1, . . . , an ∈ F such that

v = a1u1 + · · ·+ anun.

But now v is expressed as a linear combination of vectors in U and hence is in
U as well. Thus U = V , as desired.

Problem 3

Show that the subspaces of R3 are precisely {0}, R3, all lines in R2

through the origin, and all planes in R3 through the origin.

Proof. A subspace of R3 can have a basis of length 0, 1, 2 or 3. We consider each
in turn:

0: The only basis of length 0 is the empty basis, which generates {0}.

1: Any basis of length 1 contains a single x ∈ R×. Notice span(x) = {ax ∈
R | a ∈ R}, and hence bases of length 1 generate lines through the origin.

2: Any basis of length 2 consists of two linearly independent x, y ∈ R×.
Notice span(x, y) = {ax + by ∈ R2 | a, b ∈ R}, and hence bases of length 2
generate planes through the origin.

3: Any basis of length 3 is simply a basis of R3 and hence generates all of R3.

Since we’ve exhausted all possibilities, all subspaces of R3 have been classified
as one of these four types.
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Problem 4

(a) Let U = {p ∈ P4(F) | p(6) = 0}. Find a basis of U .

(b) Extend the basis in part (a) to a basis of P4(F).

(c) Find a subspace W of P4(F) such that P4(F) = U ⊕W .

We first prove a helpful lemma that we will use repeatedly.

Lemma 1. Any list of nonzero polynomials in P(F), no two of which have the
same degree, is linearly independent.

Proof of the lemma. Let p1, . . . , pn ∈ P(F) be nonzero and each of unique degree,
and without loss of generality suppose they are ordered from smallest degree
to largest. Denote their degrees by d1, . . . , dn. Now suppose a1, . . . , an ∈ F are
such that

a1p1 + · · ·+ anpn = 0.

Without explicitly expanding the LHS, we see that it must have an Xdn term
with a nonzero coefficient (since each polynomial is assumed to have unique
degree). Since the RHS is identically 0, this implies an = 0. But now by repeating
this same argument n− 1 times, we see that in fact each of a1, . . . , an−1 must
be zero as well, and hence the list is indeed linearly independent.

Proof. (a) We claim the list of polynomials

(X − 6), (X − 6)2, (X − 6)3, (X − 6)4

is a basis of U . By Lemma 1, since each polynomial in the list has unique
degree, the list is linearly independent. Thus dimU must be at least 4,
since we’ve demonstrated a linearly independent list of length 4. Since U
is a subspace of P4(F), which has dimension 5, this implies dimU ∈ {4, 5}.
But notice U is a proper subset of P4(F) since, in particular, it excludes
the monomial X. Thus dimU cannot be 5, and we conclude dimU = 4.
Since our list is linearly independent and of length equal to dimU , it must
be a basis.

(b) We claim
1, (X − 6), (X − 6)2, (X − 6)3, (X − 6)4

is an extension of our basis of U to P4(F). Since this list is of length
equal to dimP4(F), it suffices to show it is linearly independent. But this
follows immediate by Lemma 1, since each polynomial in the list has unique
degree.

(c) Let W = F. We claim P4(F) = U ⊕W . Label our basis from (b) as

p0 = 1, p1 = (X − 6), p2 = (X − 6)2, p3 = (X − 6)3, p4 = (X − 6)4.
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In this notation, we have W = span(p0) and U = span(p1, . . . , p4). Clearly
P4(F) = U + W since p0, . . . , p4 is a basis of P4(F), so it suffices to show
U ∩W = {0}. Suppose q ∈ U ∩W . Then q must be a scalar by inclusion
in W . If q were nonzero, there would exist a0, . . . , a3 ∈ F such that

a0(X − 6) + a1(X − 6)2 + a2(X − 6)3 + a3(X − 6)4 6= 0

for all X ∈ F. But this is absurd, since the LHS evaluates to 0 for X = 6.
Thus q cannot be nonzero, and the sum is indeed direct.

Problem 7

(a) Let U = {p ∈ P4(F) | p(2) = p(5) = p(6)}. Find a basis of U .

(b) Extend the basis in part (a) to a basis of P4(F).

(c) Find a subspace W of P4(F) such that P4(F) = U ⊕W .

Proof. (a) We claim the list of polynomials

1, (X − 2)(X − 5)(X − 6), (X − 2)(X − 5)(X − 6)2 (†)

is a basis of U . Linear independence follows from Lemma 1, and so dimU
must be at least 3. We will exhibit a proper subspace V of P4(F) of
dimension 4 such that U is a proper subspace of V . This will in turn imply
that 3 ≤ dimU < 4. Since all dimensions are of course integers, this will
imply dimU = 3. Since our list of polynomials is a linearly independent
list of length equal to dimU , this will prove it to be a basis. So consider
the subspace

V = {p ∈ P4(F) | p(2) = p(5)}

of P4(F). Clearly U is a subspace of V , and moreover it is a proper
subspace since (X − 2)(X − 5) is in V but not in U . So it only remains to
show dimV = 4. Note that the list of polynomials

1, (X − 2)(X − 5), (X − 2)2(X − 5), (X − 2)2(X − 5)2

is linearly independent in V (again by Lemma 1). Note also that V a
proper subspace of P4(F) since it does not contain the monomial X. Since
this implies 4 ≤ dimV < 5, we must have dimV = 4, completing the proof
that (†) is indeed a basis of U .

(b) We claim

1, X,X2, (X − 2)(X − 5)(X − 6), (X − 2)(X − 5)(X − 6)2

is an extension of our basis of U to P4(F). Since this list is of length equal
to dimP4(F), it suffices to show it is linearly independent. But this follows
immediately from Lemma 1.
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(c) Label our basis from (b) as

p0 = 1,

p1 = X,

p2 = X2,

p3 = (X − 2)(X − 5)(X − 6),

p4 = (X − 2)(X − 5)(X − 6)2

and let W = span(p1, p2). We claim P4(F) = U⊕W . That P4(F) = U +W
follows from the fact that p0, . . . , p4 is a basis of P4(F) and since U =
span(p0, p3, p4). To prove the sum is direct, it suffices to show U∩W = {0}.
So suppose q ∈ U ∩W . Then there exist a0, a1, b0, b1, b2 ∈ F such that

q = a0p1 + a1p2 = b0p0 + b1p3 + b2p4.

But then
a0p1 + a1p2 − b0p0 − b1p3 − b2p4 = 0,

and since the p0, . . . , p4 are linearly independent, this implies each of the
a’s and b’s are zero. Thus q = 0 and the sum is indeed direct.

Problem 9

Suppose v1, . . . , vm is linearly independent in V and w ∈ V . Prove that

dim span(v1 + w, . . . , vm + w) ≥ m− 1.

Proof. Let W = span(v1 + w, . . . , vm + w), and consider the list

v2 − v1, v3 − v2, . . . , vm − vm−1,

which has length m− 1. Note that vk − vk−1 = (vk + w)− (vk−1 + w), so that
each vector in this list is indeed in W . Since the dimension of W must be greater
than the length of any linearly independent list, if we prove this list is linearly
independent, we will have proved dimW ≥ m− 1. So suppose a1, . . . am−1 ∈ F
are such that

a1(v2 − v1) + · · ·+ am−1(vm − vm−1) = 0.

Expanding, we see

(−a1)v1 + (a1 − a2)v2 + · · ·+ (am−2 − am)vm−1 = 0.

But since v1, . . . , vm−1 is linearly independent by hypothesis, each of the coef-
ficients must be zero. Thus a1 = 0 and ak−1 = ak for k = 2, . . . ,m − 1, and
hence we must have a2 = · · · = am−1 = 0 as well. Therefore, our list is linearly
independent, and indeed dimW ≥ m− 1.
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Problem 11

Suppose that U and W are subspaces of R8 such that dimU = 3, dimW =
5, and U + W = R8. Prove that R8 = U ⊕W .

Proof. We have

dim(U + W ) = dimU + dimW − dim(U ∩W ),

and thus since U + W = R8, dimU = 3, and dimW = 5, it follows

8 = 3 + 5− dim(U ∩W ),

and hence dim(U ∩W ) = 0. Therefore we must have U ∩W = {0}, and hence
R8 = U ⊕W .

Problem 13

Suppose U and W are both 4-dimensional subspaces of C6. Prove that
there exist two vectors in U ∩W such that neither of these vectors is a
scalar multiple of the other.

Proof. Note that we view C6 as a vector space over C. We have

dim(U + W ) = dimU + dimW − dim(U ∩W ),

and thus since dimU = dimW = 4, it follows

dim(U + W ) = 8− dim(U ∩W ). (1)

Since U + W is a subspace of C6 and dimC6 = 6, and since dim(U + W ) ≥
max{dimU,dimW} = 4, we have

4 ≤ dim(U + W ) ≤ 6. (2)

Combining (1) and (2) yields

−4 ≤ −dim(U ∩W ) ≤ −2,

and hence
2 ≤ dim(U ∩W ) ≤ 4.

Thus U ∩W has a basis of length at least two, and thus there exist two vectors
in U ∩W such that neither is a scalar multiple of the other (namely, two vectors
in the basis).
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Problem 14

Suppose U1, . . . , Um are finite-dimensional subspace of V . Prove that
U1 + · · ·+ Um is finite-dimensional and

dim (U1 + · · ·+ Um) ≤ dimU1 + · · ·+ dimUm.

Proof. For each j = 1, . . . ,m, choose a basis for Uj . Combine these bases to form
a single list of vectors in V . Clearly this list spans U1 + · · ·+Um by construction.
Hence U1 + · · ·+ Um is finite-dimensional with dimension less than or equal to
the number of vectors in this list, which is equal to dimU1 + · · ·+ dimUm. That
is,

dim (U1 + · · ·+ Um) ≤ dimU1 + · · ·+ dimUm,

as desired.

Problem 15

Suppose V is finite-dimensional, with dimV = n ≥ 1. Prove that there
exist 1-dimensional subspaces U1, . . . , Un of V such that

V = U1 ⊕ · · · ⊕ Un.

Proof. Since dimV = n, there exists a basis v1, . . . , vn of V . Let Uk = span(vk)
for k = 1, . . . , n, so that each Uk has dimension 1. Clearly

V = U1 + · · ·+ Un,

so it remains to show this sum is direct. If u ∈ U1 + · · · + Un, there exist
a1, . . . , an ∈ F such that

u = a1v1 + · · ·+ anvn.

But since v1, . . . , vn is a basis, this representation of u as a linear combination
of v1, . . . , vn is unique, and thus the sum is direct, as desired.

Problem 16

Suppose U1, . . . , Um are finite-dimensional subspaces of V such that
U1+· · ·+Um is a direct sum. Prove that U1⊕· · ·⊕Um is finite-dimensional
and

dimU1 ⊕ · · · ⊕ Um = dimU1 + · · ·+ dimUm.

Proof. For each j = 1, . . . ,m, choose a basis for Uj . Combine these bases to form
a single list of vectors in V . Clearly this list spans U1 + · · ·+Um by construction,
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so that U1 + · · ·+ Um is finite-dimensional. We claim this list must be linearly
independent, hence it will be a basis of length dimU1 + · · ·+ dimUm, and thus

dimU1 ⊕ · · · ⊕ Um = dimU1 + · · ·+ dimUm.

So suppose some linear combination of the vectors in this list equals 0. For
k = 1, . . . ,m, denote by uk the sum of all terms in that linear combination which
are formed from our chosen basis of Uk. Then we have

u1 + · · ·+ um = 0.

Since U1 + · · ·+ Um = U1 ⊕ · · · ⊕ Um, each uk must equal 0. But then, since uk

is a linear combination of a basis of Uk, each of the coefficients in that linear
combination must equal 0. Thus all coefficients in our original linear combination
must be 0. That is, our basis is linearly independent, justifying our claim and
completing the proof.

Problem 17

You might guess, by analogy with the formula for the number of elements
in the union of three subsets of a finite set, that if U1, U2, U3 are subspaces
of a finite-dimensional vector space, then

dim(U1 + U2 + U3) = dimU1 + dimU2 + dimU3

−dim(U1 ∩ U2)− dim(U1 ∩ U3)− dim(U2 ∩ U3)

+ dim(U1 ∩ U2 ∩ U3).

Prove this or give a counterexample.

Proof. The statement is false. Consider

U1 = R× {0}, U2 = {(x, x) ∈ R2 | x ∈ R}, U3 = {0} × R.

We have

dim(U1 + U2 + U3) = dimR2 = 2

dimU1 = dimU2 = dimU3 = 1

dim(U1 ∩ U2) = dim(U2 ∩ U3) = 1

dim(U1 ∩ U3) = dim(U1 ∩ U2 ∩ U3) = 0,

and therefore

dim(U1 + U2 + U3) 6= dimU1 + dimU2 + dimU3

−dim(U1 ∩ U2)− dim(U1 ∩ U3)− dim(U2 ∩ U3)

+ dim(U1 ∩ U2 ∩ U3).

since the LHS is 2, whereas the RHS is 1 in this case.
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Chapter 3: Linear Maps

Linear Algebra Done Right, by Sheldon Axler

A: The Vector Space of Linear Maps

Problem 1

Suppose b, c ∈ R. Define T : R3 → R2 by

T (x, y, z) = (2x− 4y + 3z + b, 6x+ cxyz).

Show that T is linear if and only if b = c = 0.

Proof. (⇐) Suppose b = c = 0. Then

T (x, y, z) = (2x− 4y + 3z, 6x).

Let (x1, y1, z1), (x2, y2, z2) ∈ R3. Then

T ((x1, y1, z1) + (x2, y2, z2)) = T (x1 + x2, y1 + y2, z1 + z2)

= (2(x1 + x2)− 4(y1 + y2) + 3(z1 + z2), 6(x1 + x2))

= (2x1 + 2x2 − 4y1 − 4y2 + 3z1 + 3z2, 6x1 + 6x2)

= (2x1 − 4y1 + 3z1, 6x1) + (2x2 − 4y2 + 3z2, 6x2)

= T (x1, y1, z1) + T (x2, y2, z2).

Now, for λ ∈ F and (x, y, z) ∈ R3, we have

T (λ(x, y, z)) = T (λx, λy, λz)

= (2(λx)− 4(λy) + 3(λz), 6(λx))

= (λ(2x− 4y + 3z), λ(6x))

= λ(2x− 4y + 3z, 6x)

= λT (x, y, z),

and thus T is a linear map.
(⇒) Supose T is a linear map. Then

T (x1 + x2, y1 + y2, z1 + z2) = T (x1, y1, z1) + T (x2, y2, z2) (†)

for all (x1, y1, z1), (x2, y2, z2) ∈ R3. In particular, by applying the definition of
T and comparing first coordinates of both sides of (†), we have

2(x1 + x2)− 4(y1 + y2) + 3(z1 + z2) + b =

(2x1 − 4y1 + 3z1 + b) + (2x2 − 4y2 + 3z2 + b),
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and after simplifying, we have b = 2b, and hence b = 0. Now by applying the
definition of T and comparing second coordinates of both sides of (†), we have

6(x1 + x2) + c(x1 + x2)(y1 + y2)(z1 + z2) = 6x1 + c(x1y1z1) + 6x2 + c(x2y2z2)

= 6(x1 + x2) + c(x1y1z1 + x2y2z2),

which implies

c(x1 + x2)(y1 + y2)(z1 + z2) = c(x1y1z1 + x2y2z2).

Now suppose c 6= 0. Then choosing (x1, y1, z1) = (x2, y2, z2) = (1, 1, 1), the
equation above implies 8 = 2, a contradiction. Thus c = 0, completing the
proof.

Problem 3

Suppose T ∈ L(Fn,Fm). Show that there exist scalars Aj,k ∈ F for
j = 1, . . . ,m and k = 1, . . . , n such that

T (x1, . . . , xn) = (A1,1x1 + · · ·+A1,nxn, . . . , Am,1x1 + · · ·+Am,nxn)

for every (x1, . . . , xn) ∈ Fn.

Proof. Given x ∈ Fn, we may write

x = x1e1 + · · ·+ xnen,

where e1, . . . , en is the standard basis of Fn. Since T is linear, we have

Tx = T (x1e1 + · · ·+ xnen) = x1Te1 + · · ·+ xnTen.

Now for each Tek ∈ Fm, where k = 1, . . . , n, there exist A1,k, . . . , Am,k ∈ F such
that

Tek = A1,ke1 + · · ·+Am,kem

=
(
A1,k, . . . , Am,k

)
and thus

xkTek =
(
A1,kxk, . . . , Am,kxk

)
.

Therefore, we have

Tx =

n∑
k=1

(
A1,kxk, . . . , Am,kxk

)
=

 n∑
k=1

A1,kxk, . . . ,

n∑
k=1

Am,kxk

 ,

and thus there exist scalars Aj,k ∈ F for j = 1, . . . ,m and k = 1, . . . , n of the
desired form.
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Problem 5

Prove that L(V,W ) is a vector space.

Proof. We check each property in turn.
Commutative: Given S, T ∈ L(V,W ) and v ∈ V , we have

(T + S)(v) = Tv + Sv = Sv + Tv = (S + T )(v)

and so addition is commutative.
Associative: Given R,S, T ∈ L(V,W ) and v ∈ V , we have

((R+ S) + T )(v) = (R+ S)(v) + Tv = Rv + Sv + Tv

= R+ (S + T )(v) = (R+ (S + T ))(v)

and so addition is associative. And given a, b ∈ F, we have

((ab)T )(v) = (ab)(Tv) = a(b(Tv)) = (a(bT ))(v)

and so scalar multiplication is associative as well.
Additive identity: Let 0 ∈ L(V,W ) denote the zero map, let T ∈ L(V,W ),
and let v ∈ V . Then

(T + 0)(v) = Tv + 0v = Tv + 0 = Tv

and so the zero map is the additive identity.
Additive inverse: Let T ∈ L(V,W ) and define (−T ) ∈ L(V,W ) by (−T )v =
−Tv. Then

(T + (−T ))(v) = Tv + (−T )v = Tv − Tv = 0,

and so (−T ) is the additive inverse for each T ∈ L(V,W ).
Multiplicative identity: Let T ∈ L(V,W ). Then

(1T )(v) = 1(Tv) = Tv

and so the multiplicative identity of F is the multiplicative identity of scalar
multiplication.
Distributive properties: Let S, T ∈ L(V,W ), a, b ∈ F, and v ∈ V . Then

(a(S + T ))(v) = a((S + T )(v)) = a(Sv + Tv) = a(Sv) + a(Tv)

= (aS)(v) + (aT )(v)

and

((a+ b)T )(v) = (a+ b)(Tv) = a(Tv) + b(Tv) = (aT )(v) + (bT )(v)

and so the distributive properties hold.
Since all properties of a vector space hold, we see L(V,W ) is in fact a vector

space, as desired.
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Problem 7

Show that every linear map from a 1-dimensional vector space to itself is
multiplication by some scalar. More precisely, prove that if dimV = 1
and T ∈ L(V, V ), then there exists λ ∈ F such that Tv = λv for all
v ∈ V .

Proof. Since dimV = 1, a basis of V consists of a single vector. So let w ∈ V
be such a basis. Then there exists α ∈ F such that v = αw and λ ∈ F such that
Tw = λw. It follows

Tv = T (αw) = αTw = αλw = λ(αw) = λv,

as desired.

Problem 9

Give an example of a function ϕ : C→ C such that

ϕ(w + z) = ϕ(w) + ϕ(z)

for all w, z ∈ C but ϕ is not linear. (Here C is thought of as a complex
vector space.)

Proof. Define

ϕ : C→ C
x+ yi 7→ x− yi.

Then for x1 + y1i, x2 + y2i ∈ C, it follows

ϕ((x1 + y1i) + (x2 + y2i)) = ϕ((x1 + x2) + (y1 + y2)i)

= (x1 + x2)− (y1 + y2)i

= (x1 − y1)i+ (x2 − y2)i

= ϕ(x1 + y1i) + ϕ(x2 + y2i)

and so ϕ satisfies the additivity requirement. However, we have

ϕ(i · i) = ϕ(−1) = −1

and
i · ϕ(i) = i(−i) = 1

and hence ϕ fails the homogeneity requirement of a linear map.
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Problem 11

Suppose V is finite-dimensional. Prove that every linear map on a
subspace of V can be extended to a linear map on V . In other words,
show that if U is a subspace of V and S ∈ L(U,W ), then there exists
T ∈ L(V,W ) such that Tu = Su for all u ∈ U .

Proof. Suppose U is a subspace of V and S ∈ L(U,W ). Let v1, . . . , um be a
basis of U and let v1, . . . , vm, vm+1, . . . , vn be an extension of this basis to V .
For any z ∈ V , there exist a1, . . . , an ∈ F such that z =

∑n
k=1 akvk, and so we

define

T : V →W
n∑
k=1

akvk 7→
m∑
k=1

akSvk +

n∑
k=m+1

akvk.

Since every v ∈ V has a unique representation as a linear combination of elements
of our basis, the map is well-defined. We first show T is a linear map. So suppose
z1, z2 ∈ V . Then there exist a1, . . . an ∈ F and b1, . . . , bn ∈ F such that

z1 = a1v1 + · · ·+ anvn and z2 = b1v1 + · · ·+ bnvn.

It follows

T (z1 + z2) = T

 n∑
k=1

akvk +

n∑
k=1

bkvk


= T

 n∑
k=1

(ak + bk)vk


=

m∑
k=1

(ak + bk)Svk +

n∑
k=m+1

(ak + bk)vk

=

 m∑
k=1

akSvk +

n∑
k=m+1

akvk

+

 m∑
k=1

bkSvk +

n∑
k=m+1

bkvk


= T

 n∑
k=1

akvk

+ T

 n∑
k=1

bkvk


= Tz1 + Tz2

and so T is additive. To see that T is homogeneous, let λ ∈ F and z ∈ V , so
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that we may write z =
∑n
k=1 akvk for some a1, . . . , an ∈ F. We have

T (λz) = T

λ n∑
k=1

akvk


= T

 n∑
k=1

(λak)vk


= S

 m∑
k=1

(λak)vk

+

n∑
k=m+1

(λak)vk

= λS

 m∑
k=1

akvk

+ λ

n∑
k=m+1

akvk

= λ

S
 m∑
k=1

akvk

+

n∑
k=m+1

λakvk


= λT

 n∑
k=1

akvk


= λTz

and so T is homogeneous as well hence T ∈ L(V,W ). Lastly, to see that T |U= S,
let u ∈ U . Then there exist a1, . . . , am ∈ F such that u =

∑m
k=1 akvk, and hence

Tu = T

 m∑
k=1

akvk


= S

 m∑
k=1

akvk


= Su,

and so indeed T agrees with S on U , completing the proof.

Problem 13

Suppose v1, . . . , vm is a linearly dependent list of vectors in V . Suppose
also that W 6= {0}. Prove that there exist w1, . . . , wm ∈W such that no
T ∈ L(V,W ) satisfies Tvk = wk for each k = 1, . . . ,m.

Proof. Since v1, . . . , vm is linearly dependent, one of them may be written as a
linear combination of the others. Without loss of generality, suppose this is vm.
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Then there exist a1, . . . , am−1 ∈ F such that

vm = a1v1 + · · ·+ am−1vm−1.

Since W 6= {0}, there exists some nonzero z ∈W . Define w1, . . . , wm ∈W by

wk =

{
z if k = m

0 otherwise.

Now suppose there exists T ∈ L(V,W ) such that Tvk = wk for k = 1, . . . ,m. It
follows

T (0) = T (vm − a1v1 − · · · − am−1vm−1)

= Tvm − a1Tv1 − · · · − am−1Tvm−1
= z.

But z 6= 0, and thus T (0) 6= 0, a contradiction, since linear maps take 0 to 0.
Therefore, no such linear map can exist.

B: Null Spaces and Ranges

Problem 1

Give an example of a linear map T such that dim nullT = 3 and
dim rangeT = 2.

Proof. Define the map

T : R5 → R5

(x1, x2, x3, x4, x5) 7→ (0, 0, 0, x4, x5).

First we show T is a linear map. Suppose x, y ∈ R5. Then

T (x+ y) = T ((x1, x2, x3, x4, x5) + (y1, y2, y3, y4, y5))

= T (x1 + y1, x2 + y2, x3 + y3, x4 + y4, x5 + y5)

= (0, 0, 0, x4 + y5, x5 + y5)

= (0, 0, 0, x4, x5) + (0, 0, 0, y4, y5)

= T (x) + T (y).

Next let λ ∈ R. Then

T (λx) = T (λx1, λx2, λx3, λx4, λx5)

= (0, 0, 0, λx4, λx5)

= λ(0, 0, 0, x4, x5)

= λT (x),
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and so T is in fact a linear map. Now notice that

nullT = {(x1, x2, x3, 0, 0) ∈ R5 | x1, x2, x3 ∈ R}.

This space clearly has as a basis e1, e2, e3 ∈ R5 and hence has dimension 3. Now,
by the Fundamental Theorem of Linear Maps, we have

dimR5 = 3 + dim rangeT

and hence dim rangeT = 2, as desired.

Problem 3

Suppose v1, . . . , vm is a list of vectors in V . Define T ∈ L(Fm, V ) by

T (z1, . . . , zm) = z1v1 + · · ·+ zmvm.

(a) What property of T corresponds to v1, . . . , vm spanning V ?

(b) What property of T corresponds to v1, . . . , vm being linearly inde-
pendent?

Proof. (a) We claim surjectivity of T corresponds to v1, . . . , vm spanning V .
To see this, suppose T is surjective, and let w ∈ V . Then there exists
z ∈ Fm such that Tz = w. This yields

z1v1 + · · ·+ zmvm = w,

and hence every w ∈ V can be expressed as a linear combination of
v1, . . . , vn. That is, span(v1, . . . , vn) = V .

(b) We claim injectivity of T corresponds to v1, . . . , vm being linearly inde-
pendent. To see this, suppose T is injective, and let a1, . . . , an ∈ F such
that

a1v1 + · · ·+ anvn = 0.

Then
T (a) = T (a1, . . . , an) = a1v1 + · · ·+ anvn = 0

which is true iff a = 0 since T is injective. That is, a1 = · · · = an = 0 and
hence v1, . . . , vn is linearly independent.

Problem 5

Give an example of a linear map T : R4 → R4 such that

rangeT = nullT.
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Proof. Define

T : R4 → R4

(x1, x2, x3, x4) 7→ (x3, x4, 0, 0).

Clearly T is a linear map, and we have

nullT = {(x1, x2, x3, x4) | x3 = x4 = 0 ∈ R} = R2 × {0}2

and
rangeT = {(x, y, 0, 0) | x, y ∈ R} = R2 × {0}2.

Hence rangeT = nullT , as desired.

Problem 7

Suppose V and W are finite-dimensional with 2 ≤ dimV ≤ dimW . Show
that {T ∈ L(V,W ) | T is not injective} is not a subspace of L(V,W ).

Proof. Let Z = {T ∈ L(V,W ) | T is not injective}, let v1, . . . , vm be a basis of
V , where m ≥ 2, and let w1, . . . , wn be a basis of W , where n ≥ m. We define
T ∈ L(V,W ) by its behavior on the basis

Tvk :=


0 if k = 1

w2 if k = 2
1
2wk otherwise

so that clearly T is not injective since Tv1 = 0 = T (0), and hence T ∈ Z.
Similarly, define S ∈ L(V,W ) by its behavior on the basis

Svk :=


w1 if k = 1

0 if k = 2
1
2wk otherwise

and note that S is not injective either since Sv2 = 0 = S(0), and hence S ∈ Z.
However, notice

(S + T )(vk) = wk for k = 1, . . . , n

and hence null(S + T ) = {0} since it takes the basis of V to the basis of W , so
that S + T is in fact injective. Therefore S + T 6∈ Z, and Z is not closed under
addition. Thus Z is not a subspace of L(V,W ).

Problem 9

Suppose T ∈ L(V,W ) is injective and v1, . . . , vn is linearly independent
in V . Prove that Tv1, . . . , T vn is linearly independent in W .
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Proof. Suppose a1, . . . , an ∈ F are such that

a1Tv1 + · · ·+ anTvn = 0.

Since T is a linear map, it follows

T (a1v1 + · · ·+ anvn) = 0.

But since nullT = {0} (by virtue of T being a linear map), this implies a1v1 +
· · · + anvn = 0. And since v1, . . . , vn are linearly independent, we must have
a1 = · · · = an = 0, which in turn implies Tv1, . . . , T vn is indeed linearly
independent in W .

Problem 11

Suppose S1, . . . , Sn are injective linear maps such that S1S2 . . . Sn makes
sense. Prove that S1S2 . . . Sn is injective.

