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Visualization of Two-Dimensional Conformal
Transformations with PGF/TikZ

Manousos Markoutsakis

6th March 2019

Abstract
In the first part of this overview article we summarize the basics of

D-dimensional global conformal transformations and two-dimensional in-
finitesimal conformal transformations. In the second part we suggest an
elementary method for visualizing two-dimensional conformal transforma-
tions in the Euclidean plane. The practical implementation is build on
the open source graphics language PGF/TikZ.

This work “Visualization of Two-Dimensional Conformal Transformations with PGF/TikZ”, by
Manousos Markoutsakis, is published under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.
For license details see: creativecommons.org/licenses/by-nc-nd/4.0/

Conformal Transformations and Conformal Group. We consider the
D-dimensional Euclidean affine-linear space ED ≡ (RD, δ) comprised of the D-
dimensional affine-linear space RD and the usual Euclidean metric δjk given by
the constant matrix

δjk = diag(1, . . . , 1) . (1)
The points of the manifold ED can be represented by D-tuples xj , j = 1, . . . , D.
We consider transformations of the general form xj 7→ x′j(x) on the manifold
ED. All transformations of the points xj here and in the following are meant
in the active sense. Simple examples are translations x′j = xj + aj and rota-
tions x′j = Rj

kx
k which, combined, constitute the Euclidean transformations.

The set of all Euclidean transformations on ED constitutes the Euclidean group
denoted E(D). The Euclidean transformations are fully determined by the con-
dition

∂x′l

∂xj
(x)∂x

′m

∂xk
(x) δlm = δjk , (2)

which, at the same time, is an expression of the invariance of the metric δjk of
ED under Euclidean transformations. General D-dimensional conformal trans-
formations on ED are defined by the condition
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∂x′l

∂xj
(x)∂x

′m

∂xk
(x) δlm = Ψ2(x) δjk , (3)

where the so-called conformal factor Ψ(x) is a strictly positive scalar function of
the coordinates. Strict positivity Ψ(x) > 0 is needed so that the inverse 1/Ψ(x)
is well defined. The conformal transformations constitute a group called the
conformal group which we denote C(D). Obviously the Euclidean group is a
subgroup of the conformal group and corresponds to the special case of constant
Ψ = 1 in all transformations. In order to prove the group property for the set
of conformal transformations we first note that the composition of any two
conformal transformations is also a conformal transformation. More specifically
consider two iterated conformal transformations F and G given by

F : x 7→ x′ = F (x)
G : x′ 7→ x′′ = G(x′)

(4)

with the respective conformal factors ΨF (x) and ΨG(x). Then the combined
transformation G ◦ F

G ◦ F : x 7→ x′′ = G ◦ F (x) (5)

is also a conformal transformation and its conformal factor ΨG◦F (x) is given by

ΨG◦F (x) = ΨG(F (x)) ΨF (x) . (6)

The neutral element is the identity transformation and the inverse conformal
transformation is given by the inverse conformal factor. Due to the last formula
the associativity of conformal transformations reduces to the associativity of
real numbers. Thus the conformal transformations on the Eulidean space ED

consitute a group. Geometrically the conformal transformations leave the an-
gles between D-vectors unchanged. In general they do not preserve lengths or
distances. The general condition for conformal transformations contains the spe-
cial case where the conformal factor Ψ(x) is a constant, Ψ(x) = const = ω > 0.
This is the case of a global, or rigid, scale transformation also called a dilata-
tion. Hence we see that general conformal transformations can be viewed as
local scale transformations.

In terms of single types of transformations the conformal group contains
besides the translations and rotations also the above mentioned dilatations

x′k = ωxk (7)

and the so-called special conformal transformations, abbreviated SCT, and given
by

x′k = xk − ckx2

1− 2(c · x) + c2x2 , (8)
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where (c · x) = cjx
j is the usual scalar product in ED. For a derivation of the

SCT expression see e.g. [2]. The dilatations need one real parameter ω for their
definition. The SCTs need D real parameters, represented by the vector ck, in
order to be defined. In D ≥ 2 dimensions a general conformal transformation
needs in total

D + D(D − 1)
2 + 1 +D = (D + 2)(D + 1)

2 (9)

real parameters to be defined. A particular type of conformal transformation is
the inversion

x′k = xk

x2 . (10)

Any SCT can be written as an inversion, followed by a translation by a constant
vector and a subsequent inversion. We can write symbolically

SCT [ c ] = Inversion ◦ Translation [−c ] ◦ Inversion . (11)

For each single type of transformation within the conformal group there is a
specific conformal factor. The conformal factor for translations and rotations is
trivially equal one. For dilatations the conformal factor is

