Regression

23 Birthday Problems

Read more >

Statistics

This page pairs well with Probability.

Table of Distributions

Distributionmass/density function$$S_X$$$$\mathbb{E}(X)$$$$\mathrm{Var}(X)$$$$\phi_X(s)$$
Bernoulli $$\mathrm{Bern}(\pi)$$$$P(X=1)=\pi\\P(X=0)=1-\pi$$$$\{0,1\}$$$$\pi$$$$\pi(1-\pi)$$$$(1-\pi)+\pi e^{s}$$
Binomial $$\mathrm{Bin}(n,\pi)$$$$p_X(x)=\binom{n}{x}\pi^{x}(1-\pi)^{n-x}$$$$\{0,1,\dots,n\}$$$$n\pi$$$$n\pi(1-\pi)$$$$(1-\pi+\pi e^{s})^{n}$$
Geometric $$\mathrm{Geo}(\pi)$$$$p_X(x)=\pi(1-\pi)^{x-1}$$$$\{1,2,\dots\}$$$$\pi^{-1}$$$$(1-\pi)\pi^{-2}$$$$\frac{\pi}{e^{-s}-1+\pi}$$
Poisson $$\mathcal{P}(\lambda)$$$$p_X(x)=e^{-\lambda}\lambda^{x}/x!$$$$\{0,1,\dots\}$$$$\lambda$$$$\lambda$$$$\exp\{\lambda(e^{s}-1)\}$$
Uniform $$U[\alpha,\beta]$$$$f_X(x)=(\beta-\alpha)^{-1}$$$$[\alpha,\beta]$$$$\frac{1}{2}(\alpha+\beta)$$$$\frac{1}{12}(\beta-\alpha)^2$$$$\frac{e^{\beta s}-e^{\alpha s}}{s(\beta-\alpha)}$$
Exponential $$\mathrm{Exp}(\lambda)$$$$f_X(x)=\lambda e^{-\lambda x}$$$$[0,\infty)$$$$\lambda^{-1}$$$$\lambda^{-2}$$$$\frac{\lambda}{\lambda-s}$$
Gaussian $$\mathcal{N}(\mu,\sigma^{2})$$$$f_X(x)=\\\frac{1}{\sqrt{2\pi\sigma^{2}}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^{2}}\right\}$$$$\mathbb{R}$$$$\mu$$$$\sigma^{2}$$$$e^{\mu s+\frac{1}{2}\sigma^{2}s^{2}}$$
Gamma $$\Gamma(\alpha,\lambda)$$$$f_X(x)=\\\frac{1}{\Gamma(\alpha)}\lambda^{\alpha}x^{\alpha-1}e^{-\lambda x}$$$$[0,\infty)$$$$\alpha\lambda^{-1}$$$$\alpha\lambda^{-2}$$$$\left(\frac{\lambda}{\lambda-s}\right)^{\alpha}$$

Statistical Inference

Definition (Random Sample & Model)
Let \(X=(X_1,\ldots,X_n)\) be i.i.d. from a parametric family \(\{F_\theta:\theta\in\Theta\subset\mathbb{R}^p\}\). The parameter \(\theta\) is unknown; inference uses the randomness of \(X\) to learn about \(\theta\).

Read more >