Proof. For n ∈ Z≥2, let P (n) be the statement: S1, . . . , Sn are injective linear
maps such that S1S2 . . . Sn makes sense, and the product S1S2 . . . Sn is injective.
We induct on n.
Base case: Suppose n = 2, and assume S1 ∈ L(V0, V1) and S2 ∈ L(V1, V2), so
that the product S1S2 is defined, and assume that both S1 and S2 are injective.
Suppose v1, v2 ∈ V0 are such that v1 6= v2, and let w1 = S2v1 and w2 = S2v.
Since S2 is injective, w1 6= w2. And since S1 is injective, this in turn implies
that S1(w1) 6= S1(w2). In other words, S1(S2(v1)) 6= S1(S2(v2)), so that S1S2 is
injective as well, and hence P (2) is true.
Inductive step: Suppose P (k) is true for some k ∈ Z+, and consider the
product (S1S2 . . . Sk)Sk+1. The term in parentheses is injective by hypothesis,
and the product of this term with Sk+1 is injective by our base case. Thus
P (k + 1) is true.

By the principle of mathematical induction, the statement P (n) is true for
all n ∈ Z≥2, as was to be shown.

Problem 13

Suppose T is a linear map from F4 to F2 such that

nullT = {(x1, x2, x3, x4) ∈ F4 | x1 = 5x2 and x3 = 7x4}.

Prove that T is surjective.

Proof. We claim the list
(5, 1, 0, 0), (0, 0, 7, 1)
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is a basis of nullT . This implies

dim rangeT = dimF4 − dim nullT

= 4− 2

= 2,

and hence T is surjective (since the only 2-dimensional subspace of F2 is the
space itself). So let’s prove our claim that this list is a basis.

Clearly the list is linearly independent. To see that it spans nullT , suppose
x = (x1, x2, x3, x4) ∈ nullT , so that x1 = 5x2 and x3 = 7x4. We may write

x1
x2
x3
x4

 =


5x2
x2
7x4
x4

 = x2


5
1
0
0

+ x4


0
0
7
1

 ,

and indeed x is in the span of our list, so that our list is in fact a basis, completing
the proof.

Problem 15

Prove that there does not exist a linear map from F5 to F2 whose null
space equals

{(x1, x2, x3, x4, x5) ∈ F5 | x1 = 3x2 and x3 = x4 = x5}.

Proof. Suppose such a T ∈ L(F5,F2) did exist. We claim

(3, 1, 0, 0, 0), (0, 0, 1, 1, 1)

is a basis of nullT . This implies

dim rangeT = dimF5 − dim nullT

= 5− 2

= 3,

which is absurd, since the codomain of T has dimension 2. Hence such a T
cannot exist. So, let’s prove our claim that this list is a basis.

Clearly (3, 1, 0, 0, 0), (0, 0, 1, 1, 1) is linearly independent. To see that it spans
nullT , suppose x = (x1, . . . , x5) ∈ nullT , so that x1 = 3x2 and x3 = x4 = x5.
We may write 

x1
x2
x3
x4
x5

 =


3x2
x2
x3
x3
x3

 = x2


3
1
0
0
0

+ x3


0
0
1
1
1

 ,

and indeed x is in the span of our list, so that our list is in fact a basis, completing
the proof.
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Problem 17

Suppose V and W are both finite-dimensional. Prove that there exists
an injective linear map from V to W if and only if dimV ≤ dimW .

Proof. (⇒) Suppose T ∈ L(V,W ) is injective. If dimV > dimW , Thereom 3.23
tells us that no map from V to W would be injective, a contradiction, and so we
must have dimV ≤ dimW .

(⇐) Suppose dimV ≤ dimW . Then the inclusion map ι : V →W is both a
linear map and injective.

Problem 19

Suppose V and W are finite-dimensional and that U is a subspace of V .
Prove that there exists T ∈ L(V,W ) such that nullT = U if and only if
dimU ≥ dimV − dimW .

Proof. (⇐) Suppose dimU ≥ dimV − dimW . Since U is a subspace of V , there
exists a subspace U ′ of V such that

V = U ⊕ U ′.

Let u1, . . . um be a basis for U , let u′1, . . . , u
′
n be a basis for U ′, and let w1, . . . , wp

be a basis for W . By hypothesis, we have

m ≥ (m+ n)− p,

which implies p ≥ n. Thus we may define a linear map T ∈ L(V,W ) by its values
on the basis of V = U ⊕ U ′ by taking Tuk = 0 for k = 1, . . .m and Tu′j = wj
for j = 1, . . . , n (since p ≥ n, there is a wj for each u′j). The map is linear by
Theorem 3.5, and its null space is U by construction.

(⇒) Suppose U is a subspace of V , T ∈ L(V,W ), and nullT = U . Then,
since rangeT is a subspace of W , we have dim rangeT ≤ dimW . Combining
this inequality with the Fundamental Theorem of Linear Maps yields

dim nullT = dimV − dim rangeT

≥ dimV − dimW.

Since dim nullT = dimU , we have the desired inequality.

Problem 21

Suppose V is finite-dimensional and T ∈ L(V,W ). Prove that T is
surjective if and only if there exists S ∈ L(W,V ) such that TS is the
identity map on W .
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Proof. (⇒) Suppose T ∈ L(V,W ) is surjective, so that W is necessarily finite-
dimensional as well. Let v1, . . . , vm be a basis of V and let n = dimW , where
m ≥ n by surjectivity of T . Note that

Tv1, . . . , T vm

span W . Thus we may reduce this list to a basis by removing some elements
(possibly none, if n = m). Suppose this reduced list were Tvi1 , . . . , T vin for some
i1, . . . , in ∈ {1, . . . ,m}. We define S ∈ L(W,V ) by its behavior on this basis

S(Tvik) := vik for k = 1, . . . , n.

Suppose w ∈W . Then there exist a1, . . . , an ∈ F such that

w = a1Tvi1 + · · ·+ anTvin

and thus

TS(w) = TS (a1Tvi1 + · · ·+ anTvin)

= T
(
S (a1Tvi1 + · · ·+ anTvin)

)
= T

(
a1S(Tvi1) + · · ·+ anS(Tvin)

)
= T (a1vi1 + · · ·+ anvin)

= a1Tvi1 + · · ·+ anTvin

= w,

and so TS is the identity map on W .
(⇐) Suppose there exists S ∈ L(W,V ) such that TS ∈ L(W,W ) is the

identity map, and suppose by way of contradiction that T is not surjective, so
that dim rangeTS < dimW . By the Fundamental Theorem of Linear Maps,
this implies

dimW = dim nullTS + dim rangeTS

< dim nullTS + dimW

and hence dim nullTS > 0, a contradiction, since the identity map can only
have trivial null space. Thus T is surjective, as desired.

Problem 23

Suppose U and V are finite-dimensional vector spaces and S ∈ L(V,W )
and T ∈ L(U, V ). Prove that

dim rangeST ≤ min{dim rangeS, dim rangeT}.

Proof. We will show that both dim rangeST ≤ dim rangeS and dim rangeST ≤
dim rangeT , since this implies the desired inequality.

13



We first show that dim rangeST ≤ dim rangeS. Suppose w ∈ rangeST .
Then there exists u ∈ U such that ST (u) = w. But this implies that w ∈
rangeS as well, since Tu ∈ S−1(w). Thus rangeST ⊆ rangeS, which implies
dim rangeST ≤ dim rangeS.

We now show that dim rangeST ≤ dim rangeT . Note that if v ∈ nullT , so
that Tv = 0, then ST (v) = 0 (since linear maps take zero to zero). Thus we
have nullT ⊆ nullST , which implies dim nullT ≤ dim nullST . Combining this
inequality with the Fundamental Theorem of Linear Maps applied to T yields

dimU ≤ dim nullST + dim rangeT. (1)

Similarly, we have

dimU = dim nullST + dim rangeST. (2)

Combining (1) and (2) yields

dim nullST + dim rangeST ≤ dim nullST + dim rangeT

and hence dim rangeST ≤ dim rangeT , completing the proof.

Problem 25

Suppose V is finite-dimensional and T1, T2 ∈ L(V,W ). Prove that
rangeT1 ⊆ rangeT2 if and only if there exists S ∈ L(V, V ) such that
T1 = T2S.

Proof. (⇐) Suppose there exists S ∈ L(V, V ) such that T1 = T2S, and let
w ∈ rangeT1. Then there exists v ∈ V such that T1v = w, and hence T2S(v) = w.
But then w ∈ rangeT2 as well, and hence rangeT1 ⊆ rangeT2.

(⇒) Suppose rangeT1 ⊆ rangeT2, and let v1, . . . , vn be a basis of V . Let
wk = Tvk for k = 1, . . . , n. Then there exist u1, . . . , un ∈ V such that T2uk = wk
for k = 1, . . . , n (since wk ∈ rangeT1 implies wk ∈ rangeT2). Define S ∈ L(V, V )
by its behavior on the basis

Svk := uk for k = 1, . . . , n.

It follows that T2S(vk) = T2uk = wk = T1vk. Since T2S and T1 are equal on the
basis, they are equal as linear maps, as was to be shown.

Problem 27

Suppose p ∈ P(R). Prove that there exists a polynomial q ∈ P(R) such
that 5q′′ + 3q′ = p.
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Proof. Suppose deg p = n, and consider the linear map

D : Pn+1(R)→ Pn(R)

q 7→ 5q′′ + 3q′.

If we can show D is surjective, we’re done, since this implies that there exists
some q ∈ Pn+1(R) such that Dq = 5q′′ + 3q′ = p. To that end, suppose
r ∈ nullD. Then we must have r′′ = 0 and r′ = 0, which is true if and only if r
is constant. Thus any α ∈ R× is a basis of nullD, and so dim nullD = 1. By
the Fundamental Theorem of Linear Maps, we have

dim rangeD = dimPn+1(R)− dim nullD,

and hence

dim rangeD = (n+ 2)− 1 = n+ 1.

Since the only subspace of Pn(R) with dimension n+ 1 is the space itself, D is
surjective, as desired.

Problem 29

Suppose ϕ ∈ L(V,F). Suppose u ∈ V is not in nullϕ. Prove that

V = nullϕ⊕ {au | a ∈ F}.

Proof. First note that since u ∈ V − nullϕ, there exists some nonzero ϕ(u) ∈
rangeϕ and hence dim rangeϕ ≥ 1. But since rangeϕ ⊆ F, and dimF = 1, we
must have dim rangeϕ = 1. Thus, letting n = dimV , it follows

dim nullϕ = dimV − dim rangeϕ

= n− 1.

Let v1, . . . , vn−1 be a basis for nullϕ. We claim v1, . . . , vn−1, u is an extension
of this basis to a basis of V , which would then imply V = nullϕ⊕ {au | a ∈ F},
as desired.

To show v1, . . . , vn−1, u is a basis of V , it suffices to show linearly indepen-
dence (since it has length n = dimV ). So suppose a1, . . . , an ∈ F are such
that

a1v1 + · · ·+ an−1vn−1 + anu = 0.

We may write
anu = −a1v1 − · · · − an−1vn−1,

which implies anu ∈ nullϕ. By hypothesis, u 6∈ nullϕ, and thus we must
have an = 0. But now each of the a1, . . . , an−1 must be 0 as well (since
v1, . . . , vn−1 form a basis of nullϕ and thus are linearly independent). Therefore,
v1, . . . , vn−1, u is indeed linearly independent, proving our claim.
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Problem 31

Give an example of two linear maps T1 and T2 from R5 to R2 that have
the same null space but are such that T1 is not a scalar multiple of T2.

Proof. Let e1, . . . , e5 be the standard basis of R5. We define T1, T2 ∈ L(R5,R2)
by their behavior on the basis (using the standard basis for R2 as well)

T1e1 := e2

T1e2 := e1

T1ek := 0 for k = 3, 4, 5

and

T2e1 := e1

T2e2 := e2

T2ek := 0 for k = 3, 4, 5.

Clearly nullT1 = nullT2. We claim T2 is not a scalar multiple of T1. To see this,
suppose not. Then there exists α ∈ R such that T1 = αT2. In particular, this
implies T1e1 = αT2e1. But this is absurd, since T1e1 = e2 and T2e1 = e1, and of
course e1, e2 is linearly independent. Thus no such α can exist, and T1, T2 are
as desired.

C: Matrices

Problem 1

Suppose V and W are finite-dimensional and T ∈ L(V,W ). Show that
with respect to each choice of bases of V and W , the matrix of T has at
least dim rangeT nonzero entries.

Proof. Let v1, . . . , vn be a basis of V , let w1, . . . , wm be a basis of W , let
r = dim rangeT , and let s = dim nullT . Then there are s basis vectors of V
which map to zero and r basis vectors of V with nontrivial representation as linear
combinations of w1, . . . , wm. That is, suppose Tvk 6= 0, where k ∈ {1, . . . , n}.
Then there exist a1, . . . , am ∈ F, not all zero, such that

Tvk = a1w1 + · · ·+ amwm.

The coefficients form column k of M(T ), and there are r such vectors in the
basis of V . Hence there are r columns of M(T ) with at least one nonzero entry,
as was to be shown.
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Problem 3

Suppose V and W are finite-dimensional and T ∈ L(V,W ). Prove that
there exist a basis of V and a basis of W such that with respect to these
bases, all entries of M(T ) are 0 except the entries in row j, column j,
equal 1 for 1 ≤ j ≤ dim rangeT .

Proof. Let R be the subspace of V such that

V = R⊕ nullT,

let r1, . . . , rm be a basis of R (where m = dim rangeT ), and let v1, . . . , vn be
a basis of nullT (where n = dim nullT ). Then r1, . . . , rm, v1, . . . , vn is a basis
of V . It follows that Tr1, . . . , T rm is a basis of rangeT , and hence there is an
extension of this list to a basis of W . Suppose Tr1, . . . , T rm, w1, . . . , wp is such
an extension (where p = dimW −m). Then, for j = 1, . . .m, we have

Trj =

 m∑
i=1

δi,j · Trt

+

 p∑
k=1

0 · wk

 ,

where δi,j is the Kronecker delta function. Thus, column j of M(T ) is has an
entry of 1 in row j and 0’s elsewhere, where j ranges over 1 to m = dim rangeT .
Since Tv1 = · · · = Tvn = 0, the remaining columns of M(T ) are all zero. Thus
M(T ) has the desired form.

Problem 5

Suppose w1, . . . , wn is a basis of W and V is finite-dimensional. Suppose
T ∈ L(V,W ). Prove that there exists a basis v1, . . . , vm of V such that all
the entries in the first row ofM(T ) (with respect to the bases v1, . . . , vm
and w1, . . . , wn) are 0 except for possibly a 1 in the first row, first column.

Proof. First note that if rangeT ⊆ span(w2, . . . , wn), the first row ofM(T ) will
be all zeros regardless of choice of basis for V .

So suppose rangeT 6⊆ span(w2, . . . , wn) and let u1 ∈ V be such that Tu1 6∈
span(w2, . . . , wn). There exist a1, . . . , an ∈ F such that

Tu1 = a1w1 + · · ·+ anwn,

and notice a1 6= 0 since Tu1 6∈ span(w2, . . . , wn). Hence we may define

z1 :=
1

a1
u1.

It follows
Tz1 = w1 +

a2
a1
w2 + · · ·+ an

a1
wn. (3)
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Now extend z1 to a basis z1, . . . , zm of V . Then for k = 2, . . . ,m, there exist
A1,k, . . . , An,k ∈ F such that

Tzk = A1,kw1 + · · ·+An,kwn,

and notice

T (zk −A1,kz1) = Tzk −A1,kTz1

=
(
A1,kw1 + · · ·+An,kwn

)
−A1,k

(
w1 +

a2
a1
w2 + · · ·+ an

a1
wn

)
=
(
A2,k −A1,k

) a2
a1
w2 + · · ·+

(
An,k −A1,k

) an
a1
wn. (4)

Now we define a new list in V by

vk :=

{
z1 if k = 1

zk −A1,kz1 otherwise

for k = 1, . . . ,m. We claim v1, . . . , vm is a basis. To see this, it suffices to
prove the list is linearly independent, since its length equals dimV . So suppose
b1, . . . , bm ∈ F are such that

b1v1 + · · ·+ bmvm = 0.

By definition of the vk, it follows

b1z1 + b2(z2 −A1,kz1) + · · ·+ bm(zm −A1,kz1) = 0.

But since z1, . . . , zm is a basis of V , the expression on the LHS above is simply a
linear combination of vectors in a basis. Thus we must have b1 = · · · = bm = 0,
and indeed v1, . . . , vm are linearly independent, as claimed.

Finally, notice (3) tells us the first column of M(T, vk, wk) is all 0’s except a
1 in the first entry, and (4) tells us the remaining columns have a 0 in the first
entry. Thus M(T, vk, wk) has the desired form, completing the proof.

Problem 7

Suppose S, T ∈ L(V,W ). Prove that M(S + T ) =M(S) +M(T ).

Proof. Let v1, . . . , vm be a basis of V and let w1, . . . , wn be a basis of W . Also,
let A =M(S) and B =M(T ) be the matrices of these linear transformations
with respect to these bases. It follows

(S + T )vk = Svk + Tvk

=
(
A1,kw1 + · · ·+An,kwn

)
+
(
B1,kw1 + · · ·+Bn,kwn

)
= (A1,k +B1,k)w1 + · · ·+ (An,k +Bn,k)wn.

HenceM(S+T )j,k = Aj,k+Bj,k, and indeed we haveM(S+T ) =M(S)+M(T ),
as desired.
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Problem 9

Suppose A is an m-by-n matrix and c =


c1
...
cn

 is an n-by-1 matrix.

Prove that
Ac = c1A·,1 + · · ·+ cnA·,n.

Proof. By definition, it follows

Ac =


A1,1 A1,2 . . . A1,n

A2,1 A2,2 . . . A2,n

...
...

. . .
...

Am,1 Am,2 . . . Am,n



c1
c2
...
cn



=


A1,1c1 +A1,2c2 + · · ·+A1,ncn
A2,1c1 +A2,2c2 + · · ·+A2,ncn

...
Am,1c1 +Am,2c2 + · · ·+Am,ncn



= c1


A1,1

A2,1

...
Am,1

+ c2


A1,2

A2,2

...
Am,2

+ · · ·+ cn


A1,n

A2,n

...
Am,n


= c1A·,1 + · · ·+ cnA·,n,

as desired.

Problem 11

Suppose a = (a1, . . . , an) is a 1-by-n matrix and C is an n-by-p matrix.
Prove that

aC = a1C1,· + · · ·+ anCn,·.
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Proof. By definition, it follows

aC = (a1, . . . , an)


C1,1 C1,2 . . . C1,p

C2,1 C2,2 . . . C2,p

...
...

. . .
...

Cn,1 Cn,2 . . . Cn,p


=

 n∑
k=1

akCk,1,

n∑
k=1

akCk,2, . . . ,

n∑
k=1

akCk,p


=

n∑
k=1

(
akCk,1, . . . , akCk,p

)
=

n∑
k=1

ak
(
Ck,1, . . . , Ck,p

)
=

n∑
k=1

akCk,·,

as desired.

Problem 13

Prove that the distributive property holds for matrix addition and matrix
multiplication. In other words, suppose A,B,C,D,E, and F are matrices
whose sizes are such that A(B+C) and (D+E)F make sense. Prove that
AB+AC and DF +EF both make sense and that A(B+C) = AB+AC
and (D + E)F = DF + EF .

Proof. First note that if A(B + C) makes sense, then the number of columns of
A must equal the number of rows of B +C. But the sum of two matrices is only
defined if their dimensions are equal, and hence the number of rows of both B
and C must equal the number of columns of A. Thus AB + AC makes sense.
So suppose A ∈ Fm,n and B,C ∈ Fn,p. It follows(

A(B + C)
)
j,k

=

n∑
r=1

Aj,r(B + C)r,k

=

n∑
r=1

Aj,r(Br,k + Cr,k)

=

n∑
r=1

(
Aj,rBr,k +Aj,rCr,k

)
=

n∑
r=1

Aj,rBr,k +

n∑
r=1

Aj,rCr,k

= (AB)j,k + (AC)j,k,
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proving the first distributive property.
Now note that if (D + E)F makes sense, then the number of columns of

D + E must equal the number of rows of F . Hence the number of columns of
both D and E must equal the number of rows of F , and thus DF + EF makes
sense as well. So suppose D,E ∈ Fm,n and F ∈ Fn,p. It follows

(
(D + E)F

)
j,k

=

n∑
r=1

(D + E)j,rFr,k

=

n∑
r=1

(Dj,r + Ej,r)Fr,k

=

n∑
r=1

Dj,rFr,k + Ej,rFr,k

=

n∑
r=1

Dj,rFr,k +

n∑
r=1

Ej,rFr,k

= (DF )j,k + (EF )j,k,

proving the second distributive property.

Problem 15

Suppose A is an n-by-n matrix and 1 ≤ j, k ≤ n. show that the entry in
row j, column k, of A3 (which is defined to mean AAA) is

n∑
p=1

n∑
r=1

Aj,pAp,rAr,k.

Proof. For 1 ≤ p, k ≤ n, we have

(A2)p,k =

n∑
r=1

Ap,rAr,k.

Thus, for 1 ≤ j, k ≤ n, it follows

(A3)j,k =

n∑
p=1

Aj,p(A
2)p,k

=

n∑
p=1

Aj,p

n∑
r=1

Ap,rAr,k

=

n∑
p=1

n∑
r=1

Aj,pAp,rAr,k,

as desired.
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D: Invertibility and Isomorphic Vector Spaces

Problem 1

Suppose T ∈ L(U, V ) and S ∈ L(V,W ) are both invertible linear maps.
Prove that ST ∈ L(U,W ) is invertible and that (ST )−1 = T−1S−1.

Proof. For all u ∈ U , we have

(T−1S−1ST )(u) = T−1(S−1(S(T (u))))

= T−1(I(T (u))

= T−1(T (u))

= v

and hence T−1S−1 is a left inverse of ST . Similarly, for all w ∈W , we have

(STT−1S−1)(w) = S(T (T−1(S−1(w))))

= S(I(S−1(w)))

= S(S−1(w))

= w

and hence T−1S−1 is a right inverse of ST . Therefore, ST is invertible, as
desired.

Problem 3

Suppose V is finite-dimensional, U is a subspace of V , and S ∈ L(U, V ).
Prove there exists an invertible operator T ∈ L(V ) such that Tu = Su
for every u ∈ U if and only if S is injective.

Proof. (⇐) Suppose S is injective, and let W be the subspace of V such that
V = U ⊕W . Let u1, . . . , um be a basis of U and let w1, . . . , wn be a basis of W ,
so that u1, . . . , um, w1, . . . , wn is a basis of V . Define T ∈ L(V ) by its behavior
on this basis of V

Tuk := Suk

Twj := wj

for k = 1, . . . ,m and j = 1, . . . , n. Since S is injective, so too is T . And since V
is finite-dimensional, this implies that T is invertible, as desired.

(⇒) Suppose there exists an invertible operator T ∈ L(V ) such that Tu = Su
for every u ∈ U . Since T is invertible, it is also injective. And since T is injective,
so to is S = T |U , completing the proof.
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Problem 5

Suppose V is finite-dimensional and T1, T2 ∈ L(V,W ). Prove that
rangeT1 = rangeT2 if and only if there exists an invertible operator
S ∈ L(V ) such that T1 = T2S.

Proof. (⇒) Suppose rangeT1 = rangeT2 := R, so that nullT1 = nullT2 := N as
well. Let Q be the unique subspace of V such that

V = N ⊕Q,

and let u1, . . . , um be a basis of N and v1, . . . , vn be a basis of Q. We claim
there exists a unique qk ∈ Q such that T2qk = T1vk for k = 1, . . . , n. To see this,
suppose qk, q

′
k ∈ Q are such that T2qk = T2q

′
k = T1vk. Then T2(qk − q′k) = 0,

and hence qk − q′k ∈ N . But since N ∩Q = {0}, this implies qk − q′k = 0 and
thus qk = q′k. And so the choice of qk is indeed unique. We now define S ∈ L(V )
by its behavior on the basis

Suk = uk for k = 1, . . . ,m

Svj = qj for j = 1, . . . , n.

Let v ∈ V , so that there exist a1, . . . , am, b1, . . . , bn ∈ F such that

v = a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn.

It follows

(T2S)(v) = T2(S(a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn))

= T2(a1Su1 + · · ·+ amSum + b1Sv1 + · · ·+ bnSvn)

= T2(a1u1 + · · ·+ amum + b1q1 + · · ·+ bnqn)

= a1T2u1 + · · ·+ amT2um + b1T2q1 + · · ·+ bnT2qn

= b1T1v1 + · · ·+ bnT1vn.

Similarly, we have

T1v = T1(a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn)

= a1T1u1 + · · ·+ amT1um + b1T1v1 + · · ·+ bnT1vn

= b1T1v1 + · · ·+ bnT1vn,

and so indeed T1 = T2S. To see that S is invertible, it suffices to prove it is
injective. So let v ∈ V be as before, and suppose Sv = 0. It follows

Sv = S(a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn)

= (a1u1 + · · ·+ amum) + (b1Sv1 + · · ·+ bnSvn)

= 0.
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By the proof of Theorem 3.22, Sv1, . . . , Svn is a basis of R, and thus the list
u1, . . . , um, Sv1, . . . , Svn is a basis of V , and each of the a’s and b’s must be zero.
Therefore S is indeed injective, completing the proof in this direction.

(⇐) Suppose there exists an invertible operator S ∈ L(V ) such that T1 = T2S.
If w ∈ rangeT1, then there exists v ∈ V such that T1v = w, and hence (T2S)(v) =
T2(S(v)) = w, so that w ∈ rangeT2 and we have rangeT1 ⊆ rangeT2. Conversely,
suppose w′ ∈ rangeT2, so that there exists v′ ∈ V such that T2v

′ = w′. Then,
since T2 = T1S

−1, we have (T1S
−1)(v′) = T1(S−1(v′)) = w′, so that w′ ∈

rangeT1. Thus rangeT2 ⊆ rangeT1, and we have shown rangeT1 = rangeT2, as
desired.

Problem 7

Suppose V and W are finite-dimensional. Let v ∈ V . Let

E = {T ∈ L(V,W ) | Tv = 0}.

(a) Show that E is a subspace of L(V,W ).

(b) Suppose v 6= 0. What is dimE?

Proof. (a) First note that the zero map is clearly an element of E, and hence
E contains the additive identity of L(V,W ). Now suppose T1, T2 ∈ E.
Then

(T1 + T2)(v) = T1v + T2v = 0

and hence T1+T2 ∈ E, so that E is closed under addition. Finally, suppose
T ∈ E and λ ∈ F. Then

(λT )(v) = λTv = λ0 = 0,

and so E is closed under scalar multiplication as well. Thus E is indeed a
subspace of L(V,W ).

(b) Suppose v 6= 0, and let dimV = m and dimW = n. Extend v to a basis
v, v2, . . . , vm of V , and endow W with any basis. Let E denote the subspace
of Fm,n of matrices whose first column is all zero.

We claim T ∈ E if and only if M(T ) ∈ E , so that M : E → E is an
isomorphism. Clearly if T ∈ E (so that Tv = 0), then M(T )·,1 is all zero,
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and hence T ∈ E . Conversely, suppose M(T ) ∈ E . It follows

M(Tv) =M(T )M(v)

=


0 A1,2 . . . A1,n

0 A2,2 . . . A2,n

...
...

...
...

0 Am,2 . . . Am,n




1
0
...
0



=


0
0
...
0

 ,

and thus we must have Tv = 0 so that T ∈ E, proving our claim. So
indeed E ∼= E .

Now note that E has as a basis the set of all matrices with a single 1 in
a column besides the first, and zeros everywhere else. There are mn− n
such matrices, and hence dim E = mn− n. Thus we have dimE = mn− n
as well, as desired.

Problem 9

Suppose V is finite-dimensional and S, T ∈ L(V ). Prove that ST is
invertible if and only if both S and T are invertible.

Proof. (⇐) Suppose S and T are both invertible. Then by Problem 1, ST is
invertible.

(⇒) Suppose ST is invertible. We will show T is injective and S is surjective.
Since V is finite-dimensional, this implies that both S and T are invertible. So
suppose v1, v2 ∈ V are such that Tv1 = Tv2. Then (ST )(v1) = (ST )(v2), and
since ST is invertible (and hence injective), we must have v1 = v2, so that T
is injective. Next, suppose v ∈ V . Since T−1 is surjective, there exists w ∈ V
such that T−1w = v. And since ST is surjective, there exists p ∈ V such that
(ST )(p) = w. It follows that (STT−1)(p) = T−1(w), and hence Sp = v. Thus S
is surjective, completing the proof.

Problem 11

Suppose V is finite-dimensional and S, T, U ∈ L(V ) and STU = I. Show
that T is invertible and that T−1 = US.

Proof. Notice STU is invertible since STU = I and I is invertible. By Problem
9, we have that (ST )U is invertible if and only if ST and U are invertible. By
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a second application of the result, ST is invertible if and only if S and T are
invertible. Thus S, T, and U are all invertible. To see that T−1 = US, notice

US = (T−1T )US

= T−1(S−1S)TUS

= T−1S−1(STU)S

= T−1S−1S

= T−1,

as desired.

Problem 13

Suppose V is a finite-dimensional vector space and R,S, T ∈ L(V ) are
such that RST is surjective. Prove that S is injective.