ΨDil(x) = ω . (12)

For inversions the corresponding conformal factor is

ΨInv(x) = 1
x2 . (13)

And finally for SCTs the conformal factor is

ΨSCT(x) = 1
1− 2(c · x) + c2x2 . (14)

The transformations we have listed above are globally defined conformal trans-
formations. There is a small technicality we need to take into account for inver-
sions and SCTs when defining global transformations. Inversions map the point
x = 0 to infinity, therefore we need to use the compactified version ED ∪{∞} of
Euclidean space. For SCTs the points x with 1− 2(c · x) + c2x2 = 0 are special.
These points are mapped to infinity, so again we have to use the compactified
version ED ∪ {∞} in order to encompass all cases.

Infinitesimal Conformal Transformations and the Case D = 2. Instead
of globally defined transformations one can consider infinitesimal transforma-
tions. Infinitesimal transformations on ED have the generic form

x′j(x) = xj + εKj(x) , (15)
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with the real parameter ε being considered small ε � 1 and the vector field
Kj(x) being specific for the transformation at hand. For Euclidean transforma-
tions as defined in 2 the equivalent condition for the vector field Kj(x) reads

∂jKk + ∂kKj = 0 . (16)
This is the Killing equation and the vector field is called the Killing vector field.
For the case of conformal transformations we first write the conformal factor
Ψ(x) as

Ψ(x) = exp (ε τ(x)) = 1 + ε τ(x) +O(ε2) (17)
using a real scalar function τ(x). Inserting the transformation x′(x) = x+εK(x)
into the condition for conformal transformations 3 we obtain

∂jKk + ∂kKj = 2 τδjk . (18)
Taking the trace of both sides the scalar function τ(x) is derived to be

τ = 1
D
∂jK

j . (19)

Thus we obtain the conformal Killing equation

∂jKk + ∂kKj = 2
D

(∂ ·K)δjk . (20)

A vector field Kj(x) fulfilling this equation is called a conformal Killing vector
field and defines an infinitesimal conformal transformation.

Next we specialize to the case D = 2. The conformal Killing equation is
equivalent to the following two equations

∂1K1 = ∂2K2

∂1K2 = −∂2K1

}
. (21)

Instead of the real Euclidean plane E2 we can consider complex coordinates in
C and define a complex function K(z) by

z 7→ K(z) ≡ K1(z) + iK2(z) , (22)
with the function argument being z ≡ x1 +ix2. Obviously the conformal Killing
equation is equivalent to the Cauchy-Riemann equations, which in turn are
equivalent to the holomorphy of the complex function K(z) in some suited open
set in C, see e.g. [4]. This means that holomorphic functions define infinitesimal
conformal transformations. A function f(z) on C of the form

z 7→ f(z) = z + εK(z) (23)
is the expression of such an infinitesimal conformal transformation. Because
we are foremost interested in the local behavior of functions when we study in-
finitesimal transformations, we can very well consider even meromorphic func-
tions possessing certain singular points outside the open domain of interest in
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C. Hence we can write down the Laurent series for K(z), e.g. around the point
z = 0. The infinitesimal conformal transformation f(z) reads then

f(z) = z + ε
∑
n∈Z

κn · (−zn+1) . (24)

The minus sign in front of zn+1 is just conventional in conformal field theory.
We see that one needs countably infinite many parameters, the coefficients κn,
in order to define a 2-dimensional infinitesimal conformal transformation. This
is a speciality of local conformal transformations in two dimensions. If one wants
to narrow down to globally defined conformal transformations, then the number
of parameters in two dimensions is equal (D + 2)(D + 1)/2 = 6 again, as given
in the previous section. These are two parameters for translations, one angle
parameter for rotations, one scale parameter for dilatations and two parameters
for the SCTs.

Visualization of Conformal Transformations with PGF/TikZ. Confor-
mal transformations are important for various branches of theoretical physics, in
engineering and in computer vision. However, in the literature one encounters
rather seldom graphical visualizations of conformal maps. At the same time it is
enlightening to actually see the effect of certain conformal transformations. In
the following a simple recipe is suggested how to produce high-quality graphical
representations of conformal maps. The practical implementation is based on
the free and open source graphics language PGF/TikZ. For description of this
vector graphics software see [3]. We will present the conceptual idea, concrete
examples of conformal maps and the corresponding code within the PGF/TikZ
language.

