* Probability :PROPERTIES: :ANKI_DECK: math::probability :END: ** What is the Gamma distribution a generalisation of? :PROPERTIES: :ANKI_NOTE_TYPE: Basic :ANKI_DECK: math:probability :ANKI_NOTE_ID: 1766037232986 :ANKI_NOTE_HASH: ddae305f76364e1283fbb59d209475a3 :END: the *exponential* distribution ** Which 2 distributions are memoryless? What does this mean? :PROPERTIES: :ANKI_NOTE_TYPE: Basic :ANKI_NOTE_ID: 1766037232990 :ANKI_NOTE_HASH: 190deb53d91e5039bcb9183c06a02bc0 :END: 1. Geometric (discrete) 2. Exponential (continuous) \[\mathbb{P}(T> t_1+t_2 | T > t_1) = \mathbb{P}(T>t_2)\] ** Law of Total Probability :PROPERTIES: :ANKI_NOTE_TYPE: Basic :ANKI_PREPEND_HEADING: t :ANKI_NOTE_ID: 1766037232993 :ANKI_NOTE_HASH: fe0cf4cda6137b326e29c9587d1f666b :END: Suppose that $\{A_i\}^k_{i=1}$ forms a partition of the sample space $\Omega$. Then for any event $B$, $\mathcal{P}(B)=\ldots$ *** Back \begin{align} \mathbb{P}(B) &= \sum_{i=1}^k \mathbb{P}(B\cap A_i) \\ &= \sum_{i=1}^k \mathbb{P}(B|A_i)\mathbb{P}(A_i) \end{align} \begin{tikzpicture} % Sample Space \draw (0,0) rectangle (6,4) node[below left] {$\Omega$}; % Partition lines \draw (2,0) -- (2,4); \draw (4,0) -- (4,4); % Labels for partition \node at (1,3.5) {$A_1$}; \node at (3,3.5) {$A_2$}; \node at (5,3.5) {$A_3$}; % Event B (Ellipse) \draw[thick, fill=blue!20, opacity=0.5] (3,2) ellipse (2cm and 1cm); \node at (3,2) {$B$}; % Intersections (Optional labels) \node[scale=0.7] at (1.5,2) {$B \cap A_1$}; \node[scale=0.7] at (3,2.5) {$B \cap A_2$}; \node[scale=0.7] at (4.5,2) {$B \cap A_3$}; \end{tikzpicture} ** Is the Geometric distribution a *discrete* or *continuous* distribution? What is it a characterisation of? :PROPERTIES: :ANKI_NOTE_TYPE: Basic :ANKI_NOTE_ID: 1766037786714 :ANKI_NOTE_HASH: cf988a5a7c8e91729905c9dfdf92a127 :END: Discrete. Characterisation of "the number of trials required to see the first Bernoulli success" ** What is the PMF of the Geometric distribution? :PROPERTIES: :ANKI_NOTE_TYPE: Basic :ANKI_NOTE_ID: 1766037781218 :ANKI_NOTE_HASH: 2a3cb6a9a2d565ad328c293bb3aaa506 :END: \[p_X(x) = \mathbb{P}(X=x) = \underbrace{(1-\pi)^{x-1}}_{\text{seeing $x-1$ failures}} \times \overbrace{\pi}^{\text{seeing success on the $x^\textup{th}$ trial}}\] ** What are the expansions of the following sets? What is the corresponding law called? :PROPERTIES: :ANKI_NOTE_TYPE: Basic :ANKI_PREPEND_HEADING: t :ANKI_NOTE_ID: 1766037998093 :ANKI_NOTE_HASH: b2b2dbaf2e58bd710c976eba1d09c2b7 :END: \[(A\cup B)\cap C = \] \[(A\cap B)\cup C = \] *** Back "Distributive Law" \[(A\cup B)\cap C = (A\cap C)\cup (B\cap C) \] \[(A\cap B)\cup C = (A\cup C)\cap (B \cup C) \] ** The /conditional probability/ that an event $A$ occurs given that an event $B$ has occurred is $\mathbb{P}(A|B)=$ :PROPERTIES: :ANKI_NOTE_TYPE: Basic :ANKI_NOTE_ID: 1766038299121 :ANKI_NOTE_HASH: 6d376cc227b76d7640dc5c09adc03400 :END: \[\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)},\qquad B\neq \varnothing\] ** Two events $A$ and $B$ are independent if and only if? :PROPERTIES: :ANKI_NOTE_TYPE: Basic :ANKI_NOTE_ID: 1766038299123 :ANKI_NOTE_HASH: 3c18094d5bbe8c35f8aa7908b792d865 :END: \[\mathbb{P}(A\cap B) = \mathbb{P}(A)\times \mathbb{P}(B)\] note: you can derive this from conditional probability. ** What does the *associative law* for sets look like? :PROPERTIES: :ANKI_NOTE_TYPE: Basic :ANKI_NOTE_ID: 1766038299126 :ANKI_NOTE_HASH: 52a6b8d2ac853779798b63b9b00a9524 :END: \[(A\cup B)\cup C = A\cup (B \cup C) \] \[(A\cap B)\cap C = A\cap (B \cap C) \] ** Gamma function :PROPERTIES: :ANKI_NOTE_TYPE: Basic :ANKI_PREPEND_HEADING: t :ANKI_NOTE_ID: 1766038299128 :ANKI_NOTE_HASH: 8e8619d9fc4876a0980ff02946d0c307 :END: \[\Gamma(\alpha) = ?\] *** Back \[\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t}\; \mathrm{d}t\]