Proof. Since V is finite-dimensional and RST is surjective, RST is also invertible.
By Problem 9, we have that (RS)T is invertible if and only if RS and T are
invertible. By a second application of the result, RS is invertible if and only if
R and S are invertible. Thus R,S, and T are all invertible, and hence injective.
In particular, S is injective, as desired.

Problem 15

Prove that every linear map from Fn,1 to Fm,1 is given by a matrix
multiplication. In other words, prove that if T ∈ L(Fn,1,Fm,1), then
there exists an m-by-n matrix A such that Tx = Ax for every x ∈ Fn,1.

Proof. Endow both Fn,1 and Fm,1 with the standard basis, and let T ∈
L(Fn,1,Fm,1). Let A = M(T ) with respect to these bases, and note that if
x ∈ Fn,1, then M(x) = x (and similarly if y ∈ Fm,1, then M(y) = y). Hence

Tx =M(Tx)

=M(T )M(x)

= Ax,

as desired.

Problem 16

Suppose V is finite-dimensional and T ∈ L(V ). Prove that T is a scalar
multiple of the identity if and only if ST = TS for every S ∈ L(V ).
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Proof. (⇒) Suppose T = λI for some λ ∈ F, and let S ∈ L(V ) be arbitrary. For
any v ∈ V , we have STv = S(λI)v = λSv and TSv = (λI)Sv = λSv, and hence
ST = TS. Since S was arbitrary, we have the desired result.

(⇐) Suppose ST = TS for every S ∈ L(V ), and let v ∈ V be arbitrary.
Consider the list v, Tv. We claim it is linearly dependent. To see this, suppose
not. Then v, Tv can be extended to a basis v, Tv, u1, . . . , un of V . Define
S ∈ L(V ) by

S(αv + βTv + γ1u1 + · · ·+ γnun) = βv,

where α, β, γ1, . . . , γn are the unique coefficients of our basis for the given input
vector. In particular, notice S(Tv) = v and Sv = 0. Thus STv = TSv implies
v = T (0) = 0, contradicting our assumption that v, TV is linearly independent.
So v, Tv must be linearly dependent, and so for for all v ∈ V there exists λv ∈ F
such that Tv = λvv (where λ0 can be any nonzero element of F, since T0 = 0).
We claim λv is independent of the choice of v for v ∈ V − {0}, hence Tv = λv
for all v ∈ V (including v = 0) and some λ ∈ F, and thus T = λI.

So suppose w, z ∈ V −{0} are arbitrary. We want to show λw = λz. If w and
z are linearly dependent, then there exists α ∈ F such that w = αz. It follows

λww = Tw

= T (αz)

= αTz

= αλzz

= λz(αz)

= λzw.

Since w 6= 0, this implies λw = λz. Next suppose w and z are linearly independent.
Then we have

λw+z(w + z) = T (w + z)

= Tw + Tz

= λww + λzz,

and hence

(λw+z − λw)w + (λw+z − λz)z = 0.

Since w and z are assumed to be linearly independent, we have λw+z = λw and
λw+z = λz, and hence again we have λw = λz, completing the proof.

Problem 17

Suppose V is finite-dimensional and E is a subspace of L(V ) such that
ST ∈ E and TS ∈ E for all S ∈ L(V ) and all T ∈ E . Prove that E = {0}
or E = L(V ).
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Proof. If E = {0}, we’re done. So suppose E 6= {0}. If dimV = n, then
L(V ) ∼= Fn,n, and so there exists an isomorphic subspace E := M(E) ⊆ Fn,n
with the property that AB ∈ E and BA ∈ E for all A ∈ Fn,n and all B ∈ E. It
suffices to show E = Fn,n.

Define Ei,j to be the matrix which is 1 in row i and column j and 0 everywhere
else, and let A ∈ Fn,n be nonzero. Then there exists some 1 ≤ j, k ≤ n such
that Aj,k 6= 0. Notice for 1 ≤ i, j, r, s ≤ n, we have Ei,jA ∈ E, and hence
Ei,jAEr,s ∈ E. This product has the form

Ei,jAEk,` = Aj,k · Ei,`.

In other words, Ei,jAEk,` takes Aj,k and puts it in the ith row and `th column
of a matrix which is 0 everywhere else. Since E is closed under addition, this
implies

E1,jAEk,1 + E2,jAEk,2 + · · ·+ En,jAEk,n = Aj,k · I ∈ E.

But since E is closed under scalar multiplication, and Aj,k 6= 0, we have(
1

Aj,k
·Aj,k

)
· I = I ∈ E.

Since E contains I, by our characterization of E it must also contain every
element of Fn,n. Thus E = Fn,n, and since E ∼= E , we must have E = L(V ), as
desired.

Problem 19

Suppose T ∈ L(P(R)) is such that T is injective and deg Tp ≤ deg p for
every nonzero polynomial p ∈ P(R).

(a) Prove that T is surjective.

(b) Prove that deg Tp = deg p for every nonzero p ∈ P(R).

Proof. (a) Let q ∈ P(R), and suppose deg q = n. Let Tn = T |Pn(R), so
that Tn is the restriction of T to a linear operator on Pn(R). Since T
is injective, so is Tn. And since Tn is an injective linear operator over a
finite-dimensional vector space, Tn is surjective as well. Thus there exists
r ∈ Pn(R) such that Tnr = q, and so we have Tr = q as well. Therefore T
is surjective.

(b) We induct on the degree of the restriction maps Tn ∈ L(Pn(R)), each of
which is bijective by (a). Let P (k) be the statement: deg Tkp = k for every
nonzero p ∈ Pk(R).
Base case: Suppose p ∈ P0(R) is nonzero. Since T0 is a bijective , T0p = 0
iff p = 0 (the zero polynomial), which is the only polynomial with degree
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< 0. Since p is nonzero by hypothesis, we must have deg T0p = 0. Hence
P (0) is true.
Inductive step: Let n ∈ Z+, and suppose P (k) is true for all 0 ≤ k < n.
Let p ∈ Pn(R) be nonzero. If deg Tnp < n, then for some k < n there
exists q ∈ Pk(R) and Tk ∈ P(R) such that Tkq = p (since Tk is surjective).
Hence Tq = Tp, a contradiction since deg p 6= deg q and T is injective.
Thus we must have deg Tnp = n, and P (n) is true.

By the principle of mathematical induction, P (k) is true for all k ∈ Z≥0.
Hence deg Tp = deg p for all nonzero p ∈ P(R), since Tp = Tkp for
k = deg p.

E: Products and Quotients of Vector Spaces

Problem 1

Suppose T is a function from V to W . The graph of T is the subset of
V ×W defined by

graph of T = {(v, Tv) ∈ V ×W | v ∈ V }.

Prove that T is a linear map if and only if the graph of T is a subspace
of V ×W .

Proof. Define G := {(v, Tv) ∈ V ×W | v ∈ V }.
(⇒) Suppose T is a linear map. Since T is linear, T0 = 0, and hence (0, 0) ∈ G,

so that G contains the additive identity. Next, let (v1, T v1), (v2, T v2) ∈ G. Then

(v1, T v1) + (v2, T v2) = (v1 + v2, T v1 + Tv2) = (v1 + v2, T (v1 + v2)) ∈ G,

and G is closed under addition. Lastly, let λ ∈ F and (v, Tv) ∈ G. It follows

λ(v, Tv) = (λv, λTv) = (λv, T (λv)) ∈ G,

and G is closed under scalar multiplication. Thus G is a subspace of V ×W .
(⇐) Suppose G is a subspace of V ×W , and let (v1, T v1), (v2, T v2) ∈ G.

Since G is closed under addition, it follows

(v1 + v2, T v1 + Tv2) ∈ G,

and hence we must have Tv1 +Tv2 = T (v1 +v2), so that T is additive. And since
G is closed under scalar multiplication, for λ ∈ F and (v, Tv) ∈ G, it follows

(λv, λTv) ∈ G,

and hence we must have λTv = T (λv), so that T is homogeneous. Therefore, T
is a linear map, as desired.
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Problem 3

Give an example of a vector space V and subspaces U1, U2 of V such that
U1 × U2 is isomorphic to U1 + U2 but U1 + U2 is not a direct sum.

Proof. Define the following two subspaces of P(R)

U1 := P(R)

U2 := R,

so that U1 ∩ U2 = R and the sum U1 + U2 = P(R) is not direct. Endow P(R)
and R with their standard bases, and define ϕ by its behavior on the basis of
U1 × U2

ϕ : U1 × U2 → U1 + U2(
Xk, 0

)
7→ Xk+1

(0, 1) 7→ 1.

We claim ϕ is an isomorphism. To see that ϕ is injective, suppose

(a0 + a1X + · · ·+ amX
m, α) , (b0 + b1X + · · ·+ bnX

n, β) ∈ U1 × U2

and
(a0 + a1X + · · ·+ amX

m, α) 6= (b0 + b1X + · · ·+ bnX
n, β) .

We have

ϕ (a0 + a1X + · · ·+ amX
m, α) = α+ a0X + a1X

2 + · · ·+ amX
m+1 (5)

and

ϕ (b0 + b1X + · · ·+ bnX
n, β) = β + b0X + b1X

2 + · · ·+ bnX
n+1. (6)

Since α 6= β, this implies (5) does not equal (6) and hence ϕ is injective. To see
that ϕ is surjective, suppose c0 + c1X + · · ·+ cpX

p ∈ U1 + U2. Then

ϕ
(
c1 + c2X + · · ·+ cpX

p−1, c0

)
= c0 + c1X + · · ·+ cpX

p

and ϕ is indeed surjective.
Since ϕ an injective and surjective linear map, it is an isomorphism. Thus

U1 × U2
∼= U1 + U2, as was to be shown.

Problem 5

Suppose W1, . . . ,Wm are vector spaces. Prove that L(V,W1 × · · · ×Wm)
and L(V,W1)× · · · × L(V,Wm) are isomorphic vector spaces.
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Proof. Define the projection map πk for k = 1, . . . ,m by

πk : W1 × · · · ×Wm →Wk

(w1, . . . , wm) 7→ wk.

Clearly πk is linear. Now define

ϕ : L(V,W1 × · · · ×Wm)→ L(V,W1)× · · · × L(V,Wm)

T 7→ (π1T, . . . , πmT ).

To see that ϕ is linear, let T1, T2 ∈ L(V,W1 × · · · ×Wm). It follows

ϕ(T1 + T2) = (π1(T1 + T2), . . . , πm(T1 + T2))

= (π1T1 + π1T2, . . . , πmT1 + πmT2)

= (π1T1, . . . , πmT1) + (π1T2, . . . , πmT2)

= ϕ(T1) + ϕ(T2),

and hence ϕ is additive. Now for λ ∈ F and T ∈ L(V,W1 × · · · ×Wm), we have

ϕ(λT ) = (π1(λT ), . . . , πm(λT ))

= (λ(π1T ), . . . , λ(πmT ))

= λ(π1T, . . . , πmT ),

and thus ϕ is homogenous. Therefore, ϕ is linear.
We now show ϕ is an isomorphism. To see that it is injective, suppose

T ∈ L(V,W1 × · · · ×Wm) and ϕ(T ) = 0. Then

(π1T, . . . , πmT ) = (0, . . . , 0)

which is true iff T is the zero map. Thus ϕ is injective. To see that ϕ is surjective,
suppose (S1, . . . , Sm) ∈ L(V,W1)× · · · × L(V,Wm). Define

S : V →W1 × · · · ×Wm

v 7→ (S1v, . . . , Smv),

so that ϕkS = Sk for k = 1, . . . ,m. Then

ϕ(S) = (π1S, . . . , πmS)

= (S1, . . . , Sn)

and S is indeed surjective. Therefore, ϕ is an isomorphism, and we have

L(V,W1 × · · · ×Wm) ∼= L(V,W1)× · · · × L(V,Wm),

as desired.
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Problem 7

Suppose v, x are vectors in V and U,W are subspaces of V such that
v + U = x+W . Prove that U = W .

Proof. First note that since v + 0 = v ∈ v + U , there exists w0 ∈W such that
v = x+w0, and hence v− x = w0 ∈W . Similarly, there exists u0 ∈ U such that
x− v = u0 ∈ U .

Suppose u ∈ U . Then there exists w ∈W such that v+u = x+w, and hence

u = (x− v) + w = −w0 + w ∈W,

and we have U ⊆ W . Conversely, suppose w′ ∈ W . Then there exists u′ ∈ U
such that x+ w′ = v + u′, and hence

w′ = (v − x) + u′ = −u0 + u′ ∈ U,

and we have W ⊆ U . Therefore U = W , as desired.

Problem 8

Prove that a nonempty subset A of V is an affine subset of V if and only
if λv + (1− λ)w ∈ A for all v, w ∈ A and all λ ∈ F.

Proof. (⇒) Suppose A ⊆ V is an affine subset of V . Then there exists x ∈ V
and a subspace U ⊆ V such that A = x + U . Suppose v, w ∈ A. Then there
exist u1, u2 ∈ U such that v = x+ u1 and w = x+ u2. Thus, for all λ ∈ F, we
have

λv + (1− λ)w = λ(x+ u1) + (1− λ)(x+ u2)

= x+ λu1 + (1− λ)u2.

Since λu1 + (1− λ)u2 ∈ U , this implies v + (1− λ)w ∈ x+ U = A, as desired.
(⇐) Suppose λv+ (1−λ)w ∈ A for all v, w ∈ A and all λ ∈ F. Choose a ∈ A

and define
U := −a+A.

We claim U is a subspace of V . Clearly 0 ∈ U since a ∈ A. Let x ∈ U , so that
x = −a+ a0 for some a0 ∈ A, and let λ ∈ F. It follows

λa0 + (1− λ)a ∈ A⇒ −λa+ λa0 + a ∈ A⇒ λ(−a+ a0) ∈ −a+A = U,

and thus λx = λ(−a+a0) ∈ U , and U is closed under scalar multiplication. Now
let x, y ∈ U . Then there exist a1, a2 ∈ A such that x = −a+a1 and y = −a+a2.
Notice

1

2
a1 +

(
1− 1

2

)
a2 =

1

2
a1 +

1

2
a2 ∈ A,
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and hence

−a+
1

2
a1 +

1

2
a2 ∈ U.

It follows

x+ y = −2a+ a1 + a2

= 2

(
−a+

1

2
a1 +

1

2
a2

)
∈ U,

using the fact that U has already been shown to be closed under scalar multipli-
cation. Thus U is also closed under addition, and so U is a subspace of V . Now,
since A = a+ U , we have that A is indeed an affine subset of V , as desired.

Problem 9

Suppose A1 and A2 are affine subsets of V . Prove that the intersection
A1 ∩A2 is either an affine subset of V or the empty set.

Proof. If A1 ∩ A2 = ∅, we’re done, so suppose A1 ∩ A2 is nonempty and let
v ∈ A1 ∩A2. Then we may write

A1 = v + U1 and A2 = v + U2

for some subspaces U1, U2 ⊆ V .
We claim A1 ∩ A2 = v + (U1 ∩ U2), which is an affine subset of V . To

see this, suppose x ∈ v + (U1 ∩ U2). Then there exists u ∈ U1 ∩ U2 such that
x = v + u. Since u ∈ U1, we have x ∈ v + U1 = A1. And since u ∈ U2, we have
x ∈ v + U2 = A2. Thus x ∈ A1 ∩A2 and v + (U1 ∩ U2) ⊆ A1 ∩A2. Conversely,
suppose y ∈ A1∩A2. Then there exist u1 ∈ U1 and u2 ∈ U2 such that y = v+u1
and y = v + u2. But this implies u1 = u2, and hence u1 = u2 ∈ U1 ∩ U2, thus
y ∈ v + (U1 ∩ U2). Therefore A1 ∩ A2 ⊆ v + (U1 ∩ U2), and hence we have
A1 ∩A2 = v + (U1 ∩ U2), as claimed.

Problem 11

Suppose v1, . . . , vm ∈ V . Let

A = {λ1v1 + · · ·+ λmvm | λ1, . . . , λm ∈ F and λ1 + · · ·+ λm = 1}.

(a) Prove that A is an affine subset of V .

(b) Prove that every affine subset of V that contains v1, . . . , vm also
contains A.

(c) Prove that A = v + U for some v ∈ V and some subspace U of V
with dimU ≤ m− 1.
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Proof. (a) Let v, w ∈ A, so that there exist α1, . . . , αm ∈ F and β1, . . . , βm ∈ F
such that

v = α1v1 + · · ·+ αmvm

w = β1v1 + · · ·+ βmvm,

where
∑
αk = 1 and

∑
βk = 1. Given λ ∈ F, it follows

λv + (1− λ)w = λ

m∑
k=1

αkvk + (1− λ)

m∑
k=1

βkvk

=

m∑
k=1

[
λαk + (1− λ)βk

]
vk.

But notice

m∑
k=1

[
λαk + (1− λ)βk

]
= λ+ (1− λ) = 1,

and hence λv + (1 − λ)w ∈ A by the way we defined A. By Problem 8,
this implies that A is an affine subset of V , as was to be shown.

(b) We induct on m.
Base case: When m = 1, the statement is trivially true, since A = {v1},
and hence any affine subset of V that contains v1 of course contains A.
Inductive step: Let k ∈ Z+, and suppose the statement is true for
m = k. Suppose A′ is an affine subset of V that contains v1, . . . , vk+1, and
let x ∈ A. Then there exist λ1, . . . , λk+1 ∈ F such that

∑
j λj = 1 and

x = λ1v1 + · · ·+ λk+1vk+1.

Now, if λk+1 = 1, then x = vk+1 ∈ A′. Otherwise, we have

λ1
1− λk+1

+ · · ·+ λk
1− λk+1

= 1,

and hence by our inductive hypothesis, this implies

λ1
1− λk+1

v1 + · · ·+ λk
1− λk+1

vk ∈ A′.

By Problem 8, we know

(1− λk+1)

(
λ1

1− λk+1
v1 + · · ·+ λk

1− λk+1
vk

)
+ λk+1vk+1 ∈ A′.

But after simplifying, this tells us

λ1v1 + · · ·+ λk+1vk+1 = x ∈ A′.
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Hence A ⊆ A′, and the statement is true for m = k + 1.

By the principal of mathematical induction, the statement is true for all
m ∈ Z+. Thus any affine subset of V that contains v1, . . . , vm also contains
A, as was to be shown.

(c) Define U := span(v2 − v1, . . . , vm − v1). Let x ∈ A, so that there exist
λ1, . . . , λm ∈ F with

∑
k λk = 1 such that

x = λ1v1 + · · ·+ λmvm.

Notice

v1 + λ2(v2 − v1) + · · ·+ λm(vm − v1) =

1−
m∑
k=2

λk

 v1 + λ2v2 + · · ·+ λmvm

= λ1v1 + · · ·+ λmvm

= x,

and hence x ∈ v1 + U , so that A ⊆ v1 + U . Next suppose y ∈ v1 + U , so
that there exist α1, . . . , αm−1 ∈ F such that

y = v1 + α1(v2 − v1) + · · ·+ αm−1(vm − v1).

Expanding the RHS yields

y =

1−
m−1∑
k=1

αk

 v1 + α1v2 + · · ·+ αm−1vm.

But since 1−
m−1∑
k=1

αk

+

m−1∑
k=1

αk = 1,

this implies y ∈ A, and hence v1 + U ⊆ A. Therefore A = v1 + U , and
since dimU ≤ m− 1, we have the desired result.

Problem 13

Suppose U is a subspace of V and v1 + U, . . . , vm + U is a basis of V/U
and u1, . . . , un is a basis of U . Prove that v1, . . . , vm, u1, . . . , un is a basis
of V .

Proof. Since

dimV = dimV/U + dimU

= m+ n,
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it suffices to show v1, . . . , vm, u1, . . . , un spans V . Suppose v ∈ V . Then there
exist α1, . . . , αm ∈ F such that

v + U = α1(v1 + U) + · · ·+ αm(vm + U).

But then
v + U = (α1v1 + · · ·+ αmvm) + U

and hence
v − (α1v1 + · · ·+ αmvm) ∈ U.

Thus there exist β1, . . . , βn ∈ U such that

v − (α1v1 + · · ·+ αmvm) = β1u1 + · · ·+ βnun,

and we have
v = α1v1 + · · ·+ αmvm + β1u1 + · · ·+ βnun,

so that indeed v1, . . . , vm, u1, . . . , un spans V .

Problem 15

Suppose ϕ ∈ L(V,F) and ϕ 6= 0. Prove that dimV/(nullϕ) = 1.

Proof. Since ϕ 6= 0, we must have dim rangeϕ = 1, so that rangeϕ = F. Since
V/(nullϕ) ∼= rangeϕ, this implies V/(nullϕ) ∼= F, and hence dimV/(nullϕ) = 1,
as desired.

Problem 17

Suppose U is a subspace of V such that V/U is finite-dimensional. Prove
that there exists a subspace W of V such that dimW = dimV/U and
V = U ⊕W .

Proof. Suppose dimV/U = n, and let v1 + U, . . . , vn + U be a basis of V/U .
Define W := span(v1, . . . , vn). We claim v1, . . . , vn must be linearly independent,
so that v1, . . . , vn is a basis of W . To see this, suppose α1, . . . , αn ∈ F are such
that

α1v1 + · · ·+ αnvn = 0.

Then
(α1v1 + · · ·+ αnvn) + U = α1(v1 + U) + · · ·+ αn(vn + U),

and hence we must have α1 = · · · = αn = 0. Thus v1, . . . , vn is indeed linearly
independent, as claimed.

We now claim V = U ⊕W . To see that V = U +W , suppose v ∈ V . Then
there exist β1, . . . , βn ∈ F such that

v + U = β1(v1 + U) + · · ·+ βn(vn + U).
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It follows

v −
n∑
k=1

βkvk ∈ U,

and hence

v =

v − n∑
k=1

βkvk

+

 n∑
k=1

βkvk

 .

Since first term in parentheses is in U and the second term in parentheses is in
W , we have v ∈ U +W , and hence V ⊆ U +W . Clearly U +W ⊆ V , since U
and W are each subspaces of V , and hence V = U +W . To see that the sum
is direct, suppose w ∈ U ∩W . Since w ∈ W , there exist λ1, . . . , λn such that
w = λ1v1 + · · ·+ λnvn, and hence

w + U = (λ1v1 + · · ·+ λnvn) + U

= λ1(v1 + U) + · · ·+ λn(vn + U).

Since w ∈ U , we have w + U = 0 + U . Thus λ1 = · · · = λn = 0, which implies
w = 0. Since U ∩W = {0}, the sum is indeed direct. Thus V = U ⊕W , with
dimW = n = dimV/U , as desired.

Problem 19

Find a correct statement analogous to 3.78 that is applicable to finite
sets, with unions analogous to sums of subspaces and disjoint unions
analogous to direct sums.

Theorem. Suppose |V | <∞ and U1, . . . , Un ⊆ V . Then U1, . . . , Un are pairwise
disjoint if and only if

|U1 ∪ · · · ∪ Un| = |U1|+ · · ·+ |Un|.

Proof. We induct on n.
Base case: Let n = 2. Since |U1 ∪ U2| = |U1| + |U2| − |U1 ∩ U2|, we have
U1 ∩ U2 = ∅ iff |U1 ∪ U2| = |U1|+ |U2|.
Inductive hypothesis: Let k ∈ Z≥2, and suppose the statement is true for
n = k. Let Uk+1 ⊆ V . Then

|U1 ∪ · · · ∪ Uk+1| = |U1 ∪ · · · ∪ Uk|+ |Uk+1|

iff Uk+1∩(U1∪· · ·∪Uk) = ∅ by our base case. Combining this with our inductive
hypothesis, we have

|U1 ∪ · · · ∪ Uk+1| = |U1|+ · · ·+ |Uk|+ |Uk+1|

iff U1, . . . , Uk+1 are pairwise disjoint, and the statement is true for n = k + 1.
By the principal of mathematical induction, the statement is true for all

n ∈ Z≥2.
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F: Duality

Problem 1

Explain why every linear functional is either surjective or the zero map.

Proof. Since dimF = 1, the only subspaces of F are F itself and {0}. Let V be
a vector space (not necessarily finite-dimensional) and suppose ϕ ∈ V ′. Since
rangeϕ is a subspace of F, it must be either F itself (in which case ϕ is surjective)
or {0} (in which case ϕ is the zero map).

Problem 3

Suppose V is finite-dimensional and U is a subspace of V such that
U 6= V . Prove that there exists ϕ ∈ V ′ such that ϕ(u) = 0 for every
u ∈ U but ϕ 6= 0.

Proof. Suppose dimU = m and dimV = n for some m,n ∈ Z+ such that m < n.
Let u1, . . . , um be a basis of U . Expand this to a basis u1, . . . , um, um+1, . . . , un
of V , and let ϕ1, . . . , ϕn be the corresponding dual basis of V ′. For any u ∈ U ,
there exist α1, . . . , αm such that u = α1u1 + · · ·+ αmum. Now notice

ϕm+1(u) = ϕm+1(α1u1 + · · ·+ αmum)

= α1ϕm+1(u1) + · · ·+ αmϕm+1(um)

= 0,

but ϕm+1(um+1) = 1. Thus ϕm+1(u) = 0 for every u ∈ U but ϕm+1 6= 0, as
desired.

Problem 5

Suppose V1, . . . , Vm are vector spaces. Prove that (V1 × · · · × Vm)′ and
V ′1 × · · · × V ′m are isomorphic vector spaces.

Proof. For i = 1, . . . ,m, let

ξi : Vi → V1 × · · · × Vm
vi 7→ (0, . . . , vi, . . . , 0).

Now define

T : (V1 × · · · × Vm)′ → V ′1 × · · · × V ′m
ϕ 7→ (ϕ ◦ ξ1, . . . , ϕ ◦ ξm) .

We claim T is an isomorphism. We must show three things: (1) that T is a
linear map; (2) that T is injective; and (3) that T is surjective.
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To see that T is a linear map, first suppose ϕ1, ϕ2 ∈ (V1 × · · · × Vm)′. It
follows

T (ϕ1 + ϕ2) =
(
(ϕ1 + ϕ2) ◦ ξ1, . . . , (ϕ1 + ϕ2) ◦ ξm

)
= (ϕ1 ◦ ξ1 + ϕ2 ◦ ξ1, . . . , ϕ1 ◦ ξm + ϕ2 ◦ ξm)

= (ϕ1 ◦ ξ1, . . . , ϕ1 ◦ ξm) + (ϕ2 ◦ ξ1, . . . , ϕ2 ◦ ξm)

= T (ϕ1) + T (ϕ2),

thus T is additive. To see that it is also homogeneous, suppose λ ∈ F and
ϕ ∈ (V1 × · · · × Vm)′. We have

T (λϕ) =
(
(λϕ) ◦ ξ1, . . . , (λϕ) ◦ ξm

)
=
(
λ(ϕ ◦ ξ1), . . . , λ(ϕ ◦ ξm)

)
= λ (ϕ ◦ ξ1, . . . , ϕ ◦ ξm)

= λT (ϕ),

and thus T is homogeneous as well and therefore it is a linear map.
To see that T is injective, suppose ϕ,ψ ∈ (V1 × · · · × Vm)′ but ϕ 6= ψ.

Then there exists some (v1, . . . , vm) ∈ V1 × · · · × Vm such that ϕ(v1, . . . , vm) 6=
ψ(v1, . . . , vm). Since ϕ and ψ are linear, this means that there exists some index
k ∈ {1, . . . ,m} such that ϕ(0, . . . , vk, . . . , 0) 6= ψ(0, . . . , vk, . . . , 0). But then
ϕ ◦ ξk 6= ψ ◦ ξk, and hence T (ϕ) 6= T (ψ), so that T is injective.

To see that T is surjective, suppose (ϕ1, . . . , ϕm) ∈ V ′1 × · · · × V ′m and define

θ : V1 × · · · × Vm → F

(v1, . . . , vm) 7→
m∑
k=1

ϕk(vk).

We claim T (θ) = (ϕ1, . . . , ϕm). To see this, let k ∈ {1, . . . ,m}. We will show
that the map in the k-th component of T (θ) is equal to ϕk. Given vk ∈ Vk, we
have

T (θ)k(vk) = (θ ◦ ξk)(vk)

= θ(ξk(vk))

= θ(0, . . . , vk, . . . , 0)

= ϕ1(0) + · · ·+ ϕk(vk) + · · ·+ ϕm(0)

= ϕk(vk),

as desired. Thus T (θ) = (ϕ1, . . . , ϕm), and T is indeed surjective. Since T is
both injective and surjective, it’s an isomorphism.
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Problem 7

Suppose m is a positive integer. Show that the dual basis of the basis

1, . . . , xm of Pm(R) is ϕ0, ϕ1, . . . , ϕm, where ϕj(p) = p(j)(0)
j! . Here p(j)

denotes the jth derivative of p, with the understanding that the 0th

derivative of p is p.