The initial basic idea is to consider the active transformation of a regular
coordinate grid, for instance a Cartesian coordinate grid, under a conformal
transformation. We concentrate on the case D = 2 throughout. One starts
with a set of curves describing the regular coordinate grid. In the case of a
Cartesian coordinate grid these curves would be the set of lines

x = c

y = d

}
. (25)

Any point in the Euclidean plane is specified by its Cartesian coordinates (x, y).
The real parameters c and d take their values within a suited, discrete set of
equidistant values. Under the active conformal transformation(

x

y

)
7→

(
u(x, y)
v(x, y)

)
(26)

each point (x, y) is mapped to the point (u, v). The constant line x = c is
transformed to a parametric curve in the plane of the form u = u(c, y) and v =
v(c, y), where the variable y takes all real values within the domain considered.
In the same way, the constant line y = d is transformed to a parametric curve
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u = u(x, d) and v = v(x, d), where the variable x takes all real values within the
domain of interest. The set of all these parametric curves visualizes the effect of
deformation of the regular Cartesian grid under the conformal transformation.
What we visualize in this way is actually the conformal geometry as seen from
our usual Euclidean geometry point of view.

Let us give a first example. We start with the regular Cartesian grid as
shown in figure 1 with its domain being already chosen suited for the example.

x

y

−2 2

−2

2

Figure 1: Initial Cartesian grid, occupying two quadrants

The concrete case considered is the conformal map

z 7→ z2 , (27)

with z taking values in C \ {0}. Written with real Cartesian coordinates in
R2 \ {0} this conformal map is given by(

x

y

)
7→

(
u

v

)
=
(
x2 − y2

2xy

)
. (28)

That this is a conformal transformation, as demanded by the defining equation
3, can be inspected directly. The corresponding conformal factor Ψ(x, y) is

Ψ(x, y) = 2
(
x2 + y2)1/2 . (29)

Each vertical straight line x = c is mapped to the parametric curve u = c2 − y2

and v = 2cy. Each horizontal straight line y = d is mapped to the parametric
curve u = x2 − d2 and v = 2xd. Transforming the complete domain of interest,
defined by the values 0 ≤ x ≤ 2.1 and −2.1 ≤ y ≤ 2.1, one obtains the confor-
mally deformed grid lines as depicted in figure 2. All local angles are preserved,
with the origin being the only exception where the angle is doubled. Globally
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the total Cartesian grid is stretched and bent in such a way that the initial
brown line segment x = 0 with y ∈ (0, 2.1] is bent “downward” and the initial
brown line segment x = 0 with y ∈ [−2.1, 0) is bent “upward” so that the two
resulting lines coincide with the line segment y = 0 with x ∈ [−4.41, 0).

u

v

−4 4

−8

−4

4

8

Figure 2: Conformally transformed grid under z 7→ z2

In full analogy one can consider the conformal map

z 7→ z4 (30)
in C \ {0}. Written in R2 \ {0} this conformal map is given by(

x

y

)
7→

(
u

v

)
=
(

(x2 − y2)2 − 4x2y2

4(x2 − y2)xy

)
. (31)

The corresponding conformal factor Ψ(x, y) is

Ψ(x, y) = 4
(
x2 + y2)3/2 . (32)
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We can start with a regular Cartesian grid in the first quadrant, as in figure 3.

x

y

2

2

Figure 3: Intial Cartesian grid, occupying one quadrant

The original grid is conformally transformed with all local angles being pre-
served except at the origin where the angle is multiplied by four. In the large the
Cartesian grid is transformed in such a way that the initial brown line segment
x = 0 with y ∈ (0, 2.1] is bent along the positive rotation direction sweeping
the angle between ϕ = π/2 and ϕ = 2π so that the resulting line coincides
with the line segment y = 0 with x ∈ (0, 19.4481]. The result of this conformal
transformation is visualized by the diagram 4, whos scale has been reduced by
a factor of ten compared to the original diagram.

u

v

−64 16

−20

20

Figure 4: Conformally transformed grid under z 7→ z4

As a final example we consider the conformal map
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z 7→ 1
z
, (33)

again defined in C \ {0} leaving out the singular point at the origin. Written in
R2 \ {0} this conformal map is expressed as(

x

y

)
7→

(
u

v

)
= 1
x2 + y2

(
x

−y

)
. (34)

The conformal factor Ψ(x, y) of this transformation is easily calculated to be

Ψ(x, y) =
√

2 (y2 − x2)
(y2 + x2)2 . (35)

Once again we consider initially a regular Cartesian grid, in this case occupying
all four quadrants, as shown in figure 5. We leave out the line segments crossing
the coordinate origin to avoid the singular point (x, y) = (0, 0) in the inversion.