Proof. For j = 0, . . . ,m, we have by direct computation of the j-th derivative

ϕj

(
xk
)

=

{
1 if j = k

0 otherwise,

so that ϕ0, ϕ1, . . . , ϕm is indeed the dual basis of 1, . . . , xm. Note the uniqueness
of the dual basis follows by uniqueness of a linear map (including the linear
functionals in the dual basis) whose values on a basis are specified.

Problem 9

Suppose v1, . . . , vn is a basis of V and ϕ1, . . . , ϕn is the corresponding
dual basis of V ′. Suppose ψ ∈ V ′. Prove that

ψ = ψ(v1)ϕ1 + · · ·+ ψ(vn)ϕn.

Proof. Let α1, . . . , αn ∈ F be such that

ψ = α1ϕ1 + · · ·+ αnϕn.

For k = 1, . . . , n, we have

ψ(vk) = α1ϕ1(vk) + · · ·+ αkϕk(vk) + · · ·+ αnϕn(vk)

= α1 · 0 + · · ·+ αk · 1 + · · ·+ αn · 0
= αk.

Thus we have
ψ = ψ(v1)ϕ1 + · · ·+ ψ(vn)ϕn,

as desired

Problem 11

Suppose A is an m-by-n matrix with A 6= 0. Prove that the rank of A is
1 if and only if there exist (c1, . . . , cm) ∈ Fm and (d1, . . . , dn) ∈ Fn such
that Aj,k = cjdk for every j = 1, . . . ,m and every k = 1, . . . , n.
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Proof. (⇒) Suppose the rank of A is 1. By the assumption that A 6= 0, there
exists a nonzero entry Ai.,j for some i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Thus
span{A·,1, . . . , A·,n} = span{A·,j}, and hence there exist α1, . . . , αn ∈ F such
that A·,c = αcA·,j for c = 1, . . . , n. Expanding out each out these columns, we
have

Ar,c = αcAr,j (7)

for r = 1, . . . ,m. Similarly for the rows, we have span{A1,·, . . . , Am,·} =
span{Ai,·}, and hence there exist β1, . . . , βm ∈ F such that Ar′,· = βrAi,· for
r′ = 1, . . . ,m. Expanding out each of these rows, we have

Ar′,c′ = βr′Ai,c′ (8)

for c′ = 1, . . . , n. Now by replacing the Ar,j term in (7) according to (8), we
have Ar,j = βrAi,j , and hence (7) may be rewritten

Ar,c = αcβrAi,j ,

and the result follows by defining cr = βrAi,j and dc = αc for r = 1, . . . ,m and
c = 1, . . . , n.

(⇐) Suppose there exist (c1, . . . , cm) ∈ Fm and (d1, . . . , dn) ∈ Fn such that
Aj,k = cjdk for every j = 1, . . . ,m and every k = 1, . . . , n. Then each of the
columns is a scalar multiple of (d1, . . . , dn)t ∈ Fn,1 and the column rank is 1.
Since the rank of a matrix equals its column rank, the rank of A is 1 as well.

Problem 13

Define T : R3 → R2 by T (x, y, z) = (4x+ 5y+ 6z, 7x+ 8y+ 9z). Suppose
ϕ1, ϕ2 denotes the dual basis of the standard basis of R2 and ψ1, ψ2, ψ3

denotes the dual basis of the standard basis of R3.

(a) Describe the linear functionals T ′(ϕ1) and T ′(ϕ2).

(b) Write T ′(ϕ1) and T ′(ϕ2) as a linear combination of ψ1, ψ2, ψ3.

Proof. (a) Endowing R3 and R2 with their respective standard basis, we have

(T ′(ϕ1))(x, y, z) = (ϕ1 ◦ T )(x, y, z)

= ϕ1(T (x, y, z))

= ϕ1(4x+ 5y + 6z, 7x+ 8y + 9z)

= 4x+ 5y + 6z

and similarly

(T ′(ϕ2))(x, y, z) = ϕ2(4x+ 5y + 6z, 7x+ 8y + 9z)

= 7x+ 8y + 9z.
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(b) Notice

(4ψ1 + 5ψ2 + 6ψ3)(x, y, z) = 4ψ1(x, y, z) + 5ψ2(x, y, z) + 6ψ3(x, y, z)

= 4x+ 5y + 6z

= T ′(ϕ1)(x, y, z)

and

(7ψ1 + 8ψ2 + 9ψ3)(x, y, z) = 7ψ1(x, y, z) + 8ψ2(x, y, z) + 9ψ3(x, y, z)

= 7x+ 8y + 9z

= T ′(ϕ2)(x, y, z),

as desired.

Problem 15

Suppose W is finite-dimensional and T ∈ L(V,W ). Prove that T ′ = 0 if
and only if T = 0.

Proof. (⇒) Suppose T ′ = 0. Let ϕ ∈W ′ and v ∈ V be arbitrary. We have

0 = (T ′(ϕ))(v) = ϕ(Tv).

Since ϕ is arbitrary, we must have Tv = 0. But now since v is arbitrary, this
implies T = 0 as well.

(⇐) Suppose T = 0. Again let ϕ ∈W ′ and v ∈ V be arbitrary. We have

(T ′(ϕ))(v) = ϕ(Tv) = ϕ(0) = 0,

and hence T ′ = 0 as well.

Problem 17

Suppose U ⊆ V . Explain why U0 = {ϕ ∈ V ′ | U ⊆ nullϕ}.

Proof. It suffices to show that, for arbitrary ϕ ∈ V ′, we have U ⊆ nullϕ if and
only if ϕ(u) = 0 for all u ∈ U . So suppose U ⊆ nullϕ. Then for all u ∈ U , we
have ϕ(u) = 0 (simply by definition of nullϕ). Conversely, suppose ϕ(u) = 0
for all u ∈ U . Then if u′ ∈ U , we must have u′ ∈ nullϕ. That is, U ⊆ nullϕ,
completing the proof.

Problem 19

Suppose V is finite-dimensional and U is a subspace of V . Show that
U = V if and only if U0 = {0}.
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Proof. (⇒) Suppose U = V . Then

U0 = {ϕ ∈ V ′ | U ⊆ nullϕ}
= {ϕ ∈ V ′ | V ⊆ nullϕ}
= {0},

since only the zero functional can have all of V in its null space.
(⇐) Suppose U0 = {0}. It follows

dimV = dimU + dimU0

= dimU + 0

= dimU.

Since the only subspace of V with dimension dimV is V itself, we have U = V ,
as desired.

Problem 20

Suppose U and W are subsets of V with U ⊆W . Prove that W 0 ⊆ U0.

Proof. Suppose ϕ ∈ W 0. Then ϕ(w) = 0 for all w ∈ W . If ϕ 6∈ U0, then there
exists some u ∈ U such that ϕ(u) 6= 0. But since U ⊆W , u ∈W . This is absurd,
hence we must have ϕ ∈ U0. Thus W 0 ⊆ U0, as desired.

Problem 21

Suppose V is finite-dimensional and U and W are subspaces of V with
W 0 ⊆ U0. Prove that U ⊆W .

Proof. Suppose not. Then there exists a nonzero vector u ∈ U such that u 6∈W .
There exists some basis of U containing u. Define ϕ ∈ V ′ such that, for any
vector v in this basis, we have

ϕ(v) =

{
1 if v = u

0 otherwise.

By construction, ϕ ∈ W 0, and hence ϕ ∈ U0. But this implies ϕ(u) = 0, a
contradiction.

Problem 22

Suppose U,W are subspaces of V . Show that (U +W )0 = U0 ∩W 0.
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Proof. Since U ⊆ U +W and W ⊆ U +W , Problem 20 tells us that (U +W )0 ⊆
U0 and (U + W )0 ⊆ W 0. Thus (U + W )0 ⊆ U0 ∩W 0. Conversely, suppose
ϕ ∈ U0 ∩W 0. Let x ∈ U +W . Then there exist u ∈ U and w ∈ W such that
x = U +W . Then

ϕ(x) = ϕ(u+ w)

= ϕ(u) + ϕ(w)

= 0,

where the second equality follows since ϕ ∈ U0 and ϕ ∈ W 0 by assumption.
Hence ϕ ∈ (U + W )0 and we have U0 + W 0 ⊆ (U + W )0. Thus (U + W )0 =
U0 ∩W 0, as desired.

Problem 23

Suppose V is finite-dimensional and U and W are subspaces of V . Prove
that (U ∩W )0 = U0 +W 0.

Proof. Since U∩W ⊆ U and U∩W ⊆W , Problem 20 tells us that U0 ⊆ (U∩W )0

and W 0 ⊆ (U ∩W )0. Thus U0 +W 0 ⊆ (U ∩W )0. Now, notice (using Problem
22 to deduce the second equality)

dim(U0 +W 0) = dim(U0) + dim(W 0)− dim(U0 ∩W 0)

= dim(U0) + dim(W 0)− dim((U +W )0)

= (dimV − dimU) + (dimV − dimW )− [dimV − dim(U +W )]

= dimV − dimU − dimW + dim(U +W )

= dimV − [dimU + dimW − dim(U +W )]

= dimV − dim(U ∩W )

= dim((U ∩W )0).

Hence we must have U0 +W 0 = (U ∩W )0, as desired.

Problem 25

Suppose V is finite-dimensional and U is a subspace of V . Show that

U = {v ∈ V | ϕ(v) = 0 for every ϕ ∈ U0}.

Proof. Let A = {v ∈ V | ϕ(v) = 0 for every ϕ ∈ U0}. Suppose u ∈ U . Then
ϕ(u) = 0 for all ϕ ∈ U0, and hence u ∈ A, showing U ⊆ A.

Conversely, suppose v ∈ A but v 6∈ U . Since 0 ∈ U , we must have v 6= 0.
Thus there exists a basis u1, . . . , um, v, v1, . . . , vn of V such that u1, . . . , um is a
basis of U . Let ψ1, . . . , ψm, ϕ, ϕ1, . . . , ϕn be the dual basis of V ′, and consider
for a moment the functional ϕ. Clearly we have both ϕ ∈ U0 and ϕ(v) = 1 by
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construction, but this is a contradiction, since we assumed v ∈ A. Thus A ⊆ U ,
and we conclude U = A, as was to be shown.

Problem 27

Suppose T ∈ L(P5(R),P5(R)) and nullT ′ = span(ϕ), where ϕ is the
linear functional on P5(R) defined by ϕ(p) = p(8). Prove that rangeT =
{p ∈ P5(R) | p(8) = 0}.

Proof. By Theorem 3.107, we know nullT ′ = (rangeT )0, and hence (rangeT )0 =
{αϕ | α ∈ R}. It follows by Problem 25

rangeT = {p ∈ P5(R) | ψ(p) = 0 for all ψ ∈ (rangeT )0}
= {p ∈ P5(R) | (αϕ)(p) = 0 for all α ∈ R}
= {p ∈ P5(R) | ϕ(p) = 0}
= {p ∈ P5(R) | p(8) = 0},

as desired.

Problem 29

Suppose V and W are finite-dimensional, T ∈ L(V,W ), and there exists
ϕ ∈ V ′ such that rangeT ′ = span(ϕ). Prove that nullT = nullϕ.

Proof. By Theorem 3.107, we know rangeT ′ = (nullT )0, and hence (nullT )0 =
{αϕ | α ∈ R}. It follows by Problem 25

nullT = {v ∈ V | ψ(v) = 0 for all ψ ∈ (nullT )0}
= {v ∈ V | αϕ(v) = 0 for all α ∈ F}
= {v ∈ V | ϕ(v) = 0}
= nullϕ,

as desired.

Problem 31

Suppose V is finite-dimensional and ϕ1, . . . , ϕn is a basis of V ′. Show
that there exists a basis of V whose dual basis is ϕ1, . . . , ϕn.

Proof. To prove this, we will first show V ∼= V ′′. We will then take an existing
basis of V ′, map it to its dual basis in V ′′, and then use the inverse of the
isomorphism to take this basis of V ′′ to a basis in V . This basis of V will have
the known basis of V ′ as its dual.

So, for any v ∈ V , define Ev ∈ V ′′ by Ev(ϕ) = ϕ(v). We claim the map
·̂ : V → V ′′ given by v̂ = Ev is an isomorphism. To do so, it suffices to show it to
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be both linear and injective, since dim(V ′′) = dim((V ′)′) = dim(V ′) = dim(V ).
We first show ·̂ is linear. So suppose u, v ∈ V . Then for any ϕ ∈ V ′, we have

(û+ v)(ϕ) = Eu+v(ϕ)

= ϕ(u+ v)

= ϕ(u) + ϕ(v)

= Eu(ϕ) + Ev(ϕ)

= û(ϕ) + v̂(ϕ)

so that ·̂ is indeed linear. Next we show it to be homogeneous. So suppose λ ∈ F,
and again let v ∈ V . Then for any ϕ ∈ V ′, we have

(λ̂v)(ϕ) = Eλv(ϕ)

= ϕ(λv)

= λϕ(v)

= λEv(ϕ)

= λv̂,

so that ·̂ is homogenous as well. Being both linear and homogenous, it is a linear
map.

Next we show ·̂ is injective. So suppose v̂ = 0 for some v ∈ V . We want to
show v = 0. Let v1, . . . , vn be a basis of V . Then there exist α1, . . . , αn ∈ F
such that v = α1v1 + · · ·+ αnvn. Then, for all ϕ ∈ V ′, we have

v̂ = 0 =⇒ (α1v1 + · · ·+ αnvn)∧ = 0

=⇒ α1v̂1 + · · ·+ αnv̂n = 0

=⇒ (α1v̂1 + · · ·+ αnv̂n)(ϕ) = 0

=⇒ α1v̂1(ϕ) + · · ·+ αnv̂n(ϕ) = 0

=⇒ α1ϕ(v1) + · · ·+ αnϕn(vn) = 0.

Since this last equation holds for all ϕ ∈ V ′, it holds in particular for each
element of the dual basis ϕ1, . . . , ϕn. That is, for k = 1, . . . , n, we have

α1ϕk(v1) + · · ·+ αkϕk(vk) + · · ·+ αnϕk(vn) = 0 =⇒ αk = 0,

and therefore v = 0 · v1 + · · · + 0 · vn = 0, as desired. Thus ·̂ is indeed an
isomorphism.

We now prove the main result. Suppose ϕ1, . . . , ϕn is a basis of V ′, and let
Φ1, . . . ,Φn be the dual basis in V ′′. For each Φk, let vk be the inverse of Φk

under the isomorphism ·̂. Since the inverse of an isomorphism is an isomorphism,
and isomorphisms take bases to bases, v1, . . . , vn is a basis of V . Let us now
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check that its dual basis is ϕ1, . . . , ϕn. For j, k = 1, . . . , n, we have

ϕj(vk) = v̂k(ϕj)

= Φk(ϕj)

=

{
1 if k = j

0 otherwise,

so indeed there exists a basis of V whose dual basis is ϕ1, . . . , ϕn, as was to be
shown.

Problem 32

Suppose T ∈ L(V ) and u1, . . . , un and v1, . . . , vn are bases of V . Prove
that the following are equivalent:

(a) T is invertible.

(b) The columns of M(T ) are linearly independent in Fn,1.

(c) The columns of M(T ) span Fn,1.

(d) The rows of M(T ) are linearly independent in F1,n.

(e) The rows of M(T ) span F 1,n.

Here M(T ) means M(T, (u1, . . . , un), (v1, . . . , vn)).

Proof. We prove the following: (a) ⇐⇒ (b) ⇐⇒ (c) ⇐⇒ (e) ⇐⇒ (d).
(a) ⇐⇒ (b). Suppose T is invertible. That is, for any w ∈ V , there exists a

unique x ∈ V such that w = Tx. It follows

M(w) =M(Tx)

=M(T )M(x)

=M(x)1M(T )·,1 + · · ·+M(x)nM(T )·,n.

That is, every vector in F1,n can be exhibited as a unique linear combination
of the columns of M(T ). This is true if and only if the columns of M(T ) are
linearly independent.

(b) ⇐⇒ (c). Suppose the columns ofM(T ) are linearly independent in Fn,1.
Since they form a linearly independent list of length dim(Fn,1), they are a basis.
But this is true if and only if they span Fn,1 as well.

(c) ⇐⇒ (e). Suppose the columns of M(T ) span Fn,1, so that the column
rank is n. Since the row rank equals the column rank, so too must the rows of
M(T ) span F1,n.

(e) ⇐⇒ (d). Suppose the rows of M(T ) span F1,n. Since they form a
spanning list of length dim(F1,n), they are a basis. But this is true if and only if
they are linearly independent in F1,n as well.

47



Problem 33

Suppose m and n are positive integers. Prove that the function that
takes A to At is a linear map from Fm,n to Fn,m. Furthermore, prove
that this linear map is invertible.

Proof. We first show taking the transpose is linear. So suppose A,B ∈ Fm,n and
let j = 1, . . . , n and k = 1, . . . ,m. It follows

(A+B)tj,k = (A+B)k,j

= Ak,j +Bk,j

= Atj,k +Btj,k,

so that taking the transpose is additive. Next, let λ ∈ F. It follows

(λA)tj,k = (λA)k,j

= λAk,j

= λAtj,k,

so that taking the transpose is homogenous. Since it is both additive and
homogeneous, it is a linear map. To see that taking the transpose is invertible,
note that (At)t = A, so that the inverse of the transpose is the transpose
itself.

Problem 34

The double dual space of V , denoted V ′′, is defined to be the dual
space of V ′. In other words, V ′′ = (V ′)′. Define Λ : V → V ′′ by

(Λv)(ϕ) = ϕ(v)

for v ∈ V and ϕ ∈ V ′.

(a) Show that Λ is a linear map from V to V ′′.

(b) Show that if T ∈ L(V ), then T ′′ ◦ Λ = Λ ◦ T , where T ′′ = (T ′)′.

(c) Show that if V is finite-dimensional, then Λ is an isomorphism from
V onto V ′′.

Proof. We proved (a) and (c) in Problem 31 (where we defined ·̂ in precisely the
same way as Λ). So it only remains to prove (b). So suppose v ∈ V and ϕ ∈ V ′
are arbitrary. Evaluating T ′′ ◦ Λ, notice

((T ′′ ◦ Λ)(v))(ϕ) = (T ′′(Λv))(ϕ)

= (Λv)(T ′ϕ)

= (T ′ϕ)(v)

= ϕ(Tv),
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where the second and fourth equalities follow by definition of the dual map, and
the third equality follows by definition of Λ. And evaluating Λ ◦ T , we have

((Λ ◦ T )(v))(ϕ) = (Λ(Tv))(ϕ)

= ϕ(Tv),

so that the two expressions evaluate to the same thing. Since the choice of both
v and ϕ was arbitrary, we have T ′′ ◦ Λ = Λ ◦ T , as desired.

Problem 35

Show that (P(R))′ and R∞ are isomorphic.

Proof. For any sequence α = (α0, α1, . . . ) ∈ R∞, let ϕα be the unique linear
functional in (P(R))′ such that ϕα(Xk) = αk for all k ∈ Z+ (note that since
the list 1, X,X2, . . . is a basis of P(R), this description of ϕα is sufficient). We
claim

Φ : R∞ → (P(R))′

α 7→ ϕα

is an isomorphism. There are three things to show: that Φ is a linear map, that
it’s injective, and that it’s surjective.

We first show Φ is linear. Suppose α, β ∈ R∞. For any k ∈ Z+, it follows

(Φ(α+ β))(Xk) = ϕα+β(Xk)

= (α+ β)k

= αk + βk

= ϕα(Xk) + ϕβ(Xk)

= (Φ(α))(Xk) + (Φ(β))(Xk),

so that Φ is additive. Next suppose λ ∈ R. Then we have

Φ(λα)(Xk) = ϕλα(Xk)

= (λα)k

= λαk

= λΦ(α),

so that Φ is homogenous. Being both additive and homogeneous, Φ is indeed
linear.

Next, to see that Φ is injective, suppose Φ(α) = 0 for some α ∈ R∞. Then
ϕα(Xk) = αk = 0 for all k ∈ Z+, and hence α = 0. Thus Φ is injective.

Lastly, to see that Φ is surjective, suppose ϕ ∈ (P(R))′. Define αk = ϕ(Xk)
for all k ∈ Z+ and let α = (α0, α1, . . . ). By construction, we have (Φ(α))(Xk) =
αk for all k ∈ Z+, and hence Φ(α) = ϕα. Thus Φ is surjective.

Since Φ is linear, injective, and surjective, it’s an isomorphism, as desired.
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Problem 37

Suppose U is a subspace of V . Let π : V → V/U be the usual quotient
map. Thus π′ ∈ L((V/U)′, V ′).

(a) Show that π′ is injective.

(b) Show that rangeπ′ = U0.

(c) Conclude that π′ is an isomorphism from (V/U)′ onto U0.

Proof. (a) Let ϕ ∈ (V/U)′, and suppose π′(ϕ) = 0. Then (ϕ ◦ π)(v) =
ϕ(v + U) = 0 for all v ∈ V . This is true only if ϕ = 0, and hence π′ is
indeed injective.

(b) First, suppose ϕ ∈ rangeπ′. Then there exists ψ ∈ (V/U)′ such that
π′(ψ) = ϕ. So for all u ∈ U , we have

ϕ(u) = (π′(ψ))(u)

= ψ(π(u))

= ψ(u+ U)

= ψ(0 + U)

= 0,

and thus ϕ ∈ U0, showing rangeπ′ ⊆ U0. Conversely, suppose ϕ ∈ U0, so
that ϕ(u) = 0 for all u ∈ U . Define ψ ∈ (V/U)′ by ψ(v + U) = ϕ(v) for
all v ∈ V . Then (π′(ψ))(v) = ψ(π(v)) = ψ(v + U) = ϕ(v), and so indeed
ϕ ∈ rangeπ′, showing U0 ⊆ rangeπ′. Therefore, we have rangeπ′ = U0,
as desired.

(c) Notice that (b) may be interpreted as saying π′ : (V/U)′ → U0 is surjective.
Since π′ was shown to be injective in (a), we conclude π′ is an isomorphism
from (V/U)′ onto U0, as desired.
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Chapter 4: Polynomials

Linear Algebra Done Right, by Sheldon Axler

Problem 1

Verify all the assertions in 4.5 except the last one.

Proof. Suppose w, z ∈ C, and let a, b, c, d ∈ R be such that w = a + bi and
z = c+ di.

• Notice z + z = (c+ di) + (c− di) = 2c = 2<(z).

• We have z − z = (c+ di)− (c− di) = 2di = 2=(z)i.

• Notice z z = (c+ di)(c− di) = c2 + d2 =
(√

c2 + d2
)2

= |z|2.

• We have w + z = (a+ c) + (b+ d)i = (a − bi) + (c − di) = w+ z. Also,
wz = (ac− bd) + (ad+ bc)i = (ac− bd)− (ad+ bc)i and w z = (a− bi)(c−
di) = (ac− bd)− (ad+ bc)i, so that wz = w z.

• Notice z = c− di = c+ di = z.

• We have
∣∣<(z)

∣∣ = |c| =
√
c2 ≤

√
c2 + d2 = |z|, and similarly |=z| = |d| =√

d2 ≤
√
c2 + d2 = |z|.

• Notice |z| = |c− di| =
√
c2 + (−d)2 =

√
c2 + d2 = |z|.

• We have

|wz| =
∣∣(ac− bd) + (ad+ bc)i

∣∣
=
√

(ac− bd)2 + (ad+ bc)2

=
√
a2c2 + a2d2 + b2c2 + b2d2

=
√

(a2 + b2)(c2 + d2)

=
√
a2 + b2

√
c2 + d2

= |w| |z| ,

as desired.

Problem 3

Is the set
{0} ∪ {p ∈ P(F) | deg p is even}

a subspace of P(F)?
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Proof. Let E = {0} ∪ {p ∈ P(F) | deg p is even}. Then E is not a subspace of
P(F). To see this, notice p(x) = x2 + x ∈ E and q(x) = −x2 + x ∈ E, but
p+ q = 2x 6∈ E, so that E is not closed under addition.

Problem 5

Suppose m is a nonnegative integer, z1, . . . , zm+1 are distinct elements of
F, and w1, . . . , wm+1 ∈ F. Prove that there exists a unique polynomial
p ∈ Pm(F) such that

p(zj) = wj

for j = 1, . . . ,m+ 1.

Proof. Define

T : Pm(F)→ Fm+1

p 7→ (p(z1), . . . , p(zm+1)).

It suffices to show that T is an isomorphism, since injectivity implies uniqueness
of such a p ∈ Pm(F), and surjectivity implies its existence. So we first show that
T is a linear map. Suppose p, q ∈ Pm(F). Then

T (p+ q) =
(
(p+ q)(z1), . . . , (p+ q)(zm+1)

)
=
(
p(z1) + q(z1), . . . , p(zm+1) + q(zm+1)

)
=
(
p(z1), . . . , p(zm+1)

)
+
(
q(z1), . . . , q(zm+1)

)
= Tp+ Tq,

so that T is additive. Next suppose λ ∈ F. Then

T (λp) =
(
(λp)(z1), . . . , (λp)(zm+1)

)
=
(
λp(z1), . . . , λp(zm+1)

)
= λ

(
p(z1), . . . , p(zm+1)

)
= λ(Tp),

so that T is also homogenous. Hence T is a linear map. To see that T is an
isomorphism, it’s enough to show T is injective. So suppose Tp = 0 for some
p ∈ Pm(F). Then

Tp =
(
p(z1), . . . , p(zm+1)

)
= (0, . . . , 0),

and hence p has m+ 1 zeros. Since it has degree at most m, p must therefore be
the zero polynomial, completing the proof.

Problem 7

Prove that every polynomial of odd degree with real coefficients has a
real zero.
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Proof. Suppose not. Then there exists some p ∈ P(R) of odd degree with no
real zeros. By Theorem 4.17, p must be of the form

p(x) = c(x2 + b1x+ c1) · · · (x2 + bMx+ cM ),

where c, b1, . . . , bM , c1, . . . , cM ∈ R and M ∈ Z+. But then p has even degree, a
contradiction. Thus every polynomial of odd degree with real coefficients must
indeed have a real zero.

Problem 9

Suppose p ∈ P(C). Define q : C→ C by

q(z) = p(z) p(z) .

Prove that q is a polynomial with real coefficients.

Proof. Suppose p has degree n. Then there exist c, λ1, . . . , λn ∈ C such that

p(z) = c(z1 − λ1) · · · (zn − λn).

Thus we have

q(z) = c(z1 − λ1) · · · (zn − λn) c (z1 − λ1) · · · (zn − λn)

= cc(z1 − λ1)
(
z1 − λ1

)
· · · (zn − λn)

(
zn − λn

)
= |c|2

(
z1

2 − 2<(λ1)z1 + |λ1|2
)
· · ·
(
zn

2 − 2<(λn)zn + |λn|2
)
,

so that q(z) is the product of polynomials with real coefficients. Thus q is itself
a polynomial with real coefficients, as was to be shown.

Problem 11

Suppose p ∈ P(F) with p 6= 0. Let U = {pq | q ∈ P(F)}.

(a) Show that dimP(F)/U = deg p

(b) Find a basis of P(F)/U .

Proof. Suppose dim p = n for some n ∈ Z+.

(a) Consider the map

T : P(F) 7→ Pn−1(F)

f 7→ r(f),

where r(f) is the unique remainder when f is divided by p. We will show
that T is linear, nullT = U , and rangeT = Pn−1(F), so that V/U ∼= Pn−1.

3



Since Pn−1(F) ∼= Fn and dimFn = n = deg p, this gives the desired result.

First we show T is a linear map. To see this, suppose f, g ∈ P(F ). Then
there exist unique q1, q2 ∈ P(F ) such that f = q1p+r(f) and g = q2p+r(g).
But then f + g = (q1 + q2)p+ r(f) + r(g), and hence r(f + g) = r(f) + r(g).
Thus

T (f + g) = r(f) + r(g) = T (f) + T (g),

and so T is additive. To see that T is also homogenous, suppose λ ∈ F.
Then λf = (λq1)p+ λr(f), and since both the quotient and remainder are
unique, we must have λr(f) = r(λf). Therefore

T (λf) = λr(f) = λTf,

and so T is homogeneous. Thus T is a linear map, as claimed.

Next we show nullT = U . Suppose f ∈ nullT . Then Tf = 0, and hence
r(f) = 0. That is, there exists q1 ∈ P(F) such that f = pq1, and thus
f ∈ U . Conversely, if g ∈ U , then there exists q2 ∈ P(F) such that g = pq2.
But then r(g) = 0, and hence Tg = 0 and g ∈ nullT .

Lastly we show rangeT = Pn−1. Of course rangeT ⊆ Pn−1. So suppose
r ∈ Pn−1. Then r = 0p + r (where 0 denotes the zero polynomial), and
hence Tr = r. Thus rangeT = U .

(b) We claim 1 + U, x+ U, . . . , xn−1 + U is a basis of P(F)/U . Notice none of
these vectors is the zero vector since all elements of U have degree at least
n. Clearly the list is linearly independent. Since it has the right length,
it’s indeed a basis.
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Chapter 5: Eigenvalues, Eigenvectors, and

Invariant Subspaces

Linear Algebra Done Right, by Sheldon Axler

A: Invariant Subspaces

Problem 1

Suppose T ∈ L(V ) and U is a subspace of V .

(a) Prove that if U ⊆ nullT , then U is invariant under T .

(b) Prove that if rangeT ⊆ U , then U is invariant under T .

Proof. (a) Suppose u ∈ U . Since U ⊆ nullT , we must have Tu = 0. And since
0 ∈ U , this implies Tu ∈ U , and so U is indeed invariant under T .

(b) Suppose u ∈ U . Since Tu ∈ rangeT (by definition of rangeT ) and
rangeT ⊆ U , we have Tu ∈ U . Thus U is invariant under T .

Problem 3

Suppose S, T ∈ L(V ) are such that ST = TS. Prove that rangeS is
invariant under T .

Proof. Suppose w ∈ rangeS. Then there exists v ∈ V such that

Sv = w.

It follows
Tw = TSv = STv,

and thus Tw ∈ rangeS, so that rangeS is indeed invariant under T .

Problem 5

Suppose T ∈ L(V ). Prove that the intersection of every collection of
subspaces of V invariant under T is invariant under T .

Proof. Let U be a collection of subspaces of V invariant under T , and let

W =
⋂
U∈U

U.
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By Problem 11 of Section 1.C, W is a subspace of V . Assume u ∈ W . Then
u ∈ U for every U ∈ U. Since each such U is invariant under T , we have Tu ∈ U
for all U ∈ U as well. This implies Tu ∈W , and hence W is invariant under T
also, as desired.

Problem 7

Suppose T ∈ L(R2) is defined by T (x, y) = (−3y, x). Find the eigenvalues
of T .

Proof. Suppose T (x, y) = λ(x, y), where (x, y) ∈ R2 is nonzero and λ ∈ F. Then

−3y = λx (1)

x = λy. (2)

Substituting the value for x given by the Equation 2 into Equation 1 gives

−3y = λ2y.

Now, y cannot be 0, for otherwise x = 0 (by Equation 2), contrary to our
assumption that (x, y) is nonzero. Hence −3 = λ2. Thus, if F = C, T two
eigenvalues: λ = ±

√
3i. If F = R, T has no eigenvalues.

Problem 9

Define T ∈ L
(
F3
)

by

T (z1, z2, z3) = (2z2, 0, 5z3).

Proof. Suppose T (z1, z2, z3) = λ(z1, z2, z3), where (z1, z2, z3) ∈ F3 is nonzero
and λ ∈ F. Then

2z2 = λz1 (3)

0 = λz2 (4)

5z3 = λz3. (5)

First notice that λ = 0 satisfies the above equations if either z1 or z3 is nonzero,
and thus 0 is an eigenvalue with corresponding eigenvectors

{(s, 0, t) | s, t ∈ F, s and t are not both 0}.

If λ 6= 0, then we must have z2 = 0 by Equation 4, and hence z1 = 0 by Equation
3. Since (z1, z2, z3) 6= (0, 0, 0), we conclude z3 must be nonzero. Thus Equation
5 implies λ = 5 is the only other eigenvalue with corresponding eigenvectors

{(0, 0, t) | t ∈ F− {0}},

and we’re done.
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Problem 11

Define T : P(R)→ P(R) by Tp = p′. Find all eigenvalues and eigenvec-
tors of T .

Proof. Let p ∈ P(R) be nonzero and suppose Tp = λp for some λ ∈ R. Note
that deg p must be 0, for otherwise, since deg p = deg(Tp) = deg p′, we have a
contradiction. Thus the only eigenvalue of T is λ = 0, and the corresponding
eigenvectors are the constant, nonzero polynomials in P(R).

Problem 13

Suppose V is finite-dimensional, T ∈ L(V ), and λ ∈ F. Prove that there
exists α ∈ F such that |α− λ| < 1

1000 and T − αI is invertible.

Proof. Suppose not. Then for any α ∈ F such that |α− λ| < 1
1000 , T − αI is

not invertible. But then, by Theorem 5.6, α is an eigenvalue of T . This is a
contradiction, since there are infinitely many such α, but T can have at most
dimV eigenvalues by Theorem 5.13.

Problem 15

Suppose T ∈ L(V ). Suppose S ∈ L(V ) is invertible.

(a) Prove that T and S−1TS have the same eigenvalues.

(b) What is the relationship between the eigenvectors of T and the
eigenvectors of S−1TS?

Proof. (a) Suppose λ ∈ F is an eigenvalue of S−1TS. Then there exists a
nonzero v ∈ V such that (S−1TS)v = λv. This equation is true if and
only if TSv = λ(Sv), which is in turn true if and only if Tw = λw, where
w = Sv. Note that since S is invertible, w 6= 0. Thus T and S−1TS indeed
have the same eigenvalues.

(b) As shown in the proof of (a), v ∈ V is an eigenvector of S−1TS if and only
if Sv is an eigenvector of T .

Problem 17

Give an example of an operator T ∈ L(R4) such that T has no (real)
eigenvalues.
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Proof. Consider the following operator

T : R4 → R4

(x1, x2, x3, x4) 7→ (−x4, x1, x2, x3).

We claim T has no real eigenvalues. To see this, suppose T (x1, x2, x3, x4) =
λ(x1, x2, x3, x4) for some λ ∈ R and nonzero (x1, x2, x3, x4) ∈ R4. It follows

(−x4, x1, x2, x3) = λ(x1, x2, x3, x4),

and hence

−x4 = λx1 (6)

x1 = λx2 (7)

x2 = λx3 (8)

x3 = λx4. (9)

This implies −x4 = λ4x4. Notice λ cannot be 0, for otherwise (x1, x2, x3, x4) is
the zero vector, a contradiction. Hence we must have x4 = 0. But then Equation
6 implies x1 = 0, which in turn implies x2 = 0 by Equation 7, and which thus
implies x3 = 0 by Equation 8. But now we have that (x1, x2, x3, x4) is the zero
vector, another contradiction. So we conclude T indeed has no real eigenvalues,
as claimed.

Problem 19

Suppose n is a positive integer and T ∈ L(Fn) is defined by

T (x1, . . . , xn) = (x1 + · · ·+ xn, . . . , x1 + · · ·+ xn);

in other words, T is the operator whose matrix (with respect to the
standard basis) consists of all 1’s. Find all eigenvalues and eigenvectors
of T .

Proof. Suppose T (x1, . . . , xn) = λ(x1, . . . , xn) for some λ ∈ F and some nonzero
(x1, . . . , xn) ∈ Fn. Then

(x1 + · · ·+ xn, . . . , x1 + · · ·+ xn) = λ(x1, . . . , xn).

It follows

x1 + · · ·+ xn = λx1

...

x1 + · · ·+ xn = λxn.

Thus, our first eigenvalue is λ = 0 with corresponding eigenvectors

{(x1, . . . , xn) ∈ Fn − {0} | x1 + · · ·+ xn = 0}.
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Next, if λ 6= 0, notice the equations above imply λx1 = · · · = λxn, and thus
x1 = · · · = xn. Denote the common value of the xk’s by y. Then any of the
above equations is now equivalent to ny = λy. Thus our second eigenvalue is
λ = n with corresponding eigenvectors

{(x1, . . . , xn) ∈ Fn − {0} | x1 = · · · = xn},

and we’re done.

Problem 21

Suppose T ∈ L(V ) is invertible.

(a) Suppose λ ∈ F with λ 6= 0. Prove that λ is an eigenvalue of T if
and only if 1

λ is an eigenvalue of T−1.

(b) Prove that T and T−1 have the same eigenvectors.

Proof. (a) By definition, λ 6= 0 is an eigenvalue of T if and only if there exists
v ∈ V − {0} such that Tv = λv. Since T is invertible, this is true if and
only if v = T−1(λv), which is itself true if and only if (after simplification)(
1
λ

)
v = T−1v. Thus λ is an eigenvalue of T if and only if 1

λ is an eigenvalue
of T−1, as was to be shown.

(b) First notice that λ = 0 cannot be an eigenvalue of T or T−1 since they
are both injective. Now, suppose v is an eigenvector of T corresponding
to λ 6= 0. By the proof of (a), v is an eigenvector of T−1 corresponding
to 1

λ . Thus all eigenvectors of T are eigenvectors of T−1. Now, reversing
the roles of T and T−1 and applying the same argument yields the reverse
inclusion, completing the proof.

Problem 23

Suppose V is finite-dimensional and S, T ∈ L(V ). Prove that ST and
TS have the same eigenvalues.

Proof. Let λ ∈ F be an eigenvalue of ST and v ∈ V − {0} be a corresponding
eigenvector, so that STv = λv. First, if Tv 6= 0, it follows

TS(Tv) = T (STv)

= T (λv)

= λ(Tv),

so that λ is an eigenvalue of TS. Next, if Tv = 0, then we must have λ = 0
(since STv = λv). Moreover, T is not invertible (since v 6= 0). Thus TS is not
invertible (by Problem 9 of Chapter 3.D). Since TS is not invertible, there exists
a nonzero w ∈ V such that TSw = 0, and hence λ = 0 is an eigenvalue of TS as
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well.
Since λ is an eigenvalue of TS in both cases, we conclude that every eigenvalue

of ST is also an eigenvalue of TS. Reversing the roles of S and T and applying
the same argument yields the reverse inclusion, completing the proof.

Problem 25

Suppose T ∈ L(V ) and u, v are eigenvectors of T such that u+v is also an
eigenvector of T . Prove that u and v are eigenvectors of T corresponding
to the same eigenvalue.

Proof. Suppose λ1 is the eigenvalue associated to u, λ2 is the eigenvalue associ-
ated to v, and λ3 is the eigenvalue associated to u+ v, so that

Tu = λ1u (10)

Tv = λ2v (11)

T (u+ v) = λ3(u+ v). (12)

It follows that
Tu+ Tv = λ1u+ λ2v,

and hence, by Equation 12, we have

λ3u+ λ3v = λ1u+ λ2v.

Thus
(λ1 − λ3)u+ (λ2 − λ3)v = 0.

Since u and v are both eigenvectors of T , they are linearly independent. Thus
λ1 = λ3 and λ2 = λ3, and hence λ1 = λ2 = λ3, showing that u and v indeed
correspond to the same eigenvalue.

Problem 26

Suppose T ∈ L(V ) is such that every nonzero vector in V is an eigenvector
of T . Prove that T is a scalar multiple of the identity operator.

Proof. By hypothesis, for all v ∈ V there exists λv ∈ F such that Tv = λvv
(where λ0 can be any nonzero element of F, since T0 = 0). We claim λv is
independent of the choice of v for v ∈ V − {0}, hence Tv = λv for all v ∈ V
(including v = 0) and some λ ∈ F, and thus T = λI.

So suppose w, z ∈ V −{0} are arbitrary. We want to show λw = λz. If w and
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z are linearly dependent, then there exists α ∈ F such that w = αz. It follows

λww = Tw

= T (αz)

= αTz

= αλzz

= λz(αz)

= λzw.

Since w 6= 0, this implies λw = λz. Next suppose w and z are linearly independent.
Then we have

λw+z(w + z) = T (w + z)

= Tw + Tz

= λww + λzz,

and hence

(λw+z − λw)w + (λw+z − λz)z = 0.

Since w and z are assumed to be linearly independent, we have λw+z = λw and
λw+z = λz, and hence again we have λw = λz, completing the proof.

Problem 27

Suppose V is finite-dimensional and T ∈ L(V ) is such that every subspace
of V with dimension dimV − 1 is invariant under T . Prove that T is a
scalar multiple of the identity operator.

Proof. Suppose not. Then by the contrapositive of Problem 26, there exists
some nonzero v ∈ V which is not an eigenvector of T . Thus the list v, Tv is
linearly independent, and, assuming dimV = n, we may extend it to some
basis v, Tv, u1, . . . , un−2 of V . Let U = span(v, u1, . . . , un−2). Since dimU =
dimV −1, U must be invariant under T . But this is a contradiction, since Tv 6∈ U .
Thus T must be a scalar multiple of the identity operator, as desired.

Problem 29

Suppose T ∈ L(V ) and dim rangeT = k. Prove that T has at most k + 1
distinct eigenvalues.

Proof. Suppose λ1, . . . , λm are distinct eigenvalues of T , and let v1, . . . , vm be
corresponding eigenvectors. For k ∈ {1, . . . ,m}, if λk 6= 0, then

T

(
1

λk
vk

)
= vk.
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Since at most one of the λ1, . . . , λm can be 0, at least m− 1 of our eigenvectors
are in rangeT . Thus, since lists of distinct eigenvectors are linearly independent
by Theorem 5.10, we have

m− 1 ≤ dim rangeT = k,

which implies m ≤ k + 1, as desired.

Problem 31

Suppose V is finite-dimensional and v1, . . . , vm is a list of vectors in V .
Prove that v1, . . . , vm is linearly independent if and only if there exists
T ∈ L(V ) such that v1, . . . , vm are eigenvectors of T corresponding to
distinct eigenvalues.

Proof. (⇐) If T ∈ L(V ) is such that v1, . . . , vm are eigenvectors of T correspond-
ing to distinct eigenvalues, then v1, . . . , vm is linearly independent by Theorem
5.10.

(⇒) Suppose v1, . . . , vm is a linearly independent list of vectors in V . Define
T ∈ L(V ) by Tvk = kvk for k = 1, . . . ,m. The existence (and uniqueness) of
T is guaranteed by Theorem 3.5, and clearly v1, . . . , vm are eigenvectors of T
corresponding to distinct eigenvalues.

Problem 33

Suppose T ∈ L(V ). Prove that T/(rangeT ) = 0.

Proof. Let v + rangeT ∈ V/(rangeT ). Then

(T/(rangeT ))(v + rangeT ) = Tv + rangeT

= 0 + rangeT.

Thus T/(rangeT ) is indeed the zero map, as was to be shown.

Problem 35

Suppose V is finite-dimensional, T ∈ L(V ), and U is invariant under T .
Prove that each eigenvalue of T/U is an eigenvalue of T .

Proof. Suppose λ ∈ F is an eigenvalue of T/U . Then there exists some nonzero
v + U ∈ V/U such that

(T/U)(v + U) = λ(v + U),

which implies

Tv + U = λv + U,
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and hence Tv − λv ∈ U . If λ is an eigenvalue of T |U , we’re done. So suppose
not. Then, since V is finite-dimensional, Theorem 5.6 tells us T |U − λI : U → U
is invertible. Hence there exists some u ∈ U such that (T |U − λI)(u) = Tv − λv,
and thus

Tu− λu = Tv − λv.

Simplifying, we have T (u − v) = λ(u − v). Since v 6∈ U by assumption, this
implies u− v 6= 0 and hence λ is an eigenvalue of T , completing the proof.

B: Eigenvectors and Upper-Triangular Matrices

Problem 1

Suppose T ∈ L(V ) and there exists a positive integer n such that Tn = 0.

(a) Prove that I − T is invertible and that

(I − T )−1 = I + T + · · ·+ Tn−1.

(b) Explain how you would guess the formula above.

Proof. (a) We will show that S := I + T + · · ·+ Tn−1 is both a left and right
inverse of I − T . Suppose v ∈ V . We have

(I − T )Sv = (I − T )
(
v + Tv + · · ·+ Tn−1v

)
=
(
v + Tv + · · ·+ Tn−1v

)
− T

(
v + Tv + · · ·+ Tn−1v

)
= v +

(
Tv + · · ·+ Tn−1v − Tv − T 2v − · · · − Tn−1

)
+ Tnv

= v

and

S(I − T )v =
(
v + Tv + · · ·+ Tn−1v

)
(I − T )

=
(
v + Tv + · · ·+ Tn−1v

)
−
(
Tv + T 2v + · · ·+ Tnv

)
= v +

(
Tv + · · ·+ Tn−1v − Tv − T 2v − · · · − Tn−1

)
+ Tnv

= v.

Thus I − T is indeed invertible, and S is its inverse.

(b) Recall the power series expansion for (1− x)−1 when |x| < 1:

(1− x)−1 =

∞∑
k=0

xk.
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Substituting T for x and supposing T k = 0 for k ≥ n, we have the formula
from (a).

Problem 3

Suppose T ∈ L(V ) and T 2 = I and −1 is not an eigenvalue of T . Prove
that T = I.

Proof. Since −1 is not an eigenvalue of T , Theorem 5.6 implies T +I is invertible.
Hence for all w ∈ V , there exists v ∈ V such that (T + I)v = w. Thus

Tv + v = w. (13)

Since T 2 = I, applying T to both sides yields

v + Tv = Tw. (14)

Combining Equations 13 and 14, we see Tw = w. Therefore it must be that
T = I, as was to be shown.

Problem 4

Suppose P ∈ L(V ) and P 2 = P . Prove that V = nullP ⊕ rangeP .

Proof. First notice 0 = P 2−P = P (P −I), hence (P −I)v ∈ nullP for all v ∈ V .
Next notice we can write v = Pv − (P − I)v. Since of course Pv ∈ rangeP , this
yields

V = nullP + rangeP.

To see this sum is direct, suppose w ∈ nullP ∩ rangeP . Then Pw = 0 (since
w ∈ nullP ) and there exists u ∈ V such that w = Pu (since w ∈ rangeP ).
Combining these two equations with the hypothesis that P 2 = P , we now have

w = Pu = P 2u = P (Pu) = Pw = 0,

and thus the sum is indeed direct, as desired.

Problem 5

Suppose S, T ∈ L(V ) and S is invertible. Suppose p ∈ P(F) is a polyno-
mial. Prove that

p
(
STS−1

)
= Sp(T )S−1.
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Proof. For k ∈ Z+, notice (
STS−1

)k
= ST kS−1.

Since p ∈ P(F), there exist n ∈ Z+ and α0, . . . , αn ∈ F such that

p(z) = α0 + α1z + · · ·+ αnz
n.

It follows
p(T ) = α0I + α1T + · · ·+ αnT

n,

and hence
Sp(T ) = α0S + α1ST + · · ·+ αnST

n,

and thus we have

Sp(T )S−1 = α0I + α1STS
−1 + · · ·+ αnST

nS−1 = p
(
STS−1

)
,

as was to be shown.

Problem 7

Suppose T ∈ L(V ). Prove that 9 is an eigenvalue of T 2 if and only if 3
or −3 is an eigenvalue of T .

Proof. (⇐) Suppose 3 or −3 is an eigenvalue of T . Then there exists a nonzero
v ∈ V such that either

Tv = 3v or Tv = −3v.

In the former case, we have T 2v = 3Tv = 9v, and in the latter we have
T 2 = −3Tv = 9v. In both cases, 9 is an eigenvalue of T 2.

(⇒) If 9 is an eigenvalue of T 2, then there exists a nonzero w ∈ V such that
T 2w = 9w. Hence T 2 − 9I is not invertible, whereby (T − 3I)(T + 3I) is not
invertible. Thus, by Problem 9 of Section 3.D, either T − 3I or T + 3I is not
invertible. This implies either 3 or −3 is an eigenvalue of T , as desired.

Problem 9

Suppose V is finite-dimensional, T ∈ L(V ), and v ∈ V with v 6= 0. Let p
be a nonzero polynomial of smallest degree such that p(T )v = 0. Prove
that every zero of p is an eigenvalue of T .

Proof. Suppose λ ∈ F is a zero of p. Then there exists q ∈ P(F) with deg q =
deg p− 1 such that

p(X) = (X − λ)q(X).

Then, since p(T )v = 0 by hypothesis, we have

(T − λI)q(T )v = 0.

Since deg q < deg p, q(T )v 6= 0, and hence λ is indeed an eigenvalue of T .
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Problem 11

Suppose F = C, T ∈ L(V ), p ∈ P(C) is a nonconstant polynomial, and
α ∈ C. Prove that α is an eigenvalue of p(T ) if and only if α = p(λ) for
some eigenvalue λ of T .

Proof. (⇒) Suppose α is an eigenvalue of p(T ). Then p(T )− αI is not injective.
By the Fundamental Theorem of Algebra, there exist c, λ1, . . . , λm ∈ C such
that

p(z)− α = c(z − λ1) . . . (z − λm).

If c = 0, then p(z) = α and p is constant, a contradiction. So we must have
c 6= 0. By the above equation, we have

p(T )− αI = c(T − λ1I) . . . (T − λmI).

Since p(T )− αI is not injective, there exists j ∈ {1, . . . ,m} such that T − λjI
is not injective. In other words, λj is an eigenvalue of T . Moreover, notice
p(λj)− α = 0, and hence α = p(λj), as desired.

(⇐) Suppose α = p(λ) for some eigenvalue λ of T . Let v ∈ V − {0} be a
corresponding eigenvector, and let α0, . . . , αn ∈ C be such that

p(z) = α0 + α1z + · · ·+ αnz
n.

Notice T kv = λkv for any k ∈ Z+. It follows

α0 + α1λ+ · · ·+ αnλ
n = α,

and hence

p(T )v = α0v + α1Tv + · · ·+ αnT
nv

= α0v + α1λv + · · ·+ αnλ
nv

= (α0 + α1λ+ · · ·+ αnλ
n) v

= αv.

Thus α is an eigenvalue of p(T ), completing the proof.

Problem 13

Suppose W is a complex vector space and T ∈ L(W ) has no eigenvalues.
Prove that every subspace of W invariant under T is either {0} or infinite-
dimensional.

Proof. Suppose U ⊆ W is invariant under T . If U = {0} the result holds, so
suppose otherwise. Now, if U were finite-dimensional, then T |U would have
an eigenvalue by Theorem 5.21. Thus T would have an eigenvalue as well, a
contradiction. So U must be infinite-dimensional.
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Problem 14

Give an example of an operator whose matrix with respect to some basis
contains only 0’s on the diagonal, but the operator is invertible.

Proof. Consider the operator

T : R2 → R2

(x, y) 7→ (y, x).

With respect to the standard basis, we have

M(T ) =

[
0 1
1 0

]
.

Clearly T is invertible (it’s its own inverse), but its matrix with respect to the
standard basis has only 0’s on the diagonal.

Problem 15

Give an example of an operator whose matrix with respect to some basis
contains only nonzero numbers on the diagonal, but the operator is not
invertible.

Proof. Consider the operator

T : R2 → R2

(x, y) 7→ (x+ y, x+ y).

With respect to the standard basis, we have

M(T ) =

[
1 1
1 1

]
.

Notice that T is not invertible, since T (0, 0) = (0, 0) = T (−1, 1), and yet
its matrix with respect to the standard basis has only nonzero numbers on
the diagonal. Combining this result with Problem 14, we see that Theorem
5.30 fails without the hypothesis that an upper-triangular matrix is under
consideration.

Problem 17

Rewrite the proof of 5.21 using the linear map that sends p ∈ Pn2(C) to
p(T ) ∈ L(V ) (and use 3.23).
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Proof. We will show that every operator on a finite-dimensional, nonzero, com-
plex vector space has an eigenvalue. Suppose V is a complex vector space with
dimension n > 0 and T ∈ L(V ). Consider the linear map

M : Pn2(C)→ L(V )

p 7→ p(T ).

Since dim
(
Pn2(C)

)
= n2+1 but dim

(
L(V )

)
= n2, M is not injective by Theorem

3.23. Thus there exists a nonzero p ∈ Pn2(C) such that Mp = p(T ) = 0. By the
Fundamental Theorem of Algebra, p has a factorization

p(z) = c(z − λ1) . . . (z − λm),

where c is a nonzero complex number, each λj is in C, and the equation holds
for all z ∈ C. Now choose any v ∈ V − {0}. It follows

0 = p(T )v

= c(T − λ1I) . . . (T − λmI)v.

Since v 6= 0, T − λj is not injective for at least one j. In other words, T has an
eigenvalue.

Problem 19

Suppose V is finite-dimensional with dimV > 1 and T ∈ L(V ). Prove
that

{p(T ) | p ∈ P(F)} 6= L(V ).

Proof. Let U = {p(T ) | p ∈ P(F)}, and suppose by way of contradiction
that U = L(V ). Let p ∈ P(F), and let α0, . . . , αn ∈ F be such that p(z) =
α0 + α1z · · ·+ αnz

n for all z ∈ F. Notice

Tp(T ) = T (α0I + α1T + · · ·+ αnT
n)

= α0T + α1T
2 + · · ·+ αnT

n+1

= (α0I + α1T + · · ·+ αnT
n)T

= p(T )T,

so that T commutes with all elements of U . By Problem 16 of Chapter 3.D, this
implies T = λI for some λ ∈ F. It follows

U = {p(T ) | p ∈ P(F)}
= {p(λI) | p ∈ P(F)}
=
{
α0I + α1(λI) + · · ·+ α1(λI)n | α0, α1, . . . , αn ∈ F and n ∈ Z+

}
= {p(λ)I | p ∈ P(F)}
= {αI | α ∈ F},

and thus dimU = 1. Since dimL(V ) = (dimV )2 and dimV > 1 by hypothesis,
we have dimL(V ) > 1, a contradiction. Thus our assumption that U = L(V )
must be false, as was to be shown.
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C: Eigenspaces and Diagonal Matrices

Problem 1

Suppose T ∈ L(V ) is diagonalizable. Prove that V = nullT ⊕ rangeT .

Proof. By Theorem 5.41, there exists a basis v1, . . . , vn of V consisting of eigen-
vectors of T . Let λ1, . . . , λn ∈ F be corresponding eigenvalues, respectively. Let
m denote the number of eigenvalues λj such that λj = 0. After relabeling, we
may assume λj = 0 for j = 1, . . . ,m and λj 6= 0 for j = m+ 1, . . . , n. It follows

V = span(v1, . . . , vm)⊕ span(vm+1, . . . , vn).

Note that if m = 0, the left hand term in the direct sum becomes the span of
the empty list, which is defined to be {0}. We claim nullT = span(v1, . . . , vm)
and rangeT = span(vm+1, . . . , vn), which provides the desired result.

First we prove nullT = span(v1, . . . , vm). This result is trivially true if m = 0,
so suppose otherwise. Since each of v1, . . . , vm is an eigenvector corresponding to
0, we have v1, . . . , vm ∈ E(0, T ), and hence span(v1, . . . , vm) ⊆ E(0, T ) = nullT .
For the reverse inclusion, suppose v ∈ nullT . Let α1, . . . , αn ∈ F be such that
v = α1v1 + · · ·+ αnvn. It follows

0 = Tv

= α1Tv1 + · · ·+ αnTvn

= αm+1Tvm+1 + · · ·+ αnTvn

= (αm+1λm+1)vm+1 + · · ·+ (αnλn)vn.

Since λm+1, . . . , λn are all nonzero, the linear independence of vm+1, . . . , vn
implies αm+1 = · · · = αn = 0. Thus v = α1v1 + · · · + αmvm, and indeed
v ∈ span{v1, . . . , vm}. We conclude nullT = span(v1, . . . , vm).

Now we prove rangeT = span(vm+1, . . . , vn). Clearly we have
vm+1, . . . , vn ∈ rangeT , since T (vk/λk) = vk for k = m + 1, . . . , n, and hence
span(vm+1, . . . , vn) ⊆ rangeT . For the reverse inclusion, suppose w ∈ rangeT .
Then there exists z ∈ V such that Tz = w. Let β1, . . . , βn ∈ F be such that
z = β1v1 + · · ·+ βnvn. It follows

w = Tz

= β1Tv1 + · · ·+ βnTvn

= (βm+1λm+1)vm+1 + · · ·+ (βnλn)vn.

Thus w ∈ span(vm+1, . . . , vn), and we conclude rangeT = span(vm+1, . . . , vn),
completing the proof of our claim.
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Problem 3

Suppose V is finite-dimensional and T ∈ L(V ). Prove that the following
are equivalent:

(a) V = nullT ⊕ rangeT .

(b) V = nullT + rangeT .

(c) nullT ∩ rangeT = {0}.

Proof. Let N = nullT and R = rangeT .
(a⇒ b) If V = N ⊕R, then V = N +R by the definition of direct sum.
(b⇒ c) Suppose V = N +R. By Theorem 2.43, we know

dim(N +R) = dimN + dimR− dim(N ∩R), (15)

and by hypothesis, the LHS of Equation 15 equals dimV . Hence we have

dimV = dimN + dimR− dim(N ∩R). (16)

Now, by the Fundamental Theorem of Linear Maps, we have

dimV = dimN + dimR. (17)

Combining Equations 16 and 17 yields dim(N ∩R) = 0, and hence N ∩R = {0}.
(c⇒ a) Suppose N ∩R = {0}. Again by Theorem 2.43, we have

dim(N +R) = dimN + dimR− dim(N ∩R).

By hypothesis, dim(N ∩R) = 0. Thus

dim(N +R) = dimN + dimR. (18)

By another application of the Fundamental Theorem of Linear Maps, the RHS of
Equation 18 equals dimV . Hence we have dimV = dim(N +R), and therefore
V = N +R. Since N ∩R = {0} by hypothesis, this sum is direct.