x

y

−2 2

−2

2

Figure 5: Initial Cartesian grid, occupying all four quadrants

The inversion operation applied on this Cartesian grid produces the picture
6. Again, all local angles are preserved, the resulting red and blue lines meet
always at a right angle. The initially outer line segments, with the brown,
yellow, green and cyan colors, are mapped to the inner part of the resulting
conformal diagram. The initially innermost line segments are mapped to the
outer part of the conformal diagram.
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u

v

−4 4

−4

4

Figure 6: Conformally transformed grid under z 7→ z−1

PGF/TikZ Code. In the following we display and discuss the PGF/TikZ
code leading to the output of the first example z 7→ z2. The code used reads

\begin{tikzpicture} [scale=0.6] % Overall scale of graphics

%-------------------------------------

% Coordinate system

\draw [>=stealth,->] (-6.0,0)--(6.2,0); % u-axis

\draw [>=stealth,->] (0,-9.4)--(0,9.6); % v-axis

\node at (6.18,-0.45) {$u$}; % u-axis

\node at (0.44,9.6) {$v$}; % v-axis

%-------------------------------------

% Marks and labels (scaled according to graphics size)

\draw [line width=0.6] (-4.0,0.1)--(-4.0,-0.1); % mark

\draw [line width=0.6] (-2.0,0.1)--(-2.0,-0.1); % mark

\draw [line width=0.6] (2.0,0.1)--(2.0,-0.1); % mark

10



\draw [line width=0.6] (4.0,0.1)--(4.0,-0.1); % mark

\draw [line width=0.6] (-0.1,-8.0)--(0.1,-8.0); % mark

\draw [line width=0.6] (-0.1,-6.0)--(0.1,-6.0); % mark

\draw [line width=0.6] (-0.1,-4.0)--(0.1,-4.0); % mark

\draw [line width=0.6] (-0.1,-2.0)--(0.1,-2.0); % mark

\draw [line width=0.6] (-0.1,2.0)--(0.1,2.0); % mark

\draw [line width=0.6] (-0.1,4.0)--(0.1,4.0); % mark

\draw [line width=0.6] (-0.1,6.0)--(0.1,6.0); % mark

\draw [line width=0.6] (-0.1,8.0)--(0.1,8.0); % mark

\node at (-4.45,-0.44) {$-4$}; % label

\node at (4.25,-0.42) {$4$}; % label

\node at (-0.58,-8.025) {$-8$}; % label

\node at (-0.485,-4.0) {$-4$}; % label

\node at (-0.255,4.0) {$4$}; % label

\node at (-0.35,8.0) {$8$}; % label

%-------------------------------------

% Plots using the parametric equations

%-------------------------------------

% The x = const curves

% the function variable \x takes values for the y-direction

% and varies from \x=-2.1 to \x=+2.1

%-------------------------------------

% x = 0.0

\draw [ domain= -2.1:2.1, samples=200, color=brown, line width=0.8 ]

plot ({ 0.0 - ( \x )^2 } , { 2.0 * 0.0 * ( \x ) });

% x = 0.25

\draw [ domain= -2.1:2.1, samples=200, color=red, line width=0.8 ]

plot ({ 0.0625 - ( \x )^2 } , { 2.0 * 0.25 * ( \x ) });

% x = 0.5

\draw [ domain= -2.1:2.1, samples=200, color=red, line width=0.8 ]

plot ({ 0.25 - ( \x )^2 } , { 2.0 * 0.5 * ( \x ) });

% x = 0.75

\draw [ domain= -2.1:2.1, samples=200, color=red, line width=0.8 ]

plot ({ 0.5625 - ( \x )^2 } , { 2.0 * 0.75 * ( \x ) });

% x = 1.0

\draw [ domain= -2.1:2.1, samples=200, color=red, line width=0.8 ]

plot ({ 1.0 - ( \x )^2 } , { 2.0 * 1.0 * ( \x ) });

% x = 1.25

\draw [ domain= -2.1:2.1, samples=200, color=red, line width=0.8 ]

plot ({ 1.5625 - ( \x )^2 } , { 2.0 * 1.25 * ( \x ) });

% x = 1.5
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\draw [ domain= -2.1:2.1, samples=200, color=red, line width=0.8 ]

plot ({ 2.25 - ( \x )^2 } , { 2.0 * 1.5 * ( \x ) });

% x = 1.75

\draw [ domain= -2.1:2.1, samples=200, color=red, line width=0.8 ]

plot ({ 3.0625 - ( \x )^2 } , { 2.0 * 1.75 * ( \x ) });

% x = 2.0

\draw [ domain= -2.1:2.1, samples=200, color=yellow, line width=0.8 ]

plot ({ 4.0 - ( \x )^2 } , { 2.0 * 2.0 * ( \x ) });