Problem 5

Suppose V is a finite-dimensional complex vector space and T ∈ L(V ).
Prove that T is diagonalizable if and only if

V = null(T − λI)⊕ range(T − λI)

for every λ ∈ C.

16



Proof. (⇒) Suppose T is diagonalizable. Then there exists a basis such that
M(T ) is diagonal. Letting λ ∈ C, it follows

M(T − λI) =M(T )− λM(I)

=M(T )− λI,

where we abuse notation and use I to denote both the identity operator on V and
the identity matrix in FdimV,dimV . Since λI is diagonal, so too is M(T )− λI,
and hence T − λI is diagonalizable. The desired result now follows by Problem
1.

(⇐) Conversely, suppose

V = null(T − λI)⊕ range(T − λI)

for every λ ∈ C. We induct on n = dimV . If n = 1, the result clearly holds, since
every matrix in F1,1 is diagonal. Now assume n ∈ Z+ and that the assertion
holds for all vector spaces of dimension k < n. Let λ1 ∈ C be an eigenvalue of T
(such an eigenvalue must exist by Theorem 5.21). By hypothesis, we have

V = E(λ1, T )⊕ range(T − λ1I). (19)

Let R = range(T − λ1I). We claim

R = null(T |R − λI)⊕ range(T |R − λI)

for all λ ∈ C. By Problem 3c, it suffices to show null(T |R−λI)∩range(T |R−λI) =
{0}. Notice

null(T |R − λI) ⊆ null(T − λI) and range(T |R − λI) ⊆ range(T − λI).

It follows

null(T |R − λI) ∩ range(T |R − λI) ⊆ null(T − λI) ∩ range(T − λI) = {0},

proving our claim. Now, let v1, . . . , vk be a basis of E(λ1, T ). Since T |R is
diagonalizable, R has a basis of eigenvectors by Theorem 5.41. Call them
vk+1, . . . , vn. By Equation 19, the list v1, . . . , vn is a basis of V consisting of
eigenvectors of T . By another application of Theorem 5.41, this implies T is
diagonalizable, as desired.

Problem 7

Suppose T ∈ L(V ) has a diagonal matrix A with respect to some basis of
V and that λ ∈ F. Prove that λ appears on the diagonal of A precisely
dimE(λ, T ) times.
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Proof. Let λ1, . . . , λm ∈ F be the distinct eigenvalues of T , let v1, . . . , vn be a
basis consisting of eigenvectors of T (such a basis is guaranteed by Theorem 5.41),
and let A =M(T ) with respect to this basis. Denote by sk the number of our
basis vectors contained in E(λk, T ) for k ∈ {1, . . . ,m}, so that the eigenvalue λk
appears on the diagonal of A exactly sk times. We will show sk = dimE(λk, T ).

Since any subset of the basis contained in E(λk, T ) is of course linearly
independent, we first note sk ≤ dimE(λk, T ). So we have

s1 + · · ·+ sm ≤ dimE(λ1, T ) + · · ·+ dim(λm, T )

= n.

Since E(λi, T )∩E(λj , T ) = {0} for i 6= j, each element of our basis is contained
in at most one E(λk, T ). Hence the LHS of the equation above equals n as well,
and the inequality is in fact an equality. This implies

s1 − dim(E1, T ) = (dimE(λ2, T )− s2) + · · ·+ (dimE(λm, T )− sm).

Each term in parentheses on the RHS is nonnegative, and hence s1−dim(E1, T ) ≥
0, which implies s1 ≥ dim(E1, T ). Since we’ve already shown s1 ≤ dim(E1, T ),
we conclude s1 = dim(E1, T ). An analogous argument shows s` = E(λ`, T ) for
all ` ∈ {2, . . . ,m}.

Therefore, if λ ∈ C is an eigenvalue of T , then λ indeed appears on the
diagonal of A precisely dimE(λ, T ) times. And if λ is not an eigenvalue of T ,
then it appears on the diagonal zero times, which also equals dimE(λ, T ). In
both cases, the desired result holds, completing the proof.

Problem 9

Suppose T ∈ L(V ) is invertible. Prove that E(λ, T ) = E
(
1
λ , T

−1) for
every λ ∈ F with λ 6= 0.

Proof. Let λ ∈ F− {0}, and suppose v ∈ E(λ, T ). Then

Tv = λv =⇒ v = T−1(λv)

=⇒ 1

λ
v = T−1v

=⇒ v ∈ E
(

1

λ
, T−1

)
,

and thus E(λ, T ) ⊆ E
(
1
λ , T

−1). Conversely, suppose w ∈ E
(
1
λ , T

−1). It follows

T−1w =
1

λ
w =⇒ w = T

(
1

λ
w

)
=⇒ λw = Tw

=⇒ w ∈ E(λ, T ),

and so E
(
1
λ , T

−1) ⊆ E(λ, T ). Therefore, we conclude E(λ, T ) = E
(
1
λ , T

−1), as
was to be shown.
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Problem 11

Verify the assertion in Example 5.40.

Proof. Define T ∈ L(R2) by

T (x, y) = (41x+ 7y,−20x+ 74y).

Example 5.40 asserts that T is diagonalizable, because the matrix of T with
respect to the basis (1, 4), (7, 5) is [

69 0
0 46

]
.

To see this, first notice

T (1, 4) = (69, 276)

= 69 · (1, 4) + 0 · (7, 5),

and so the first column of the matrix is correct. Next notice

T (7, 5) = (322, 230)

= 0 · (1, 4) + 46 · (7, 5),

and so the second column of the matrix is correct as well.

Problem 12

Suppose R, T ∈ L(F3) each have 2, 6, 7 as eigenvalues. Prove that there
exists an invertible operator S ∈ L(F3) such that R = S−1TS.

Proof. Since R and T each have 3 eigenvalues and dimF3 = 3, they are both
diagonalizable by Theorem 5.44. Letting λ1 = 2, λ2 = 6, and λ3 = 7, there exist
(again by Theorem 5.44) bases v1, v2, v3 and w1, w2, w3 of F3 such that

Rvk = λkvk and Twk = λkwk

for k = 1, 2, 3. Define the operator S ∈ L(F3) by its behavior on the vk’s

Svk = wk.

Since S takes one basis to another basis, it’s invertible. Now notice

S−1TSvk = S−1Twk

= S−1(λkwk)

= λkS
−1wk

= λkvk

= Rvk,

and thus R = S−1TS, as desired.
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Problem 13

Find R, T ∈ L(F4) such that R and T each have 2, 6, 7 as eigenvalues, R
and T have no other eigenvalues, and there does not exist an invertible
operator S ∈ L(F4) such that R = S−1TS.

Proof. For x = (x1, x2, x3, x4) ∈ F4, define R, T ∈ L(F4) by

Rx =


2 0 0 0
0 2 0 0
0 0 6 0
0 0 0 7



x1
x2
x3
x4

 and Tx =


2 1 1 1
0 2 1 1
0 0 6 1
0 0 0 7



x1
x2
x3
x4

 .
By Theorem 5.32, R and T each have precisely 2, 6, 7 as eigenvalues and no
others. We claim T is diagonalizable, and we will use this fact to derive a
contradiction from which the result will follow. To see this, first notice

T − 2I =


0 1 1 1
0 0 1 1
0 0 4 1
0 0 0 5

 .
Since T − 2I is in echelon form and has three pivots, dim range(T − 2I) = 3,
and thus dimE(2, T ) = dim null(T − 2I) = 1. Similarly, we have

T − 6I =


−4 1 1 1
0 −4 1 1
0 0 0 1
0 0 0 1

 ,
so that T − 6I has three pivots as well and hence dimE(6, T ) = 1. Lastly, notice

T − 7I =


−5 1 1 1
0 −5 1 1
0 0 −1 1
0 0 0 0

 ,
and T − 6I also has three pivots and so dimE(7, T ) = 1. Since dimE(2, T ) +
dimE(6, T ) + dimE(7, T ) < dimF4, T is not diagonalizable by Theorem 5.41.

Now, by way of contradiction, suppose there exists an invertible S ∈ L(F4)
such that R = S−1TS. Then the list Se1, . . . , Se4 is a basis of F4. Notice

T (Se1) = S(Re1)

= S(2e1)

= 2Se1,

and similarly we have

T (Se2) = 2Se2, T (Se3) = 6Se3, and T (Se4) = 7Se4.
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Thus M
(
T, (Se1, . . . , Se4)

)
is diagonal, a contradiction. Therefore, no such S

exists, and R and T are operators of the desired form.

Problem 15

Suppose T ∈ L(C3) is such that 6 and 7 are eigenvalues of T . Furthermore,
suppose T does not have a diagonal matrix with respect to any basis
of C3. Prove that there exists (x, y, z) ∈ C3 such that T (x, y, z) =
(17 + 8x,

√
5 + 8y, 2π + 8z).

Proof. By hypothesis, T is not diagonalizable. Hence by Theorem 5.44, 6 and 7
are the only eigenvalues of T . In particular, 8 is not an eigenvalue. Thus

dimE(8, T ) = dim null(T − 8I) = 0,

and hence T − 8I is surjective. So there exists (x, y, z) ∈ C3 such that (T −
8I)(x, y, z) = (17,

√
5, 2π). It follows

T (x, y, z) = (17,
√

5, 2π) + 8(x, y, z)

= (17 + 8x,
√

5 + 8y, 2π + 8z),

as was to be shown.
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Chapter 6: Inner Product Spaces

Linear Algebra Done Right, by Sheldon Axler

A: Inner Products and Norms

Problem 1

Show that the function that takes
(
(x1, x2), (y1, y2)

)
∈ R2×R2 to |x1y1|+

|x2y2| is not an inner product on R2.

Proof. Suppose it were. First notice

〈(1, 1) + (−1,−1), (1, 1)〉 = 〈(0, 0), (1, 1)〉
= |0 · 1|+ |0 · 1|
= 0.

Next, since inner products are additive in the first slot, we also have

〈(1, 1) + (−1,−1), (1, 1)〉 = 〈(1, 1), (1, 1)〉+ 〈(−1,−1), (1, 1)〉
= |1 · 1|+ |1 · 1|+ |(−1) · 1|+ |(−1) · 1|
= 4.

But this implies 0 = 4, a contradiction. Hence we must conclude that the
function does not in fact define an inner product.

Problem 3

Suppose F = R and V 6= {0}. Replace the positivity condition (which
states that 〈v, v〉 ≥ 0 for all v ∈ V ) in the definition of an inner product
(6.3) with the condition that 〈v, v〉 > 0 for some v ∈ V . Show that this
change in the definition does not change the set of functions from V × V
to R that are inner products on V .

Proof. Let V be a nontrivial vector space over R, let A denote the set of functions
V × V → R that are inner products on V in the standard definition, and let B
denote the set of functions V × V → R under the modified definition. We will
show A = B.

Suppose 〈·, ·〉1 ∈ A. Since V 6= {0}, there exists v ∈ V −{0}. Then 〈v, v〉1 > 0,
and so 〈·, ·〉1 ∈ B. Thus A ⊆ B.

Conversely, suppose 〈·, ·〉2 ∈ B. Then there exists some v′ ∈ V such that
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〈v′, v′〉2 > 0. Suppose by way of contradiction there exists u ∈ V is such that
〈u, u〉2 < 0. Define w = αu+ (1− α)v′ for α ∈ R. It follows

〈w,w〉2 = 〈αu+ (1− α)v′, αu+ (1− α)v′〉2
= 〈αu, αu〉2 + 2〈αu, (1− α)v′〉2 + 〈(1− α)v′, (1− α)v′〉2
= α2〈u, u〉2 + 2α(1− α)〈u, v′〉2 + (1− α)2〈v′, v′〉2.

Notice the final expression is a polynomial in the indeterminate α, call it p.
Since p(0) = 〈v′, v′〉2 > 0 and p(1) = 〈u, u〉2 < 0, by Bolzano’s theorem there
exists α0 ∈ (0, 1) such that p(α0) = 0. That is, if w = α0u + (1 − α0)v′, then
〈w,w〉2 = 0. In particular, notice α0 6= 0, for otherwise w = v′, a contradiction
since 〈v′, v′〉2 > 0. Now, since 〈w,w〉2 = 0 iff w = 0 (by the definiteness condition
of an inner product), it follows

u =
α0 − 1

α0
v.

Letting t = α0−1
α0

, we now have

〈u, u〉2 = 〈tv′, tv′〉2
= t2〈v′, v′〉2
> 0,

where the inequality follows since t ∈ (−1, 0) and 〈v′, v′〉2 > 0. This contradicts
our assumption that 〈u, u〉2 < 0, and so we have 〈·, ·〉2 ∈ A. Therefore, B ⊆ A.
Since we’ve already shown A ⊆ B, this implies A = B, as desired.

Problem 5

Let V be finite-dimensional. Suppose T ∈ L(V ) is such that ‖Tv‖ ≤ ‖v‖
for every v ∈ V . Prove that T −

√
2I is invertible.

Proof. Let v ∈ null(T −
√

2I), and suppose by way of contradiction that v 6= 0.
Then

Tv −
√

2v = 0 =⇒ Tv =
√

2v

=⇒ ‖
√

2v‖ ≤ ‖v‖

=⇒
√

2 · ‖v‖ ≤ ‖v‖

=⇒
√

2 ≤ 1,

a contradiction. Hence v = 0 and null(T −
√

2I) = {0}, so that T −
√

2I is
injective. Since V is finite-dimensional, this implies T −

√
2I is invertible, as

desired.

2



Problem 7

Suppose u, v ∈ V . Prove that ‖au + bv‖ = ‖bu + av‖ for all a, b ∈ R if
and only if ‖u‖ = ‖v‖.

Proof. (⇒) Suppose ‖au+ bv‖ = ‖bu+ av‖ for all a, b ∈ R. Then this equation
holds when a = 1 and b = 0. But then we must have ‖u‖ = ‖v‖, as desired.

(⇐) Conversely, suppose ‖u‖ = ‖v‖. Let a, b ∈ R be arbitrary, and notice

‖au+ bv‖ = 〈au+ bv, au+ bv〉
= 〈au, au〉+ 〈au, bv〉+ 〈bv, au〉+ 〈bv, bv〉

= a2‖u‖2 + ab
(
〈u, v〉+ 〈v, u〉

)
+ b2‖v‖2. (1)

Also, we have

‖bu+ av‖ = 〈bu+ av, bu+ av〉
= 〈bu, bu〉+ 〈bu, av〉+ 〈av, bu〉+ 〈av, av〉

= b2‖u‖2 + ab
(
〈u, v〉+ 〈v, u〉

)
+ a2‖v‖2. (2)

Since ‖u‖ = ‖v‖, (1) equals (2), and hence ‖au + bv‖ = ‖bu + av‖. Since a, b
were arbitrary, the result follows.

Problem 9

Suppose u, v ∈ V and ‖u‖ ≤ 1 and ‖v‖ ≤ 1. Prove that√
1− ‖u‖2

√
1− ‖v‖2 ≤ 1− |〈u, v〉|.

Proof. By the Cauchy-Schwarz Inequality, we have |〈u, v〉| ≤ ‖u‖‖v‖. Since
‖u‖ ≤ 1 and ‖v‖ ≤ 1, this implies

0 ≤ 1− ‖u‖‖v‖ ≤ 1− |〈u, v〉|,

and hence it’s enough to show√
1− ‖u‖2

√
1− ‖v‖2 ≤ 1− ‖u‖‖v‖.

Squaring both sides, it suffices to prove(
1− ‖u‖2

)(
1− ‖v‖2

)
≤
(
1− ‖u‖‖v‖

)2
. (3)

Notice(
1− ‖u‖‖v‖

)2 − (1− ‖u‖2
)(

1− ‖v‖2
)

= ‖u‖2 − 2‖u‖‖v‖+ ‖v‖2

=
(
‖u‖ − ‖v‖

)2
≥ 0,

and hence inequality (3) holds, completing the proof.
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Problem 11

Prove that

16 ≤ (a+ b+ c+ d)

(
1

a
+

1

b
+

1

c
+

1

d

)
for all positive numbers a, b, c, d.

Proof. Define

x =
(√

a,
√
b,
√
c,
√
d
)

and y =

(√
1

a
,

√
1

b
,

√
1

c
,

√
1

d

)
.

Then the Cauchy-Schwarz Inequality implies

(a+ b+ c+ d)

(
1

a
+

1

b
+

1

c
+

1

d

)
≥

(
√
a

√
1

a
+
√
b

√
1

b
+
√
c

√
1

c
+
√
d

√
1

d

)2

= (1 + 1 + 1 + 1)2

= 16,

as desired.

Problem 13

Suppose u, v are nonzero vectors in R2. Prove that

〈u, v〉 = ‖u‖‖v‖ cos θ,

where θ is the angle between u and v (thinking of u and v as arrows with
initial point at the origin).

Proof. Let A denote the line segment from the origin to u, let B denote the line
segment from the origin to v, and let C denote the line segment from v to u.
Then A has length ‖u‖, B has length ‖v‖ and C has length ‖u− v‖. Letting θ
denote the angle between A and B, by the Law of Cosines we have

C2 = A2 +B2 − 2BC cos θ,

or equivalently

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ.

It follows

2‖u‖‖v‖ cos θ = ‖u‖2 + ‖v‖2 − ‖u− v‖2

= 〈u, u〉+ 〈v, v〉 − 〈u− v, u− v〉
= 〈u, u〉+ 〈v, v〉 −

(
〈u, u〉 − 2〈u, v〉+ 〈v, v〉

)
= 2〈u, v〉.

Dividing both sides by 2 gives the desired result.
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Problem 15

Prove that  n∑
j=1

ajbj

2

≤

 n∑
j=1

jaj
2

 n∑
j=1

bj
2

j


for all real numbers a1, . . . , an and b1, . . . , bn.

Proof. Let

u =
(
a1,
√

2a2, . . . ,
√
nan

)
and v =

(
b1,

1√
2
b2, . . . ,

1√
n
bn

)
.

Since 〈u, v〉 =
∑n
k=1 akbk, the Cauchy-Schwarz Inequality yields

(a1b1 + · · ·+ anbn)
2 ≤ ‖u‖2‖v‖2

=
(
a1

2 + 2a2
2 + · · ·+ nan

2
)(

b1
2 +

b2
2

2
+ · · ·+ bn

2

n

)
,

as desired.

Problem 17

Prove or disprove: there is an inner product on R2 such that the associated
norm is given by

‖(x, y)‖ = max{|x|, |y|}

for all (x, y) ∈ R2.

Proof. Suppose such an inner product existed. Then by the Parallelogram
Equality, it follows

‖(1, 0) + (0, 1)‖2 + ‖(1, 0)− (0, 1)‖2 = 2
(
‖(1, 0)‖2 + ‖(0, 1)‖2

)
.

After simplification, this implies 2 = 4, a contradiction. Hence no such inner
product exists.

Problem 19

Suppose V is a real inner product space. Prove that

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2

4

for all u, v ∈ V .
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Proof. Suppose V is a real inner product space and let u, v ∈ V . It follows

‖u+ v‖2 − ‖u− v‖2

4
=

(
‖u‖2 + 2〈u, v〉+ ‖v‖2

)
−
(
‖u‖2 − 2〈u, v〉+ ‖v‖2

)
4

=
4〈u, v〉

4
= 〈u, v〉,

as desired.

Problem 20

Suppose V is a complex inner product space. Prove that

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2 + ‖u+ iv‖2i− ‖u− iv‖2i

4

for all u, v ∈ V .

Proof. Notice we have

‖u+ v‖2 = 〈u+ v, u+ v〉

= ‖u‖2 + 〈u, v〉+ 〈v, u〉+ ‖v‖2

and

−‖u− v‖2 = −〈u− v, u− v〉

= −‖u‖2 + 〈u, v〉+ 〈v, u〉 − ‖v‖2.

Also, we have

‖u+ iv‖2i = i
(
〈u+ iv, u+ iv〉

)
= i
(
‖u‖2 + 〈u, iv〉+ 〈iv, u〉+ 〈iv, iv〉

)
= i
(
‖u‖2 − i〈u, v〉+ i〈v, u〉+ ‖v‖2

)
= i‖u‖2 + 〈u, v〉 − 〈v, u〉+ i‖v‖2

and

−‖u− iv‖2i = −i
(
〈u− iv, u− iv〉

)
= −i

(
‖u‖2 − 〈u, iv〉 − 〈iv, u〉+ 〈iv, iv〉

)
= −i

(
‖u‖2 + i〈u, v〉 − i〈v, u〉+ ‖v‖2

)
= −i‖u‖2 + 〈u, v〉 − 〈v, u〉 − i‖v‖2.
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Thus it follows

‖u+ v‖2 − ‖u− v‖2 + ‖u+ iv‖2i− ‖u− iv‖2i = 4〈u, v〉.

Dividing both sides by 4 yields the desired result.

Problem 23

Suppose V1, . . . , Vm are inner product spaces. Show that the equation

〈(u1, . . . , um), (v1, . . . , vm)〉 = 〈u1, v1〉+ · · ·+ 〈um, vm〉

defines an inner product on V1 × · · · × Vm.

Proof. We prove that this definition satisfies each property of an inner product
in turn.
Positivity: Let (v1, . . . , vm) ∈ V1 × . . . Vm. Since 〈vk, vk〉 is an inner product
on Vk for k = 1, . . . ,m, we have 〈vk, vk〉 ≥ 0. Thus

〈(v1, . . . , vm), (v1, . . . , vm)〉 = 〈v1, v1〉+ · · ·+ 〈vm, vm〉 ≥ 0.

Definiteness: First suppose 〈(v1, . . . , vm), (v1, . . . , vm)〉 = 0 for (v1, . . . , vm) ∈
V1 × · · · × Vm. Then

〈v1, v1〉+ · · ·+ 〈vm, vm〉 = 0.

By positivity of each inner product on Vk (for k = 1, . . . ,m), we must have
〈vk, vk〉 ≥ 0. Thus the equation above holds only if 〈vk, vk〉 = 0 for each k,
which is true iff vk = 0 (by definiteness of the inner product on Vk). Hence
(v1, . . . , vm) = (0, . . . , 0). Conversely, suppose (v1, . . . , vm) = (0, . . . , 0). Then

〈(v1, . . . , vm), (v1, . . . , vm)〉 = 〈v1, v1〉+ · · ·+ 〈vm, vm〉
= 〈0, 0〉+ · · ·+ 〈0, 0〉
= 0 + · · ·+ 0

= 0,

where the third equality follows from definiteness of the inner product on each
Vk, respectively.
Additivity in first slot: Let

(u1, . . . , um), (v1, . . . , vm), (w1, . . . , wm) ∈ V1 × · · · × Vm.

It follows

〈(u1, . . . , um)+(v1, . . . , vm)), (w1, . . . , wm)〉
= 〈(u1 + v1, . . . , um + vm), (w1, . . . , wm)〉
= 〈u1 + v1, w1〉+ · · ·+ 〈um + vm, wm〉
= 〈u1, w1〉+ 〈v1, w1〉+ · · ·+ 〈um, wm〉+ 〈vm, wm〉
= 〈(u1, . . . , um), (w1, . . . , wm)〉+ 〈(v1, . . . , vm), (w1, . . . , wm)〉,
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where the third equality follows from additivity in the first slot of each inner
product on Vk, respectively.
Homogeneity in the first slot: Let λ ∈ F and

(u1, . . . , um), (v1, . . . , vm) ∈ V1 × · · · × Vm.

It follows

〈λ(u1, . . . , um), (v1, . . . , vm)〉 = 〈(λu1, . . . , λum), (v1, . . . , vm)〉
= 〈λu1, v1〉+ · · ·+ 〈λum, vm〉
= λ〈u1, v1〉+ · · ·+ λ〈um, vm〉
= λ(〈u1, v1〉+ · · ·+ 〈um, vm〉)
= λ〈(u1, . . . , um), (v1, . . . , vm)〉,

where the third equality follows from homogeneity in the first slot of each inner
product on Vk, respectively.
Conjugate symmetry: Again let

(u1, . . . , um), (v1, . . . , vm) ∈ V1 × · · · × Vm.

It follows

〈(u1, . . . , um), (v1, . . . , vm)〉 = 〈u1, v1〉+ · · ·+ 〈um, vm〉

= 〈v1, u1〉+ · · ·+ 〈vm, um〉

= 〈u1, v1〉+ · · ·+ 〈um, vm〉

= 〈(v1, . . . , vm), (u1, . . . , um)〉,

where the second equality follows from conjugate symmetry of each inner product
on Vk, respectively.

Problem 24

Suppose S ∈ L(V ) is an injective operator on V . Define 〈·, ·〉1 by

〈u, v〉1 = 〈Su, Sv〉

for u, v ∈ V . Show that 〈·, ·〉1 is an inner product on V .

Proof. We prove that this definition satisfies each property of an inner product
in turn.
Positivity: Let v ∈ V . Then 〈v, v〉1 = 〈Sv, Sv〉 ≥ 0.
Definiteness: Suppose 〈v, v〉 = 0 for some v ∈ V . This is true iff 〈Sv, Sv〉 = 0
(by definition) which is true iff Sv = 0 (by definiteness of 〈·, ·〉), which is true iff
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v = 0 (since S is injective).
Additivity in first slot: Let u, v, w ∈ V . Then

〈u+ v, w〉1 = 〈S(u+ v), Sw〉
= 〈Su+ Sv, Sw〉
= 〈Su, Sw〉+ 〈Sv, Sw〉
= 〈u,w〉1 + 〈v, w〉1.

Homogeneity in first slot: Let λ ∈ F and u, v ∈ V . Then

〈λu, v〉1 = 〈S(λu), Sv〉
= 〈λSu, Sv〉
= λ〈Su, Sv〉
= λ〈u, v〉1.

Conjugate symmetry Let u, v ∈ V . Then

〈u, v〉1 = 〈Su, Sv〉

= 〈Sv, Su〉

= 〈v, u〉1 .

Problem 25

Suppose S ∈ L(V ) is not injective. Define 〈·, ·〉1 as in the exercise above.
Explain why 〈·, ·〉1 is not an inner product on V .

Proof. If S is not injective, then 〈·, ·〉1 fails the definiteness requirement in the
definition of an inner product. In particular, there exists v 6= 0 such that Sv = 0.
Hence 〈v, v〉1 = 〈Sv, Sv〉 = 0 for a nonzero v.

Problem 27

Suppose u, v, w ∈ V . Prove that∥∥∥∥w − 1

2
(u+ v)

∥∥∥∥2 =
‖w − u‖2 +‖w − v‖2

2
−‖u− v‖

2

4
.
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Proof. We have∥∥∥∥w − 1

2
(u+ v)

∥∥∥∥2 =

∥∥∥∥∥
(
w − u

2

)
+

(
w − v

2

)∥∥∥∥∥
2

= 2

∥∥∥∥w − u2

∥∥∥∥2 + 2

∥∥∥∥w − v2

∥∥∥∥2 −
∥∥∥∥∥
(
w − u

2

)
−
(
w − v

2

)∥∥∥∥∥
2

=
‖w − u‖2 +‖w − v‖2

2
−
∥∥∥∥−u+ v

2

∥∥∥∥2
=
‖w − u‖2 +‖w − v‖2

2
−‖u− v‖

2

4
,

where the second equality follows by the Parallelogram Equality.

The next problem requires some extra work to prove. We first include a
definition and prove a theorem.

Definition. Suppose ‖·‖1 and ‖·‖2 are norms on vector space V . We say ‖·‖1
and ‖·‖2 are equivalent if there exist 0 < C1 ≤ C2 such that

C1‖v‖1 ≤‖v‖2 ≤ C2‖v‖1
for all v ∈ V .

Theorem. Any two norms on a finite-dimensional vector space are equivalent.

Proof. Let V be finite-dimensional with basis e1, . . . , en. It suffices to prove that
every norm on V is equivalent to the `1-style norm ‖·‖1 defined by

‖v‖1 = |α1|+ · · ·+|αn|

for all v = α1e1 + · · ·+ αnen ∈ V .
Let ‖·‖ be a norm on V . We wish to show C1‖v‖1 ≤‖v‖ ≤ C2‖v‖1 for all

v ∈ V and some choice of C1, C2. Since this is trivially true for v = 0, we need
only consider v 6= 0, in which case we have

C1 ≤‖u‖ ≤ C2, (*)

where u = v/‖v‖1. Thus it suffices to consider only vectors v ∈ V such that
‖v‖1 = 1.

We will now show that ‖·‖ is continuous under ‖·‖1 and apply the Extreme
Value Theorem to deduce the desired result. So let ε > 0 and define M =
max{‖e1‖ , . . . ,‖en‖} and

δ =
ε

M
.

It follows that if u, v ∈ V are such that ‖u− v‖1 < δ, then∣∣‖u‖ −‖v‖∣∣ ≤‖u− v‖
≤M‖u− v‖1
≤Mδ

= ε,

10



and ‖·‖ is indeed continuous under the topology induced by ‖·‖1. Let S = {u ∈
V |‖u‖1 = 1} (the unit sphere with respect to ‖·‖1). Since S is compact and ‖·‖
is continuous on it, by the Extreme Value Theorem we may define

C1 = min
u∈S
‖u‖ and C2 = max

u∈S
‖u‖ .

But now C1 and C2 satisfy (*), completing the proof.

Problem 29

For u, v ∈ V , define d(u, v) =‖u− v‖.

(a) Show that d is a metric on V .

(b) Show that if V is finite-dimensional, then d is a complete metric on
V (meaning that every Cauchy sequence converges).

(c) Show that every finite-dimensional subspace of V is a closed subset
of V (with respect to the metric d).

Proof. (a) We show that d satisfies each property of the definition of a metric
in turn.
Identity of indiscernibles: Let u, v ∈ V . It follows

d(u, v) = 0 ⇐⇒
√
〈u− v, u− v〉 = 0

⇐⇒ 〈u− v, u− v,=〉0
⇐⇒ u− v = 0

⇐⇒ u = v.

Symmetry: Let u, v ∈ V . We have

d(u, v) =‖u− v‖
=
∥∥(−1)(u− v)

∥∥
=‖v − u‖
= d(v, u).

Triangle inequality: Let u, v, w ∈ V . Notice

d(u, v) + d(v, w) =‖u− v‖+‖v − w‖
≤
∥∥(u− v) + (v − w)

∥∥
=‖u,w‖
= d(u,w).

(b) Suppose V is a p-dimensional vector space with basis e1, . . . , ep. Assume
{vk}∞k=1 is Cauchy. Then for ε > 0, there exists N ∈ Z+ such that

11



‖vm − vn‖ < ε whenever m,n > N . Given any vi in our Cauchy sequence,
we adopt the notation that αi,1, . . . , αi,p ∈ F are always defined such that

vi = αi,1e1 + · · ·+ αi,pep.

By our previous theorem, ‖·‖ is equivalent to ‖·‖1 (where ‖·‖1 is defined in
that theorem’s proof). Thus there exists some c > 0 such that, whenever
m,n > N , we have

c‖vm − vn‖1 ≤‖vm − vn‖ < ε,

and hence

c

 p∑
i=1

∣∣αm,i − αn,i∣∣
 < ε.

This implies that {αk,i}∞k=1 is Cauchy in R for each i = 1, . . . , p. Since R
is complete, these sequences converge. So let αi = limk→∞ αk,i for each i,
and define v = α1e1 + · · ·+ αpep. It follows∥∥vj − v∥∥ =

∥∥(αj,1 − β1)e1 + · · ·+ (αj,p − βp)ep
∥∥

≤
∣∣αj,1 − α1

∣∣‖e1‖+ · · ·+
∣∣αj,p − αp∣∣∥∥ep∥∥ .

Since αj,i → αi for i = 1, . . . , p, the RHS can be made arbitrarily small by
choosing sufficiently large M ∈ Z+ and considering j > M . Thus {vk}∞k=1

converges to v, and V is indeed complete with respect to ‖·‖.

(c) Suppose U is a finite-dimensional subspace of V , and suppose {uk}∞k=1 ⊆ U
is Cauchy. By (b), limk→∞ uk ∈ U , hence U contains all its limit points.
Thus U is closed.

Problem 31

Use inner products to prove Apollonius’s Identity: In a triangle with
sides of length a, b, and c, let d be the length of the line segment from
the midpoint of the side of length c to the opposite vertex. Then

a2 + b2 =
1

2
c2 + 2d2.

Proof. Consider a triangle formed by vectors v, w ∈ R2 and the origin such that
‖w‖ = a, ‖v‖ = c, and ‖w − v‖ = b. The identity follows by applying Problem 27
with u = 0.

12



B: Orthonormal Bases

Problem 1

(a) Suppose θ ∈ R. Show that (cos θ, sin θ), (− sin θ, cos θ) and
(cos θ, sin θ), (sin θ,− cos θ) are orthonormal bases of R2.

(b) Show that each orthonormal basis of R2 is of the form given by one
of the two possibilities of part (a).

Proof. (a) Notice

〈(cos θ, sin θ), (− sin θ, cos θ)〉 = − sin θ cos θ + sin θ cos θ = 0

and

〈(cos θ, sin θ), (sin θ,− cos θ)〉 = sin θ cos θ − sin θ cos θ = 0,

hence both lists are orthonormal. Clearly the three distinct vectors
contained in the two lists all have norm 1 (following from the identity
cos2 θ + sin2 θ = 1). Since both lists have length 2, by Theorem 6.28 both
lists are orthonormal bases.

(b) Suppose e1, e2 is an orthonormal basis of R2. Since ‖e1‖ =‖e2‖ = 1, there
exist θ, ϕ ∈ [0, 2π) such that

e1 = (cos θ, sin θ) and e2 = (cosϕ, sinϕ).

Next, since 〈e1, e2〉 = 0, we have

cos θ cosϕ+ sin θ sinϕ = 0.

Since cos θ cosϕ = 1
2 (cos(θ+ϕ) +cos(θ−ϕ)) and sin θ sinϕ = cos(θ−ϕ)−

cos(θ + ϕ), the above implies

cos(θ − ϕ) = 0

and thus ϕ = θ + 3π
2 − nπ, for n ∈ Z. Since θ, ϕ ∈ [0, 2π), this implies

ϕ = θ ± π
2 . If ϕ = θ + π

2 , then

e2 =

(
cos

(
θ +

π

2

)
, sin

(
θ +

π

2

))
= (− sin θ, cos θ),

and if ϕ = θ − π
2 , then

e2 =

(
cos

(
θ − π

2

)
, sin

(
θ − π

2

))
= (sin θ,− cos θ).

Thus all orthonormal bases of R2 have one of the two forms from (a).
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Problem 3

Suppose T ∈ L(R3) has an upper-triangular matrix with respect to
the basis (1, 0, 0), (1, 1, 1), (1, 1, 2). Find an orthonormal basis of R3

(use the usual inner product on R3) with respect to which T has an
upper-triangular matrix.

Proof. Let v1 = (1, 0, 0), v2 = (1, 1, 1), and v3 = (1, 1, 2). By the proof of 6.37, T
has an upper-triangular matrix with respect to the the basis e1, e2, e3 generated
by applying the Gram-Schmidt Procedure to v1, v2, v3. Since ‖v1‖ = 1, e1 = v1.
Next, we have

e2 =
v2 − 〈v2, e1〉e1∥∥v2 − 〈v2, e1〉e1∥∥

=
(1, 1, 1)− 〈(1, 1, 1), (1, 0, 0)〉(1, 0, 0)∥∥(1, 1, 1)− 〈(1, 1, 1), (1, 0, 0)〉(1, 0, 0)

∥∥
=

(1, 1, 1)− (1, 0, 0)∥∥(1, 1, 1)− (1, 0, 0)
∥∥

=
(0, 1, 1)∥∥(0, 1, 1)

∥∥
=

(
0,

1√
2
,

1√
2

)
and

e3 =
v3 − 〈v3, e1〉e1 − 〈v3, e2〉e2∥∥v3 − 〈v3, e1〉e1 − 〈v3, e2〉e2∥∥

=

(1, 1, 2)− 〈(1, 1, 2), (1, 0, 0)〉(1, 0, 0)−
〈

(1, 1, 2),
(

0, 1√
2
, 1√

2

)〉(
0, 1√

2
, 1√

2

)
∥∥∥∥∥(1, 1, 2)− 〈(1, 1, 2), (1, 0, 0)〉(1, 0, 0)−

〈
(1, 1, 2),

(
0, 1√

2
, 1√

2

)〉(
0, 1√

2
, 1√

2

)∥∥∥∥∥
=

(1, 1, 2)− (1, 0, 0)− 3√
2

(
0, 1√

2
, 1√

2

)
∥∥∥∥(1, 1, 2)− (1, 0, 0)− 3√

2

(
0, 1√

2
, 1√

2

)∥∥∥∥
=

(
0,− 1

2 ,
1
2

)∥∥∥(0,− 1
2 ,

1
2

)∥∥∥
=

(
0,−
√

2

2
,

√
2

2

)
,

and we’re done.
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Problem 4

Suppose n is a positive integer. Prove that

1√
2π
,

cosx√
π
,

cos 2x√
π
, . . . ,

cosnx√
π

,
sinx√
π
,

sin 2x√
π
, . . . ,

sinnx√
π

is an orthonormal list of vectors in C[−π, π], the vector space of continuous
real-valued functions on [−π, π] with inner product

〈f, g〉 =

∫ π

−π
f(x)g(x)dx.

Proof. First we show that all vectors in the list have norm 1. Notice∥∥∥∥ 1√
2π

∥∥∥∥ =

√∫ π

−π

1

2π
dx

=

√
1

2π

∫ π

−π
dx

= 1.

And for k ∈ Z+, we have∥∥∥∥cos(kx)√
π

∥∥∥∥ =

√
1

π

∫ π

−π
cos(kx)2dx

=

√
1

π

[
sin(2kx)

4k
+
x

2

]π
−π

=

√√√√ 1

π

[
π

2
−
(
−π

2

)]
= 1,

and ∥∥∥∥ sin(kx)√
π

∥∥∥∥ =

√
1

π

∫ π

−π
sin(kx)2dx

=

√
1

π

[
x

2
− cos(2kx)

4k

]π
−π

=

√√√√ 1

π

[
π

2
−
(
−π

2

)]
= 1,
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so indeed all vectors have norm 1. Now we show them to be pairwise orthogonal.
Suppose j, k ∈ Z are such that j 6= k. It follows from basic calculus〈

sin(jx)√
π

,
sin(kx)√

π

〉
=

1

π

∫ π

−π
sin(jx) sin(kx)dx

=
1

π

[
k sin(jx) cos(kx) + j cos(jx) sin(kx)

j2 − k2

]π
−π

= 0,

〈
sin(jx)√

π
,

cos(kx)√
π

〉
=

1

π

∫ π

−π
sin(jx) cos(kx)dx

= − 1

π

[
k sin(jx) sin(kx) + j cos(jx) cos(kx)

j2 − k2

]π
−π

= − 1

π

[(
j cos(jπ) cos(kπ)

j2 − k2

)
−
(
j cos(−jπ) cos(−kπ)

j2 − k2

)]
= 0,

〈
cos(jx)√

π
,

cos(kx)√
π

〉
=

1

π

∫ π

−π
cos(jx) cos(kx)dx

=
1

π

[
j sin(jx) cos(kx)− k cos(jx) sin(kx)

j2 − k2

]π
−π

= 0,

〈
sin(jx)√

π
,

cos(jx)√
π

〉
=

1

π

∫ π

−π
sin(jx) cos(jx)dx

=

[
−cos2(jx)

2j

]π
−π

= 0,

〈
1√
2π
,

cos(jx)√
π

〉
=

1√
2π

∫ π

−π
cos(jx)dx

=
1√
2π

[
sin(jx)

j

]π
−π

= 0,
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and 〈
1√
2π
,

sin(jx)√
π

〉
=

1√
2π

∫ π

−π
sin(jx)dx

=
1√
2π

[
−cos(jx)

j

]π
−π

=
1√
2π

[
−cos(jπ)− cos(−jπ)

j

]
= 0.

Thus the list is indeed an orthonormal list in C[−π, π].

Problem 5

On P2(R), consider the inner product given by

〈p, q〉 =

∫ 1

0

p(x)q(x) dx.

Apply the Gram-Schmidt Procedure to the basis 1, x, x2 to produce an
orthonormal basis of P2(R).

Proof. First notice ‖1‖ = 1, hence e1 = 1. Next notice

v2 − 〈v1, e1〉e1 = x− 〈x, 1〉

= x−
∫ 1

0

x dx

= x− 1

2

and ∥∥∥∥x− 1

2

∥∥∥∥ =

√〈
x− 1

2
, x− 1

2

〉

=

√∫ 1

0

(
x− 1

2

)(
x− 1

2

)
dx

=

√∫ 1

0

(
x2 − x+

1

4

)
dx

=

√
1

3
− 1

2
+

1

4

=
1

2
√

3
,
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and therefore we have

e2 = 2
√

3

(
x− 1

2

)
.

To compute e3, first notice

v3 − 〈v3, e1〉e1 − 〈v3, e2〉e2 = x2 −
∫ 1

0

x2 dx−

[
2
√

3

∫ 1

0

x2
(
x− 1

2

)
dx

]
e2

= x2 − 1

3
−

2
√

3

∫ 1

0

(
x3 − x2

2

)
dx

[2
√

3

(
x− 1

2

)]

= x2 − 1

3
− 12

(
1

4
− 1

6

)(
x− 1

2

)
= x2 − 1

3
−
(
x− 1

2

)
= x2 − x+

1

6

and ∥∥∥∥x2 − x+
1

6

∥∥∥∥ =

√〈
x2 − x+

1

6
, x2 − x+

1

6

〉

=

√∫ 1

0

(
x2 − x+

1

6

)(
x2 − x+

1

6

)
dx

=

√∫ 1

0

(
x4 − 2x3 +

4

3
x2 − x

3
+

1

36

)
dx

=

√
1

5
− 1

2
+

4

9
− 1

6
+

1

36

=
1√
180

=
1

6
√

5
.

Thus

e3 = 6
√

5

(
x2 − x+

1

6

)
,

and we’re done.
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Problem 7

Find a polynomial q ∈ P2(R) such that

p

(
1

2

)
=

∫ 1

0

p(x)q(x) dx

for every p ∈ P2(R).

Proof. Consider the inner product 〈p, q〉 =
∫ 1

0
p(x)q(x) dx on P2(R). Define

ϕ ∈ L(P2(R)) by ϕ(p) = p
(
1
2

)
and let e1, e2, e3 be the orthonormal basis found

in Problem 5. By the Riesz Representation Theorem, there exists q ∈ P2(R)
such that ϕ(p) = 〈p, q〉 for all p ∈ P2(R). That is, such that

p

(
1

2

)
=

∫ 1

0

p(x)q(x) dx.

Equation 6.43 in the proof of the Riesz Representation Theorem fashions a way
to find q. In particular, we have

q(x) = ϕ(e1) e1 + ϕ(e2) e2 + ϕ(e3) e3

= e1 + 2
√

3

(
1

2
− 1

2

)
e2 + 6

√
5

(
1

4
− 1

2
+

1

6

)
e3

= 1 + 6
√

5

(
−1

12

)[
6
√

5

(
x2 − x+

1

6

)]

= −15(x2 − x)− 3

2
,

as desired.

Problem 9

What happens if the Gram-Schmidt Procedure is applied to a list of
vectors that is not linearly independent?

Proof. Suppose v1, . . . , vm are linearly dependent. Let j be the smallest integer
in {1, . . . ,m} such that vj ∈ span(v1, . . . , vj−1). Then v1, . . . , vj−1 are linearly
independent. The first j − 1 steps of the Gram-Schmidt Procedure will produce
an orthonormal list e1, . . . , ej−1. At step j, however, notice

vj − 〈vj , e1〉e1 − · · · − 〈vj , ej−1〉ej−1 = vj − vj = 0,

and we are left trying to assign ej to 0
0 , which is undefined. Thus the procedure

cannot be applied to a linearly dependent list.
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Problem 11

Suppose 〈·, ·〉1 and 〈·, ·〉2 are inner products on V such that 〈v, w〉1 = 0
if and only if 〈v, w〉2 = 0. Prove that there is a positive number c such
that 〈v, w〉1 = c〈v, w〉2 for every v, w ∈ V .

Proof. Let v, w ∈ V be arbitrary. By hypothesis, if v and w are orthogonal
relative to one of the inner products, they’re orthogonal relative to the other.
Hence any choice of c ∈ R would satisfy 〈v, w〉1 = c〈v, w〉2. So suppose v and w
are not orthogonal relative to either inner product. Then both v and w must
be nonzero (by Theorem 6.7, parts b and c, respectively). Thus 〈v, v〉1, 〈w,w〉1,
〈v, v〉2, and 〈w,w〉2 are all nonzero as well. It now follows

0 = 〈v, w〉1 −
〈v, w〉1
〈v, v〉1

〈v, v〉1

= 〈v, w〉1 −

〈
v,

(
〈v, w〉1
〈v, v〉1

)
v

〉
1

=

〈
v, w −

(
〈v, w〉1
〈v, v〉1

)
v

〉
1

=

〈
v, w −

(
〈v, w〉1
〈v, v〉1

)
v

〉
2

= 〈v, w〉2 −

〈
v,

(
〈v, w〉1
〈v, v〉1

)
v

〉
2

= 〈v, w〉2 −
〈v, w〉1
〈v, v〉1

〈v, v〉2

= 〈v, w〉2 −
〈v, v〉2
〈v, v〉1

〈v, w〉1,

where the fifth equality follows by our hypothesis. Thus

〈v, w〉1 =
‖v‖1

2

‖v‖2
2 〈v, w〉2. (4)
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By a similar computation, notice

0 = 〈v, w〉1 −
〈v, w〉1
〈w,w〉1

〈w,w〉1

= 〈v, w〉1 −

〈
〈v, w〉1
〈w,w〉1

w,w

〉
1

=

〈
v −
〈v, w〉1
〈w,w〉1

w,w

〉
1

=

〈
v −
〈v, w〉1
〈w,w〉1

w,w

〉
2

= 〈v, w〉2 −

〈
〈v, w〉1
〈w,w〉2

w,w

〉
2

= 〈v, w〉2 −
〈v, w〉1
〈w,w〉2

〈w,w〉2

= 〈v, w〉2 −
〈w,w〉2
〈w,w〉1

〈v, w〉1,

and thus

〈v, w〉1 =
‖w‖1

2

‖w‖2
2 〈v, w〉2 (5)

as well. By combining Equations (4) and (5), we conclude

〈v, v〉1
〈v, v〉2

=
〈w,w〉1
〈w,w〉2

.

Since v and w were arbitrary nonzero vectors in V , choosing c = ‖u‖1
2
/‖u‖2

2

for any u 6= 0 guarantees 〈v, w〉1 = c〈v, w〉2 for every v, w ∈ V , as was to be
shown.

Problem 13

Suppose v1, . . . , vm is a linearly independent list in V . Show that there
exists w ∈ V such that 〈w, vj〉 > 0 for all j ∈ {1, . . . ,m}.

Proof. Let W = span(v1, . . . , vm). Given v ∈ W , let a1, . . . , am ∈ F be such
that v = a1v1 + · · ·+ amvm. Define ϕ ∈ L(W ) by

ϕ(v) = a1 + · · ·+ am.

By the Riesz Representation Theorem, there exists w ∈ W such that ϕ(v) =
〈v, w〉 for all v ∈W . But then ϕ(vj) = 1 for j ∈ {1, . . . ,m}, and indeed such a
w ∈ V exists.
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Problem 15

Suppose CR([−1, 1]) is the vector space of continuous real-valued functions
on the interval [−1, 1] with inner product given by

〈f, g〉 =

∫ 1

−1
f(x)g(x)dx

for f, g ∈ CR([−1, 1]). Let ϕ be the linear functional on CR([−1, 1])
defined by ϕ(f) = f(0). Show that there does not exist g ∈ CR([−1, 1])
such that

ϕ(f) = 〈f, g〉

for every f ∈ CR([−1, 1]).

Proof. Suppose not. Then there exists g ∈ CR([−1, 1]) such that

ϕ(f) = 〈f, g〉

for every f ∈ CR([−1, 1]). Choose f(x) = x2g(x). Then f(0) = 0, and hence∫ 1

−1
f(x)g(x)dx =

∫ 1

−1
[xg(x)]2dx = 0.

Now, let h(x) = xg(x). Since h is continuous on [−1, 1], there exists an interval
[a, b] ⊆ [−1, 1] such that h(x) 6= 0 for all x ∈ [a, b]. By the Extreme Value
Theorem, h(x)2 has a minimum at some m ∈ [a, b]. Thus h(m)2 > 0, and we
now conclude

0 =

∫ 1

−1
h(x)2dx =

∫ b

a

h(x)2dx ≥ (b− a)h(m)2 > 0,

which is absurd. Thus it must be that no such g exists.

Problem 17

For u ∈ V , let Φu denote the linear functional on V defined by

(Φu)(v) = 〈v, u〉

for v ∈ V .

(a) Show that if F = R, then Φ is a linear map from V to V ′.

(b) Show that if F = C and V 6= {0}, then Φ is not a linear map.

(c) Show that Φ is injective.

(d) Suppose F = R and V is finite-dimensional. Use parts (a) and (c)
and a dimension-counting argument (but without using 6.42) to
show that Φ is an isomorphism from V to V ′.
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Proof. (a) Suppose F = R. Let u, u′ ∈ V and α ∈ R. Then, for all v ∈ V , we
have

Φu+u′(v) = 〈v, u+ u′〉 = 〈v, u〉+ 〈v, u′〉 = Φu(v) + Φu′(v)

and
Φαu(v) = 〈v, αu〉 = α〈v, u〉 = α〈v, u〉 = αΦu(v).

Thus Φ is indeed a linear map.

(b) Suppose F = C and V 6= {0}. Let u ∈ V . Then, given v ∈ V , we have

Φiu(v) = 〈v, iu〉 = i〈v, u〉,

whereas
iΦu(v) = i〈v, u〉.

Thus Φiu 6= iΦu, and indeed Φ is not a linear map, since is is not homoge-
neous.

(c) Suppose u, u′ ∈ V are such that Φu = Φu′ . Then, for all v ∈ V , we have

Φu(v) = Φu′(v)

=⇒ 〈v, u〉 = 〈v, u′〉
=⇒ 〈v, u〉 − 〈v, u′〉 = 0

=⇒ 〈v, u− u′〉 = 0.

In particular, choosing v = u− u′, the above implies 〈u− u′, u− u′〉 = 0,
which is true iff u− u′ = 0. Thus we conclude u = u′, so that Φ is indeed
injective.

(d) Suppose F = R and dimV = n. Notice that since Φ : V ↪→ V ′, we have

dimV = dim null Φ + dim range Φ = dim range Φ.

Thus Φ is surjective as well, and we have V ∼= V ′, as was to be shown.

C: Orthogonal Complements and Minimization
Problems

Problem 1

Suppose v1, . . . , vm ∈ V . Prove that

{v1, . . . , vm}⊥ = (span(v1, . . . , vm))⊥.
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Proof. Suppose v ∈ {v1, . . . , vm}⊥. Then 〈v, vk〉 = 0 for k = 1, . . . ,m. Let
u ∈ span(v1, . . . , vm) be arbitrary. We want to show 〈v, u〉 = 0, since this implies
v ∈ (span(v1, . . . , vm))⊥ and hence {v1, . . . , vm}⊥ ⊆ (span(v1, . . . , vm))⊥. To
see this, notice

〈v, u〉 = 〈v, α1v1 + · · ·+ αmvm〉
= α1〈v, v1〉+ · · ·+ αm〈v, vm〉
= 0,

as desired. Next suppose v′ ∈ (span(v1, . . . , vm))⊥. Since v1, . . . , vm are all
clearly elements of span(v1, . . . , vm), clearly v′ ∈ {v1, . . . , vm}⊥, and thus
(span(v1, . . . , vm))⊥ ⊆ {v1, . . . , vm}⊥. Therefore we conclude {v1, . . . , vm}⊥ =
(span(v1, . . . , vm))⊥.

Problem 3

Suppose U is a subspace of V with basis u1, . . . , um and

u1, . . . , um, w1, . . . , wn

is a basis of V . Prove that if the Gram-Schmidt Procedure is applied
to the basis of V above, producing a list e1, . . . , em, f1, . . . , fn, then
e1, . . . , em is an orthonormal basis of U and f1, . . . , fn is an orthonormal
basis of U⊥.

Proof. By 6.31, span(u1, . . . , um) = span(e1, . . . , em). Since e1, . . . , em is an
orthonormal list by construction (and linearly independent by 6.26), e1, . . . , em
is indeed an orthonormal basis of U . Next, since each of fi is orthogonal to
each ej , so too is each fi orthogonal to any element of U . Thus fk ∈ U⊥ for
k = 1, . . . , n. Now, since dimU⊥ = dimV − dimU = n by 6.50, we conclude
f1, . . . , fn is an orthonormal list of length dimU⊥ and hence an orthonormal
basis of U⊥.

Problem 5

Suppose V is finite-dimensional and U is a subspace of V . Show that
PU⊥ = I − PU , where I is the identity operator on V .

Proof. For v ∈ V , write v = u+ w, where u ∈ U and w ∈ U⊥. It follows

PU⊥(v) = w

= (u+ w)− u
= Iv − PUv,

and therefore PU⊥ = I − PU , as desired.
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Problem 7

Suppose V is finite-dimensional and P ∈ L(V ) is such that P 2 = P and
every vector in nullP is orthogonal to every vector in rangeP . Prove
that there exists a subspace U of V such that P = PU .

Proof. By Problem 4 of Chapter 5B, we know V = nullP ⊕ rangeP . Let v ∈ V .
Then there exist u ∈ nullP and w ∈ rangeP such that v = u+ w and hence

Pv = P (u+ w)

= Pu+ Pw

= Pw.

Let U = rangeP and notice that nullP ⊆ nullPU = U⊥ by 6.55e. Then
Pv = Pw = PU (v), and so U is the desired subpace.

Problem 9

Suppose T ∈ L(V ) and U is a finite-dimensional subspace of V . Prove
that U is invariant under T if and only if PUTPU = TPU .

Proof. (⇐) Suppose PUTPU = TPU and let u ∈ U . It follows

TPu(u) = PUTPU (v)

and thus

Tu = PUTu.

Since rangePU = U by 6.55d, this implies Tu ∈ U . Thus U is indeed invariant
under T .

(⇒) Now suppose U is invariant under T and let v ∈ V . Since PU (v) ∈ U , it
follows that TPU (v) ∈ U . And thus PUTPU (v) = TPU (v), as desired.

Problem 11

In R4, let

U = span
(
(1, 1, 0, 0), (1, 1, 1, 2)

)
.

Find u ∈ U such that
∥∥u− (1, 2, 3, 4)

∥∥ is as small as possible.
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Proof. We first apply the Gram-Schmidt Procedure to v1 = (1, 1, 0, 0) and
v2 = (1, 1, 1, 2). This yields

e1 =
v1
‖v1‖

=
(1, 1, 0, 0)∥∥(1, 1, 0, 0)

∥∥
=

(
1√
2
,

1√
2
, 0, 0

)
and

e2 =
v2 − 〈v2, e1〉e1∥∥v2 − 〈v2, e1〉e1∥∥

=

(1, 1, 1, 2)−
〈

(1, 1, 1, 2),
(

1√
2
, 1√

2
, 0, 0

)〉(
1√
2
, 1√

2
, 0, 0

)
∥∥∥∥∥(1, 1, 1, 2)−

〈
(1, 1, 1, 2),

(
1√
2
, 1√

2
, 0, 0

)〉(
1√
2
, 1√

2
, 0, 0

)∥∥∥∥∥
=

(1, 1, 1, 2)− 2√
2

(
1√
2
, 1√

2
, 0, 0

)
∥∥∥∥(1, 1, 1, 2)− 2√

2

(
1√
2
, 1√

2
, 0, 0

)∥∥∥∥
=

(0, 0, 1, 2)∥∥(0, 0, 1, 2)
∥∥

=

(
0, 0,

1√
5
,

2√
5

)
.

Now, with our orthonormal basis e1, e2, it follows by 6.55(i) and 6.56 that∥∥u− (1, 2, 3, 4)
∥∥ is minimized by the vector

u = PU (1, 2, 3, 4)

= 〈(1, 2, 3, 4), e1〉e1 + 〈(1, 2, 3, 4), e2〉e2

=
3√
2

(
1√
2
,

1√
2
, 0, 0

)
+

11√
2

(
0, 0,

1√
5
,

2√
5

)
=

(
3

2
,

3

2
, 0, 0

)
+

(
0, 0,

11

5
,

22

5

)
=

(
3

2
,

3

2
,

11

5
,

22

5

)
,

completing the proof.
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Problem 13

Find p ∈ P5(R) that makes∫ π

−π

∣∣sinx− p(x)
∣∣2 dx

as small as possible.

Proof. Let CR[−π, π] denote the real inner product space of continuous real-
valued functions on [−π, π] with inner product

〈f, g〉 =

∫ π

−π
f(x)g(x)dx,

and let U denote the subspace of CR[−π, π] consisting of the polynomials with
real coefficients and degree at most 5. In this inner product space, observe that

∥∥sinx− p(x)
∥∥ =

√∫ π

−π

(
sinx− p(x)

)2
dx =

√∫ π

−π

∣∣sinx− p(x)
∣∣2 dx.