%-------------------------------------

% The y = const curves

% the function variable \x takes values for the x-direction

% and varies from \x=0.0 to \x=+2.1

%-------------------------------------

% y = 2.0

\draw [ domain= 0.0:2.1, samples=200, color=cyan, line width=0.8 ]

plot ({ ( \x )^2 - 4.0 } , { 2.0 * ( \x ) * 2.0 });

% y = 1.75

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 3.0625 } , { 2.0 * ( \x ) * 1.75 });

% y = 1.5

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 2.25 } , { 2.0 * ( \x ) * 1.5 });

% y = 1.25

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 1.5625 } , { 2.0 * ( \x ) * 1.25 });

% y = 1.0

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 1.0 } , { 2.0 * ( \x ) * 1.0 });

% y = 0.75

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 0.5625 } , { 2.0 * ( \x ) * 0.75 });

% y = 0.5

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 0.25 } , { 2.0 * ( \x ) * 0.5 });

% y = 0.25

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 0.0625 } , { 2.0 * ( \x ) * 0.25 });

% y = 0.0

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 0.0 } , { 2.0 * ( \x ) * 0.0 });

% y = -0.25
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\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 0.0625 } , { - 2.0 * ( \x ) * 0.25 });

% y = -0.5

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 0.25 } , { - 2.0 * ( \x ) * 0.5 });

% y = -0.75

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 0.5625 } , { - 2.0 * ( \x ) * 0.75 });

% y = -1.0

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 1.0 } , { - 2.0 * ( \x ) * 1.0 });

% y = -1.25

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 1.5625 } , { - 2.0 * ( \x ) * 1.25 });

% y = -1.5

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 2.25 } , { - 2.0 * ( \x ) * 1.5 });

% y = -1.75

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - 3.0625 } , { - 2.0 * ( \x ) * 1.75 });

% y = -2.0

\draw [ domain= 0.0:2.1, samples=200, color=green, line width=0.8 ]

plot ({ ( \x )^2 - 4.0 } , { - 2.0 * ( \x ) * 2.0 });

%-------------------------------------

% Origin is left out (scaled according to graphics size)

\fill (0,0) circle (2.4pt);

\fill [color = white] (0,0) circle (1.2pt);

%-------------------------------------

\end{tikzpicture}

We describe briefly the primary commands in the above code. The PGF/TikZ
code is initialized and completed by the command pair

\begin{tikzpicture}

...

\end{tikzpicture}

Comment lines or notes start with the % symbol. The definition and labeling of
the coordinate system above is obvious. The plotting of the parametric curves
defined by x = c is achieved by a sequence of commands of the general form

% x = (VALUE)

\draw [ domain= -2.1:2.1, samples=200, color=red, line width=0.8 ]

plot ({ (VALUE)^2 - ( \x )^2 } , { 2.0 * (VALUE) * ( \x ) });
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These commands encode the set of parametric curves

u = c2 − y2

v = 2cy

}
. (36)

The variable \x takes 200 discrete equidistant values in the domain between the
points -2.1 and 2.1 along the y-axis. One can use a higher number of samples
to produce a smoother curve. The command is carried out separetely for each
curve defined by the discrete VALUE of x

x ∈ {0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0} . (37)

The plotting of the parametric curves defined by y = d is analogous. The
commands

% y = (VALUE)

\draw [ domain= 0.0:2.1, samples=200, color=blue, line width=0.8 ]

plot ({ ( \x )^2 - (VALUE)^2 } , { 2.0 * ( \x ) * (VALUE) });

correspond to the set of parametric curves

u = x2 − d2

v = 2xd

}
. (38)

The variable \x takes 200 discrete equidistant values in the domain between
the points 0.0 and 2.1 along the x-axis. The command is again carried out
separetely for each curve defined by the discrete VALUE of y

y ∈ {−2.0,−1.75,−1.5,−1.25,−1.0,−0.75,−0.5,−0.25,
0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0} . (39)

The other examples of conformal transformations visualized in this article can
be treated in an analogous fashion. The language PGF/TikZ provides not only
polynomial and rational functions but also transcendental functions. Hence it
is possible to generate graphics for a large variety of conformal transformations.
For a description of the PGF/TikZ language the thorough manual [3] should be
consulted.

Conclusion. In the first part of this article we provided the basic facts of
the theory of conformal transformations and the conformal group acting on
Euclidean space. In the second part we showed how it is possible, by using
elementary means, to generate high-quality visualizations of two-dimensional
conformal transformations and the corresponding geometries. The practical
implementation is based on the open source graphics language PGF/TikZ and,
despite its manual character, proves to be effective for the purpose.
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