Notice also that
√∫ π
−π

∣∣sinx− p(x)
∣∣2 dx is minimized if and only if∫ π

−π

∣∣sinx− p(x)
∣∣2 dx is minimized. Thus by 6.56, we may conclude p(x) =

PU (sinx) minimizes
∫ π
−π

∣∣sinx− p(x)
∣∣2 dx. To compute PU (sinx), we first find

an orthonormal basis of CR[−π, π] by applying the Gram-Schmidt Procedure to
the basis 1, x, x2, x3, x4, x5 of U . A lengthy computation yields the orthonormal
basis

e1 =
1√
2π

e2 =

√
3
2x

x3/2

e3 = −

√
5
2

(
π2 − 3x2

)
2π5/2

e4 = −

√
7
2

(
3π2x− 5x3

)
2π7/2

e5 =
3
(
3π4 − 30π2x2 + 35x4

)
8
√

2π9/2

e6 = −

√
11
2

(
15π4x− 70π2x3 + 63x5

)
8π11/2

.
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Now we compute PU (sinx) using 6.55(i), yielding

PU (sinx) =
105

(
1485− 153π2 + π4

)
8π6

x−
315

(
1155− 125π2 + π4

)
4π8

x3

+
693

(
945− 105π2 + π4

)
8π10

x5,

which is the desired polynomial.
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Chapter 7: Operators on Inner Product Spaces

Linear Algebra Done Right, by Sheldon Axler

A: Self-Adjoint and Normal Operators

Problem 1

Suppose n is a positive integer. Define T ∈ L(Fn) by

T (z1, . . . , zn) = (0, z1, . . . , zn−1).

Find a formula for T ∗(z1, . . . , zn).

Proof. Fix (y1, . . . , yn) ∈ Fn. Then for all (z1, . . . , zn) ∈ Fn, we have

〈(z1, . . . , zn), T ∗(y1, . . . , yn)〉 = 〈T (z1, . . . , zn), (y1, . . . , yn)〉
= 〈(0, z1, . . . , zn−1), (y1, . . . , yn)〉
= z1y2 + z2y3 + · · ·+ zn−1yn

= 〈(z1, . . . , zn−1, zn), (y2, . . . , yn, 0)〉.

Thus T ∗ is the left-shift operator. That is, for all (z1, . . . , zn) ∈ Fn, we have

T ∗(z1, . . . , zn) = (z2, . . . , zn, 0),

as desired.

Problem 2

Suppose T ∈ L(V ) and λ ∈ F. Prove that λ is an eigenvalue of T if and
only if λ̄ is an eigenvalue of T ∗.

Proof. Suppose λ is an eigenvalue of T . Then there exists v ∈ V such that
Tv = λv. It follows

λ is not an eigenvalue of T ⇐⇒ T − λI is invertible

⇐⇒ S(T − λI) = (T − λI)S = I

for some S ∈ L(V )

⇐⇒ S∗(T ∗ − λI)∗ = (T − λI)∗S∗ = I∗

for some S∗ ∈ L(V )

⇐⇒ (T − λI)∗ is invertible

⇐⇒ T ∗ − λ̄I is invertible

⇐⇒ λ̄ is not an eigenvalue of T ∗.
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Since the first statement and the last statement are equivalent, so too are their
contrapositives. Hence λ is an eigenvalue of T if and only if λ̄ is an eigenvalue
of T ∗, as was to be shown.

Problem 3

Suppose T ∈ L(V ) and U is a subspace of V . Prove that U is invariant
under T if and only if U⊥ is invariant under T ∗.

Proof. (⇒) First suppose U is invariant under T , and let x ∈ U⊥. For any
u ∈ U , it follows

〈T ∗x, u〉 = 〈x, Tu〉
= 0,

where the second equality follows since Tu ∈ U (by hypothesis). Thus T ∗x ∈ U⊥
for all x ∈ U⊥. That is, U⊥ is invariant under T ∗.

(⇐) Now suppose U⊥ is invariant under T ∗, and let y ∈ U . For any u′ ∈ U⊥,
it follows

〈Ty, u′〉 = 〈y, T ∗u′〉
= 0,

where the second equality follows since T ∗u′ ∈ U⊥ (by hypothesis). Thus Ty ∈ U
for all y ∈ U . That is, U is invariant under T , completing the proof.

Problem 5

Prove that

dim nullT ∗ = dim nullT + dimW − dimV

and

dim rangeT ∗ = dim rangeT

for every T ∈ L(V,W ).

Proof. Let T ∈ L(V,W ). Notice

dim nullT ∗ = dim (rangeT )
⊥

= dimW − dim rangeT

= dimW + dim nullT − dimV,
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where the first equality follows by 7.7(a), the second equality follows by 6.50,
and the third equality follows by the Fundamental Theorem of Linear Maps.
Next notice

dim rangeT ∗ = dim (nullT )
⊥

= dimV − dim nullT

= dim rangeT,

where the first equality follows by 7.7(b), and the second and third equalities
follow again by the same theorems above.

Problem 7

Suppose S, T ∈ L(V ) are self-adjoint. Prove that ST is self-adjoint if and
only if ST = TS.

Proof. (⇒) Suppose ST is self-adjoint. We have

ST = (ST )∗

= T ∗S∗

= TS,

where the second equality follows by 7.6(e).
(⇐) Conversely, suppose ST = TS. It follows

(ST )∗ = (TS)∗

= S∗T ∗,

where the second equality again follows by 7.6(e), completing the proof.

Problem 9

Suppose V is a complex inner product space with V 6= {0}. Show that
the set of self-adjoint operators on V is not a subspace of L(V ).

Proof. Let A denote the set of self-adjoint operators on V , and suppose T ∈
A. By 7.6(b), notice (iT )∗ = −iT ∗, so that A is not closed under scalar
multiplication. Thus A is not a subspace of L(V ).

Problem 11

Suppose P ∈ L(V ) is such that P 2 = P . Prove that there is a subspace
U of V such that P = PU if and only if P is self-adjoint.
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Proof. (⇒) First suppose there is a subspace U ⊆ V such that P = PU , and let
v1, v2 ∈ V . It follows

〈Pv1, v2〉 = 〈u1, u2 + w2〉
= 〈u1, u2〉+ 〈u1, w2〉
= 〈u1, u2〉
= 〈u1, u2〉+ 〈w1, u2〉
= 〈u1 + w1, u2〉
= 〈v1, Pv2〉,

and thus P = P ∗.
(⇐) Conversely, suppose P = P ∗. Let v ∈ V . Notice P (v−Pv) = Pv−P 2v =

0, and hence v − Pv ∈ nullP . By 7.7(c), we know nullP = (rangeT ∗)
⊥

. By

hypothesis, P is self-adjoint, and hence we have v − Pv ∈ (rangeT )
⊥

. Notice
we may write

v = Pv + (v − Pv),

where Pv ∈ rangeP and v − Pv ∈ (rangeT )
⊥

. Let U = rangeP . Since the
above holds for all v ∈ V , we conclude P = PU , and the proof is complete.

Problem 13

Give an example of an operator T ∈ L(C4) such that T is normal but
not self-adjoint.

Proof. Let T be the operator on C4 whose matrix with respect to the standard
basis is 

2 −3 0 0
3 2 0 0
0 0 0 0
0 0 0 0

 .
We claim T is normal and not self-adjoint. To see that T is not self-adjoint,
notice that the entry in row 2, column 1 does not equal the complex conjugate
of the entry in row 1 column 2.

Next, notice

M(TT ∗) =


2 −3 0 0
3 2 0 0
0 0 0 0
0 0 0 0




2 3 0 0
−3 2 0 0
0 0 0 0
0 0 0 0

 =


13 0 0 0
0 13 0 0
0 0 0 0
0 0 0 0


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and

M(T ∗T ) =


2 3 0 0
−3 2 0 0
0 0 0 0
0 0 0 0




2 −3 0 0
3 2 0 0
0 0 0 0
0 0 0 0

 =


13 0 0 0
0 13 0 0
0 0 0 0
0 0 0 0

 ,
and hence TT ∗ and T ∗T have the same matrix. Thus TT ∗ = T ∗T , and T is
normal.

Problem 15

Fix u, x ∈ V . Define T ∈ L(V ) by

Tv = 〈v, u〉x

for every v ∈ V .

(a) Suppose F = R. Prove that T is self-adjoint if and only if u, x is
linearly dependent.

(a) Prove that T is normal if and only if u, x is linearly dependent.

Proof. We first derive a useful formula for T ∗ which we’ll use in both (a) and
(b). Let w1, w2 ∈ V and notice

〈w1, T
∗w2〉 = 〈Tw1, w2〉

= 〈〈w1, u〉x,w2〉
= 〈w1, u〉〈x,w2〉

= 〈w1, 〈x,w2〉u〉
= 〈w1, 〈w2, x〉u〉,

and thus T ∗w2 = 〈w2, x〉u. Since w2 was arbitrary, we may rewrite this as
T ∗v = 〈v, x〉u for all v ∈ V .

(a) (⇒) Suppose T is self-adjoint. Then we have

〈v, u〉x− 〈v, x〉u = Tv − T ∗v = 0

for all v ∈ V . In particular, we have

〈u, u〉x− 〈u, x〉u = 0.

We may assume both u and x are nonzero, for otherwise there is nothing
to prove. Hence 〈u, u〉 6= 0, which forces 〈u, x〉 to be nonzero as well, and
thus the equation above shows u, x is linearly dependent.

(⇐) Conversely, suppose u, x is linearly dependent. We may again
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assume both u and x are nonzero, for otherwise T = 0, which is self-adjoint.
Thus there exists a nonzero α ∈ R such that u = αx. It follows

Tv = 〈v, u〉x

= 〈v, αx〉 1
α
u

= 〈v, x〉u
= T ∗,

and thus T is self-adjoint, completing the proof.

(b) (⇒) Suppose T is normal and let v ∈ V . It follows

〈〈v, u〉x, x〉u = T ∗(〈v, u〉x)

= T ∗Tv

= TT ∗v

= T (〈v, x〉u)

= 〈〈v, x〉u, u〉x.

We may assume both u and x are nonzero, for otherwise there is nothing to
prove. Since the above holds for v = u, we may conclude 〈〈v, u〉x, x〉 6= 0,
which also forces 〈〈v, x〉u, u〉 6= 0. Thus u, x is linearly dependent.

(⇐) Conversely, suppose u, x is linearly dependent. We may again
assume both u and x are nonzero, for otherwise T = 0, which is normal.
Thus there exists a nonzero α ∈ R such that u = αx. It follows

T ∗Tv = T ∗(〈v, u〉x)

= 〈〈v, u〉x, x〉u

=

〈
〈v, αx〉 1

α
u,

1

α
u

〉
αx

= 〈〈v, x〉u, u〉x
= T (〈v, x〉u)

= TT ∗v,

and thus T is normal, completing the proof.

Problem 16

Suppose T ∈ L(V ) is normal. Prove that

rangeT = rangeT ∗.
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Proof. Suppose T ∈ L(V ) is normal. We first prove nullT = nullT ∗. It follows

v ∈ nullT ⇐⇒ Tv = 0

⇐⇒ ‖Tv‖ = 0

⇐⇒ ‖T ∗v‖ = 0

⇐⇒ T ∗v = 0

⇐⇒ v ∈ nullT ∗,

where the third equivalence follows by 7.20, and indeed we have nullT = nullT ∗.
This implies (nullT )⊥ = (nullT ∗)⊥, and by 7.7(b) and 7.7(c), this is equivalent
to rangeT ∗ = rangeT , as desired.

Problem 17

Suppose T ∈ L(V ) is normal. Prove that

nullT k = nullT and rangeT k = rangeT

for every positive integer k.

Proof. To show nullT k = nullT , we first prove nullT k = nullT k+1 for all k ∈ Z+.
Let m ∈ Z+. If m = 1, there’s nothing to prove, so we may assume m > 1.
Clearly, if v ∈ nullTm, then v ∈ nullTm+1, and hence nullTm ⊆ nullTm+1.
Next, suppose v ∈ nullTm+1. Then T (Tmv) = 0, and hence Tmv ∈ nullT . By
Problem 16, this implies Tmv ∈ nullT ∗, and by 7.7(a) we have Tm ∈ (rangeT )⊥.
Since of course Tmv ∈ rangeT as well, we must have Tmv = 0. Thus v ∈ nullTm,
and therefore nullTm+1 ⊆ nullTm. Thus nullTm = nullTm+1. Since m was
arbitrary, this implies nullT k = nullT for all k ∈ Z+, as desired.

Now we will show rangeT k = rangeT for all k ∈ Z+. Let n ∈ Z+. If n = 1,
there’s nothing to prove, so we may assume n > 1. Suppose w ∈ rangeTn.
Then there exists v ∈ V such that Tnv = w, and hence T (Tn−1v) = w, so that
w ∈ rangeT as well and we have rangeTn ⊆ rangeT . Next, notice

dim rangeTn = dimV − dim nullTn

= dimV − dim nullT

= dim rangeT,

where the second equality follows from the previous paragraph. Since rangeTn

is a subspace of rangeT of the same dimension, it must equal rangeT . And since
n was arbitrary, we conclude rangeT k = rangeT for all k ∈ Z+, completing the
proof.

Problem 19

Suppose T ∈ L(C3) is normal and T (1, 1, 1) = (2, 2, 2). Suppose
(z1, z2, z3) ∈ nullT . Prove that z1 + z2 + z3 = 0.
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Proof. By Problem 16, nullT = nullT ∗, hence T ∗(z1, z2, z3) = 0. Therefore, we
have

2(z1 + z2 + z3) = 〈(2, 2, 2), (z1, z2, z3)〉
= 〈T (1, 1, 1), (z1, z2, z3)〉
= 〈(1, 1, 1), T ∗(z1, z2, z3)〉
= 〈(1, 1, 1), (0, 0, 0)〉
= 0,

and so z1 + z2 + z3 = 0, as was to be shown.

Problem 21

Fix a positive integer n. In the inner product space of continuous real-
valued functions on [−π, π] with inner product

〈f, g〉 =

∫ π

−π
f(x)g(x)dx,

let

V = span(1, cosx, cos 2x, . . . , cosnx, sinx, sin 2x, . . . , sinnx).

(a) Define D ∈ L(V ) by Df = f ′. Show that D∗ = −D. Conclude
that D is normal but not self-adjoint.

(b) Define T ∈ L(V ) by Tf = f ′′. Show that T is self-adjoint.

Proof. From Problem 4 of 6B, recall that

1√
2π
,

cosx√
π
,

cos 2x√
π
, . . . ,

cosnx√
π

,
sinx√
π
,

sin 2x√
π
, . . . ,

sinnx√
π

is an orthonormal list, and hence it is an orthonormal basis of V .

(a) For k = 1, . . . , n, define

ek =
cos(kx)√

π
and fk =

sin(kx)√
π

.

Notice

Dek = −k sin(kx)√
π

= −kfk and Dfk =
k cos(kx)√

π
= kek,
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and thus, for any v, w ∈ V , it follows

〈v,D∗w〉 = 〈Dv,w〉

=

〈
D

〈v, 1√
2π

〉
1√
2π

+

n∑
k=1

(
〈v, ek〉ek + 〈v, fk〉fk

) , w

〉

=

〈
n∑
k=1

(
−k〈v, ek〉fk + k〈v, fk〉ek

)
, w

〉

= −
n∑
k=1

k〈v, ek〉〈fk, w〉+

n∑
k=1

k〈v, fk〉〈ek, w〉

= −
n∑
k=1

k〈w, fk〉〈v, ek〉+

n∑
k=1

k〈w, ek〉〈v, fk〉

=

n∑
k=1

k〈w, ek〉〈v, fk〉 −
n∑
k=1

k〈w, fk〉〈v, ek〉

=

〈
v,

n∑
k=1

k〈w, ek〉fk

〉
−

〈
v,

n∑
k=1

k〈w, fk〉ek

〉

=

〈
v,

n∑
k=1

(
k〈w, ek〉fk − k〈w, fk〉ek

)〉

=

〈
v,−D

〈w, 1√
2π

〉
1√
2π

+

n∑
k=1

(
〈w, ek〉ek + 〈w, fk〉fk

)〉
= 〈v,−Dw〉,

and thus D∗ = −D, showing that D is not self-adjoint. Moreover, notice
that this implies

DD∗ = D(−D) = −DD = (D∗)D = D∗D,

so that D is normal, completing the proof.

(b) Notice T = D2, and hence

T ∗ = (DD)∗ = D∗D∗ = (−D)(−D) = D2 = T.

Thus T is self-adjoint.
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B: The Spectral Theorem

Problem 1

True or false (and give a proof of your answer): There exists T ∈ L(R3)
such that T is not self-adjoint (with respect to the usual inner product)
and such that there is a basis of R3 consisting of eigenvectors of T .

Proof. The statement is true. To see this, consider the linear operator T defined
by its action on the basis (1, 0, 0), (0, 1, 0), (0, 1, 1):

T (1, 0, 0) = (0, 0, 0)

T (0, 1, 0) = (0, 0, 0)

T (0, 1, 1) = (0, 1, 1).

Notice T (1, 0, 0) = 0 · (1, 0, 0) and T (0, 1, 0) = 0 · (0, 1, 0), so that (1, 0, 0) and
(0, 1, 0) are eigenvectors with eigenvalue 0. Also, (0, 1, 1) is an eigenvector
with eigenvalue 1. Thus (1, 0, 0), (0, 1, 0), (0, 1, 1) is a basis of R3 consisting of
eigenvectors of T . That T is not self-adjoint follows from the contrapositive of
7.22, since (0, 1, 0) and (0, 1, 1) correspond to distinct eigenvalues yet they are
not orthogonal.

Problem 3

Give an example of an operator T ∈ L(C3) such that 2 and 3 are the
only eigenvalues of T and T 2 − 5T + 6I 6= 0.

Proof. Define T ∈ L(C3) by its action on the standard basis:

Te1 = 2e2

Te2 = e1 + 2e2

Te3 = 3e3.

Then

M(T ) =

2 1 0
0 2 0
0 0 3

 .
By 5.32, the only eigenvalues of T are the entries on the diagonal: 2 and 3. Now
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notice

(T 2 − 5T + 6I)e2 = (T − 3I)(T − 2I)e2

= (T − 3I)(Te2 − 2e2)

= (T − 3I)(e1 + 2e2 − 2e2)

= (T − 3I)e1

= Te1 − 3e1

= −e1,

so that T 2 − 5T + 6I 6= 0. Thus T is an operator of the desired form.

Problem 5

Suppose F = R and T ∈ L(V ). Prove that T is self-adjoint if and only
if all pairs of eigenvectors corresponding to distinct eigenvalues of T are
orthogonal and

V = E(λ1, T )⊕ · · · ⊕ E(λm, T ),

where λ1, . . . , λm denote the distinct eigenvalues of T .

Proof. (⇐) Suppose all pairs of eigenvectors corresponding to distinct eigenvalues
of T are orthogonal and

V = E(λ1, T )⊕ · · · ⊕ E(λm, T ),

where λ1, . . . , λm denote the distinct eigenvalues of T . By 5.41, V has a basis
consisting of eigenvectors of T . Dividing each element of the basis by its norm
produces an orthonormal basis consisting of eigenvectors of T . By the Real
Spectral Theorem, T is self-adjoint, as desired.

(⇒) Conversely, suppose T is self-adjoint as suppose v1, v2 ∈ V are eigen-
vectors of T corresponding to eigenvalues λ1, λ2 ∈ R such that λ1 6= λ2. It
follows

0 = 〈Tv1, v2〉 − 〈v1, T v2〉
= 〈λ1v1, v2〉 − 〈v1, λ2v2〉
= λ1〈v1, v2〉 − λ2〈v1, v2〉
= λ1〈v1, v2〉 − λ2〈v1, v2〉
= (λ1 − λ2)〈v1, v2〉.

Since λ1 6= λ2, it must be that 〈v1, v2〉 = 0. Thus all pairs of eigenvectors
corresponding to distinct eigenvalues of T are orthogonal. By the Real Spectral
Theorem, since T is self-adjoint, T is diagonalizable. And by 5.34, this implies

V = E(λ1, T )⊕ · · · ⊕ E(λm, T ),

where λ1, . . . , λm denote the distinct eigenvalues of T , completing the proof.
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Problem 6

Prove that a normal operator on a complex vector space is self-adjoint if
and only if all its eigenvalues are real.

Proof. Let T be a normal operator on a complex vector space, V .
(⇒) Suppose T is self-adjoint. Then by 7.13, all eigenvalues of T are real.
(⇐) Conversely, suppose all eigenvalues of T are real. By the Complex

Spectral Theorem, there exists an orthonormal basis v1, . . . , vn of V consisting
of eigenvectors of T . Thus there exist λ1, . . . , λn ∈ R such that Tvk = λkvk for
k = 1, . . . , n. Thus M(T ) is diagonal, and all entries along the diagonal are real.
Therefore M(T ) equals the conjugate transpose of M(T ). By 7.10, this implies
M(T ) =M(T ∗), and we conclude T = T ∗, so that T is indeed self-adjoint.

Problem 7

Suppose V is a complex inner product space and T ∈ L(V ) is a normal
operator such that T 9 = T 8. Prove that T is self-adjoint and T 2 = T .

Proof. By the Complex Spectral Theorem, since T is normal, V has an orthonor-
mal basis v1, . . . , vn consisting of eigenvectors of T . Let λ1, . . . , λn ∈ C be the
corresponding eigenvalues, so that

Tvk = λkvk

for k = 1, . . . , n. Repeatedly applying T to both sides of the equation above 8
times yields

T 9vk = (λk)9vk and T 8vk = (λk)8vk.

Since T 9 = T 8, we conclude (λk)9 = (λk)8 and thus λk ∈ {0, 1}. In particular,
all eigenvalues of T are real, hence by Problem 6 we have that T is self-adjoint.

To see that T 2 = T , notice

T 2vk = (λk)2vk

= λkvk

= Tvk,

where the second equality follows from the fact that λk ∈ {0, 1}, and the proof
is complete.

Problem 9

Suppose V is a complex inner product space. Prove that every normal
operator on V has a square root. (An operator S ∈ L(V ) is called a
square root of T ∈ L(V ) if S2 = T .)
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Proof. Suppose T ∈ L(V ) is normal. By the Complex Spectral Theorem,
V has an orthonormal basis v1, . . . , vn consisting of eigenvectors of T . Let
λ1, . . . , λn ∈ C be the corresponding eigenvalues, so that

Tvk = λkvk

for k = 1, . . . , n. Define S ∈ L(V ) by its action on this basis:

Svk =
√
λkvk,

choosing the complex square root
√
λk by some definite rule. Let v ∈ V . Then

there exist α1, . . . , αn ∈ C such that v = α1v1 + · · ·+ αnvn. It follows

S2v = S2(α1v1 + · · ·+ αnvn)

= S
(
α1

√
λ1v1 + · · ·+ αn

√
λnvn

)
= α1λ1v1 + · · ·+ αnλnvn

= α1Tv1 + · · ·+ αnTvn

= T (α1v1 + · · ·+ αnvn)

= Tv.

Thus S2 = T , and indeed T has a square root, as was to be shown.

Problem 11

Prove or give a counterexample: every self-adjoint operator on V has a
cube root. (An operator T ∈ L(V ) is called a cube root of T ∈ L(V ) if
S3 = T .)

Proof. Suppose T ∈ L(V ) is self-adjoint. Regardless of whether F = R or F = R,
both Spectral Theorems imply that V has an orthonormal basis v1, . . . , vn
consisting of eigenvectors of T . By 7.13, all eigenvalues of T are real. So let
λ1, . . . , λn ∈ R be the eigenvalues corresponding to v1, . . . , vn, so that

Tvk = λkvk

for k = 1, . . . , n. Define S ∈ L(V ) by its action on this basis:

Svk = (λk)
1
3 vk,

Let v ∈ V . Then there exist α1, . . . , αn ∈ C such that v = α1v1 + · · ·+ αnvn. It
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follows

S3v = S3(α1v1 + · · ·+ αnvn)

= S2
(
α1(λ1)

1
3 v1 + · · ·+ αn(λn)

1
3 vn

)
= S

(
α1(λ1)

2
3 v1 + · · ·+ αn(λn)

2
3 vn

)
= α1λ1v1 + · · ·+ αnλnvn

= α1Tv1 + · · ·+ αnTvn

= T (α1v1 + · · ·+ αnvn)

= Tv.

Thus S3 = T , and indeed T has a cube root. Thus, all self-adjoint operators on
a finite-dimensional inner product space have a cube root.

Problem 13

Give an alternative proof of the Complex Spectral Theorem that avoids
Schur’s Theorem and instead follows the pattern of the proof of the Real
Spectral Theorem.

Proof. Suppose (c) holds, so that T has a diagonal matrix with respect to some
orthonormal basis of V . The matrix of T ∗ (with respect to the same basis) is
obtained by taking the conjugate transpose of the matrix of T ; hence T ∗ also
has a diagonal matrix. Any two diagonal matrices commute; thus T commutes
with T ∗, which means that T is normal. That is, (a) holds.

We will prove that (a) implies (b) by induction on dimV . For our base case,
suppose dimV = 1. Since 5.21 guarantees the existence of an eigenvector of T ,
clearly (b) is true in this case. Next assume that dimV > 1 and that (a) implies
(b) for all complex inner product spaces of smaller dimension.

Suppose (a) holds, so that T is normal. Let u be an eigenvector of T with
‖u‖ = 1, and set U = span(u). Clearly U is invariant under T . By Problem
3 of 7A, this implies that U⊥ is invariant under T ∗ as well. But of course
T ∗ is also normal, and since dimU⊥ = dimV − 1, our inductive hypothesis
implies that there exists an orthonormal basis of U⊥ consisting of eigenvectors
of T |U⊥ . Adjoining u to this basis gives an orthonormal basis of V consisting of
eigenvectors of T , completing the proof that (a) implies (b).

We have proved that (c) implies (a) and that (a) implies (b). Clearly (b)
implies (c), and the proof is complete.
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Problem 15

Find the value of x such that the matrix1 1 0
0 1 1
1 0 x


is normal.

Proof. Let M be the above matrix. We wish to find x ∈ F such that MM∗ =
M∗M . Notice

MM∗ =

1 1 0
0 1 1
1 0 x

1 0 1
1 1 0
0 1 x


=

2 1 1
1 2 x
1 x 1 + x2


and

M∗M =

1 0 1
1 1 0
0 1 x

1 1 0
0 1 1
1 0 x


=

2 1 x
1 2 1
x 1 1 + x2

 .
Thus it must be that x = 1.

C: Positive Operators and Isometries

Problem 1

Prove or give a counterexample: If T ∈ L(V ) is self-adjoint and there
exists an orthonormal basis e1, . . . , en of V such that 〈Tej , ej〉 ≥ 0 for
each j, then T is a positive operator.

Proof. The statement is false. To see this, let e1, e2 ∈ R2 be the standard basis
and consider T ∈ L(R2) defined by

Te1 = e1

Te2 = −e2.
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Then

M(T ) =

[
1 0
0 −1

]
,

and sinceM(T ) is diagonal, T must be self-adjoint by the Real Spectral Theorem.
But notice that the basis

v1 =
1√
2

(e1 + e2)

v2 =
1√
2

(e1 − e2)

is orthonormal and that

〈Tv1, v1〉 = 〈v2, v1〉 = 0

and

〈Tv2, v2〉 = 〈v1, v2〉 = 0.

Thus T is of the desired form, but T is not a positive operator, since

〈Te2, e2〉 = 〈−e2, e2〉 = −1,

completing the proof.

Problem 3

Suppose T is a positive operator on V and U is a subspace of V invariant
under T . Prove that T |U∈ L(U) is a positive operator on U .

Proof. That T |U is self-adjoint follows by 7.28. Let u ∈ U . Then, since

〈T |U (u), u〉 = 〈Tu, u〉 > 0,

T |U is a positive operator on U , as was to be shown.

Problem 5

Prove that the sum of two positive operators on V is positive.

Proof. Let S, T ∈ L(V ) be positive operators. Notice

(S + T )∗ = S∗ + T ∗ = S + T,

hence S + T is self-adjoint. Next, let v ∈ V . It follows

〈(S + T )v, v〉 = 〈Sv + Tv, v〉
= 〈Sv, v〉+ 〈Tv, v〉
≥ 0,

and thus S + T is a positive operator as well.
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Problem 7

Suppose T is a positive operator on V . Prove that T is invertible if and
only if

〈Tv, v〉 > 0

for every v ∈ V with v 6= 0.

Proof. Let T be a positive operator on V .
(⇒) Suppose T is invertible and let v ∈ V \{0}. Since T is a positive operator,

by 7.35(e) there exists R ∈ L(V ) such that T = R2. Since T is invertible, so is
R. In particular, R is injective, and thus Rv 6= 0. It follows

〈Tv, v〉 = 〈R2, v〉
= 〈Rv,R∗v〉
= 〈Rv,Rv〉

=‖Rv‖2

> 0,

completing the proof in one direction.
(⇐) Now suppose 〈Tv, v〉 > 0 for every v ∈ V \ {0}. Assume by way of

contraction that T is not invertible, so that there exists w ∈ V \ {0} such that
Tw = 0. But then 〈Tw,w〉 = 〈0, w〉 = 0, a contradiction. Thus T must be
invertible, completing the proof.

Problem 9

Prove or disprove: the identity operator on F2 has infinitely many self-
adjoint square roots.
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